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Tractable Bayesian Social Learning on Trees
Yashodhan Kanoria and Omer Tamuz

Abstract—We study agents in a social network who learn by
observing the actions of their neighbors. The agents iteratively
estimate an unknown ‘state of the world’ s from initial private
signals, and the past actions of their neighbors in the social
network.

First, we consider a set of Bayesian agents, and investigate
the computational problem the agents face in implementing
the (myopic) Bayesian decision rule. When private signals are
independent conditioned on s, and when the social network
graph is a tree, we provide a new ‘dynamic cavity algorithm’
for the agents’ calculations, with computational effort that is
exponentially lower than what is currently known. We use
our algorithm to perform the first numerical simulations of
interacting Bayesian agents on networks with hundreds of nodes.

Second, we investigate a different model of social learning,
with naive agents who practice ‘majority dynamics’, i.e., at each
round adopt the majority opinion of their neighbors. Under mild
conditions, we show that under majority dynamics, agents learn
s with probability 1− ǫ in O(log log(1/ǫ)) rounds.

We conjecture that ond-regular trees, myopic Bayesian agents
learn s as quickly as agents who practice majority dynamics.
Using our algorithm for Bayesian agents, the conjecture implies
that the computational effort required of Bayesian agents to learn
s is only polylogarithmic in 1/ǫ on d-regular trees. Thus, our
results challenge the belief that iterative Bayesian learning is
computationally intractable.
Index terms: social learning, Bayesian agents, computational
efficiency, convergence, algorithm, dynamic cavity method.

I. I NTRODUCTION

Consider a graphG = (V,E). An edge(i, j) ∈ E indicates
that nodesi ∈ V and j ∈ V can observe each other. Nodes
attempt to learn the truestate of the worlds. Each nodei
receives noisy information abouts in the form of a ‘private
signal’xi. In each discrete time period (or round)t = 0, 1, . . . ,
each node chooses an actionσi(t) ∈ S, which we call a ‘vote’.
Nodes observe the votes cast by their neighbors inG. Thus,
at the time of voting in roundt ≥ 1, the information available
to a nodei consists of the private signalxi, along with the
votes cast by neighbors ofi in rounds up tot− 1.

The above setup is relevant in various contexts, and has
thus been studied by diverse communities. On one hand,
engineering problems like decentralized detection [23], [24]
and distributed decision making [25] have motivated study of
this setup, with the purpose of designing appropriate graphs
G along with voting schemes to achieve desired engineering
goals such as low infrastructure cost, small error probability,
low communication cost, low computation cost, etc. On the
other hand, this setup has been considered by sociologists and
economists interested in the phenomenon of ‘social learning’
wherein agents (nodes) in a social network learn behavior by
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observing the actions of their neighbors in the network. In
this case, the focus is on understanding the science of such
systems as they are in reality, withG being a model of a
real social network, and the voting rule being a model of the
behavior of real agents. In this paper, we focus the discussion
on the social learning interpretation of this setup. However,
our results and techniques are general, and are also relevant
to the corresponding engineering questions.

The importance of social learning in networks has been
demonstrated in a wide variety of settings (e.g., adoption of
agricultural technology in Ghana [7] and Mozambique [4],
choice of contraceptives by European women [16]). Accord-
ingly, understanding mathematical models of social learning
by Bayesian agents has been a goal of theoretical economics
for the past few decades (cf., Goyal [12]). Typical models in
this context assume apure information externality; agent pay-
offs depend only on the action they choose and an underlying
‘state of the world’, and not on the actions of others. Agents
observe the actions of their ‘neighbors’, but do not observe
payoffs ex interim. Typically, all agents have the same utility
function. Each agent receives a private signal that contains
noisy information about the state of the world. Agents choose
actions to maximize expected payoff, given their own private
signal and their observations of the actions chosen by others.

Fully Bayesian models have two advantages over models
that assume ‘bounded rationality’ and prescribe thumb rules
for agent behavior: First, any bounded rationality approach
is bound to involve a somewhat arbitrary decision of which
heuristics the agents use. Second, a game theoretic analysis of
strategic players is possible only if the players choose actions
that are optimal by some criterion. Hence game-theoretic
analyses of learning on networks (e.g., [21]) often opt for the
more difficult but fully Bayesian model.

Much progress has been achieved in models where Bayesian
agents actsequentially, such as the herd behavior models
of Banerjee [5], Bikhchandani, Hirshleifer and Welch [6],
Smith and Sørenson [22] and Acemoglu et al [1]. Here,
the interaction isnot bidirectional: each agent acts only
once, taking into account the actions of her predecessors.
In comparison, our understanding of Bayesian agents who
act repeatedly is much more limited. Gale and Kariv [11]
consider Bayesian agents on a network who repeatedly choose
actions. They show, in the spirit of Aumann’s Agreement
Theorem [2], that agents on a network converge to the same
action under some conditions1. Related work by Rosenberg,
Solan and Vieille [21] and Ménager [17] sheds more light on
the phenomenon of agreement on actions and the conditions
in which it arises.

1A gap in the proof of Gale and Kariv’s agreement theorem was recently
pointed out [18]. However, recent works [21], [19] establish similar results in
more general settings.
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However, the following questions remain essentially unan-
swered:

(I) What action do the agents converge to, e.g., what is the
distribution of this consensus action?

(II) What are the dynamics of such interactions, e.g., what
is the rate of agreement/convergence?

There has been a parallel development of non-Bayesian
models of reasoning for social learning and social experi-
mentation2, e.g., those of Ellison and Fudenberg [10], Bala
and Goyal [3], and DeGroot [8]. Such modelling approaches
appear to be driven by two primary motivating factors (see,
e.g., [10], [3]): (i) Real agents may not be Bayesian. (ii) The
desire to“keep the model mathematically tractable”[3], and
also computationally tractable; since Bayesian models seem to
lack these properties. This leads us to another open question
in the context of Bayesian agents who act repeatedly:
(III) Are the computations required of the agents feasible?

We consider a model that features repeated bidirectional
interaction between fully Bayesian agents connected by a
social network. Our model is a specialization of the model
of Gale and Kariv [11]. We consider a group of Bayesian
agents, each with a private signal that carries information
on an unknown state of the worlds. The individuals form
a social network, so that each observes the actions of some
subset of others, whom we call her neighbors. The agents
must repeatedly choose between a set of possible actions, the
relative merit of which depends on the state of the world
s. The agents iteratively learn by observing their neighbors’
actions, and picking an action that is myopically optimal, given
their information. Thus, the interaction between agents isnot
strategic, and is characterized by information externalities.

Even in the simple case of two states of the world, bi-
nary private signals and two possible actions, the required
calculations appear to be very complicated. A naı̈ve dynamic
programming algorithm is exponential in the number of in-
dividuals. Although this algorithm seems to be well known,
we could not find a complete description of it in the literature
and hence supply it for completeness in Section IV. Since at
iterationt one may consider only agents at distancet, then in
graphs of maximum degreed (on which we focus) the number
of individuals to consider isO(min(n, dt)), and the compu-
tational effort required of each individual to compute their
action at timet is t2O(min(n,dt)). Obviously, this grows very
rapidly. As Gale and Kariv remark [11], “The computational
difficulty of solving the model is massive even in the case
of three persons.” This prevents them from even simulating
networks with more than three nodes.

We describe a novel algorithm for the agents’ calculation in
our model, when the social network graph is a tree or nearly
a tree. This algorithm has running time that is exponentially
smaller than the naı̈ve dynamic program, reducing the com-
putational effort to2O(min(n,td)).

Using our algorithm we are able to run numerical simu-
lations of the social learning process. This extends the work

2Social experimentation settings are closely related to social learning
settings: Here agents can observe (noisy) payoffs receivedby themselves
and their neighbors for different actions, and can use the results of these
‘experiments’ to learn.

of Gale and Kariv [11], who simulated the process for three
agents, to much larger networks3. We use our algorithm to
investigate questions (I) and (II): We numerically evaluate
the probability that the agents learn the optimal action, and
its progress with time. We observe rapid learning of the
optimal action in certain previously unexplored settings:We
consider a model with two possible states of the world and
two corresponding actions (‘votes’), so the agents are in effect
trying to estimate the state of the world and revealing their
estimates to their neighbors. The social networks in these
analyses were chosen to bed-regular (infinite) trees, i.e., trees
in which each node hasd neighbors. The simulations suggest
that, on regular trees, the number of iterations needed under
Bayesian learning to estimates correctly with probability1−ǫ
is O(log log(1/ǫ)).

We conjecture that the error probability under Bayesian
updates is no larger than the error probability under a different
‘majority’ update rule, in which agents adopt the opinion of
the majority of their neighbors in the previous round. Our
numerical results support this conjecture. We prove that for
the majority update rule, the number of iterations needed to
estimates correctly with probability1− ǫ is O(log log(1/ǫ)),
for regular trees of degree at least five4. Our conjecture then
implies, again, that the number of iterations needed to estimate
s correctly with probability1 − ǫ is O(log log(1/ǫ)). Thus,
assuming the conjecture, the computational effort required of
Bayesian agents drops from quasi-polynomial in1/ǫ (using
the naı̈ve dynamic program) to polynomial inlog(1/ǫ) (i.e.,
polylogarithmic in1/ǫ), making Bayesian learning computa-
tionally tractable. Thus, our results shed new light on question
(III), suggesting a positive answer in the case of tree graphs.

Our algorithmic approach works provided the local neigh-
borhood of a node is tree structured. The restriction of the dis-
cussion to tree or tree-like social networks certainly excludes
many natural settings that tend to exhibit highly clustered
social graphs. However, in some cases artificially constructed
networks have no or few loops by design; these include
some highly hierarchical or compartmentalized organizations,
as well as some physical communication networks where
redundancy is expensive, and the least expensive connected
network is a tree. Furthermore, the fact that this non-trivial
class of networks does not present a major computational hur-
dle for fully Bayesian calculations may in itself be somewhat
surprising.

A key technique used in this paper is the dynamic cavity
method, introduced by Kanoria and Montanari [13] in their
study of ‘majority updates’ on trees, a model also motivated
by social learning. This technique is a dynamical version of
the cavity method of statistical physics and appears promising
for the analysis of iterative tree processes in general. The
key idea is the following: In a dynamical setting on a tree
graph, there is correlation in the trajectories of neighbors of

3In each of our numerical analyses, agents receive information (directly or
indirectly) from hundreds of distinct nodes.

4This result should be of independent interest. Majority dynamics is a
reasonable model of social learning with bounded rationality. It is also relevant
in other contexts like consensus in distributed systems[20]. We consider the
results a main technical contribution of the paper
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a node due to a nodes own past actions. The dynamic cavity
method allows to exactly account for these correlations. In
this work, we use this method for the first time to give a new
algorithmic result, enabling efficient computation by nodes.
This is in contrast to the case of majority updates, where
the update rule is computationally trivial. Our algorithmic and
analytical approach leveraging the dynamic cavity method may
be applicable to a range of iterative update situations on locally
treelike graphs.

A short conference version of this paper [15] contains
a description of the dynamic cavity based algorithm and
statements of the main results without proofs.

A. Outline of the paper

We describe and discuss our model in Section II. We state
our main results in Section III. Section IV presents a naı̈ve
dynamic programming algorithm. Section V presents our main
contribution: a dynamic cavity method based algorithm for
tree graphs, along with a proof of correctness and analysis of
running time. We prove our convergence results in Section VI.
Section VII discusses our conjecture regarding convergence
(Conjecture III.5) and presents numerical results.

II. M ODEL

The model we consider is a simplified version of the model
of social learning introduced by Gale and Kariv [11]. We first
give a minimal mathematical description of our model, post-
poning a discussion on knowledge assumptions and rationality.
For ease of exposition, we make use of a simple model that
captures the essential features of the problem. In Section II-A,
we motivate our model in the context of rational agents, state
our knowledge assumptions, and explain how some of our
simplifications are merely cosmetic.

Consider a graphG = (V,E), representing a network of
agents, withV being the set of agents andE being the social
ties between them. An edge(i, j) indicates that agentsi and
j can observe each other.

Agents attempt to learn the truestate of the worlds ∈ S,
whereS is finite. Each agenti receives a private signalxi ∈ X ,
whereX is finite. Private signals are independent conditioned
on s, i.e.,

P [s, x1, . . . , xn] = P [s]
∏

i∈V

P [xi|s] .

In each discrete time period (or round)t = 0, 1, . . . , each
agenti ∈ V chooses an actionσi(t) ∈ S, which we call a
‘vote’. Agents observe the votes cast by their neighbors inG.
Thus, at the time of voting in roundt ≥ 1, the information
available to an agent consists of the private signal she received
initially, along with the votes cast by her neighbors in rounds
up to t−1. In each round, each agent votes for the most likely
state of the world that she currently believes is most likely,
given the Bayesian posterior distribution she computes.

We denote by∂i the neighbors of agenti, not includ-
ing i, i.e., ∂i ≡ {j : (i, j) ∈ E}. We use σt

i ≡
(σi(0), σi(1), . . . , σi(t)) to denote all of agenti’s votes, up to

and including timet. We callσi ≡ (σi(0), σi(1), . . .) the ‘tra-
jectory’ of votes at nodei. Denote byF t

i ≡ (xi, σ
t−1
∂i , σt−1

i )
the information available to agenti prior to voting in roundt.
Hereσt−1

∂i denotes the votes cast by nodes in∂i up to round
t− 1. Note that this doesnot include her neighbors’ votes at
time t.

The voteσi(t) is chosen asargmaxs∈S P [s|F t
i ]. We as-

sume a deterministic tie-breaking rule. To differentiate the
random variableσi(t) from the function used to calculate it,
we denote the function bygi(t) : X × |S|t|∂i| → S, so that

σi(t) = gi,t(xi, σ
t−1
∂i )

For convenience, we also define the vector functiongti that
returns the entire history ofi’s votes up to timet, gti ≡
(gi,0, gi,1, . . . , gi,t), so that

σt
i = gti(xi, σ

t−1
∂i ) .

In case of a deterministic tie-breaking rule,σi(t
′) is a

deterministic function of(xi, σ
t′−1
∂i ), so we can takeF t

i =
(xi, σ

t−1
∂i ).

A. Discussion of our Model

The decision rules can be interpreted/motivated as follows.
SupposeP [s], P [x|s] andG are common knowledge. Suppose
that, for each state of the worlds, action σ has utility one
when the state of the world iss = σ, and zero otherwise.
Then, the action that myopically maximizes the expected
utility corresponds to the maximuma posteriori probability
(MAP) estimator of the state of the world. This leads to
the decision rule we consider, withσi(t) being chosen as
argmaxs∈S P [s|F t

i ]. We would like to emphasize that we
only restrict the ‘action’ spaceA to S (thus calling actions as
‘votes’), with this simple “1 if you vote correctly, 0 otherwise”
utility function, for simplicity of presentation. Indeed,our
main computational result, Theorem III.2 admits a trivial
generalization to the case of a general finite action spaceA
and a general common utility functionU : A× S → R.

A natural objection to such a model of behavior is that
the agents should want to maximize the discounted sum of
their future utilities, instead of making the myopic optimal
choice. Gale and Kariv [11] deal with this by assuming a
continuum of agents at each node, so that no one of them
can hope to influence the future by their choice of votes. We
can do the same here: Then{σi(t)} and {F t

i } form a weak
perfect Bayesian equilibrium (cf. [11, Definition 1]) for the
right utility function (see above).

The model presented above is a special case of the Gale-
Kariv model [11]. Our choice of a ‘state of the world’s
and conditionally independent private signals, with a utility
function dependent only ons anda, is typical in herd behavior
models (e.g., [5], [6], [22]), but is a specialization of theGale-
Kariv model.

Scaling regime.We treat the cardinalities of the setsS and
X as fixed5, whereas the scaling parameters are the number
of agentsn ≡ |V |, and the number of iterationst. Later,

5Most of this work also treats the maximum degreed of the network as a
fixed parameter.
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in Section III, we argue that since agents are trying to learn
s, an alternative scaling parameter tot is 1/ǫ, whereǫ > 0
is the desired probability of error. We will be interested in
how the computational effort increases asn grows, and ast
or 1/ǫ grow. Such a scaling regime is of much interest with
the emergence of massive online networks, where non-expert
agents interact on a variety of issues, and individual agents
are expected to have limited private information, and typically
choose from a (relatively) small set of available actions.

III. M AIN RESULTS

A. Efficient computation

To the best of our knowledge, the literature (e.g., [11], [21],
[19]) does not contain an explicit description of an algorithm to
compute the actions chosen by agents in our model. However,
it seems that a dynamic programming algorithm that performs
this computation is well known. The proposition below states
the computational complexity of this algorithm.

Proposition III.1. On any graphG, there is a dynamic
programming (DP) based algorithm that allows agents to
compute their actions up to timet with computational effort
t2O(min(n,(d−1)t)), where d is the maximum degree of the
graph.

The algorithm leading to Proposition III.1 is described
in Section IV. This proposition provides the baseline or
benchmark that we compare our other algorithmic results
to. In particular, we do not consider this algorithm a major
contribution of this work.

A key advantage of the DP algorithm is that it works for any
graphG. The disadvantage, of course, is that the computational
effort required grows doubly exponentially in the number of
iterationst.

Our main result concerns the computational effort needed
when the graphG is a tree6. We show that computational effort
exponentially lower than that of the naive DP suffices in this
case.

Theorem III.2. In a tree graphG with maximum degree
d, each agent can calculate her actions up to timet with
computational effortt2O(min(n,td)).

The algorithm we use employs a technique called the
dynamic cavity method [13], previously used only in analytical
contexts. A full description of the algorithm and analysis
leading to Theorem III.2 is described in Section V.

An apparent issue is that the computational effort required
is exponential int; typically, exponentially growing effort is
considered as large. However, in this case, we expect the
number of iterationst to be typically quite small, for two
reasons: (1) In many settings, agents appear to converge to
the ‘right’ answer in a very small number of iterations [11].
In Section III-B below, we argue that ifǫ is the desired
probability of error, then the number of rounds required should
be only O(log log(1/ǫ)), leading to computational effort of
only polylog(1/ǫ). Having obtained an approximately correct

6A tree graph, in this work, refers to a graph that contains no loops.This
is sometimes called a ‘forest’ in the literature.

estimate, the agents would have little incentive to continue
observing their neighbors actions and updating their beliefs.7

(2) In many situations we would like to model, we might
expect only a small number (e.g., single digit) number of
iterative updates to occur, irrespective of network size etc. For
instance, voters may discuss an upcoming election with each
other over a short period of time, ending on the election day
when ballots are cast.

B. Convergence

Since an agent gains information at each round, and since
she is Bayesian, then the probability that she votes correctly
is non-decreasing int, the number of rounds. We say that
the agentconvergesif this probability converges to one, or
equivalently if the probability that the agent votes incorrectly
converges to zero8.

We say that there isdoubly exponential convergenceto
the state of the worlds if the maximum single node error
probabilitymaxi∈V P [σi(t) 6= s] decays with round numbert
as

max
i∈V

P [σi(t) 6= s] = exp
(
− Ω(bt)

)
, (1)

whereb > 1 is some constant.
The following is an immediate corollary of Theorem III.2.

Corollary III.3. Consider iterative Bayesian learning on a
tree of with maximum degreed. If we have doubly exponential
convergence tos, then computational effort that is polynomial
in log(1/ǫ) (i.e., polylogarithmic in1/ǫ) suffices to achieve
error probability P [σi(t) 6= s] ≤ ǫ for all i in V .

Note that if weaken our assumption to doubly exponen-
tial convergence in only a subsetVc ⊆ V of nodes, i.e.,
maxi∈Vc

P [σi(t) 6= s] = exp
(
− Ω(bt)

)
, we still obtain a

similar result with nodes inVc efficiently learnings.

Remark III.4. If computational effort grows only polylog-
arithmically in an approximation parameter (likeǫ here),
this is typically considered asvery efficient. Evenpoly(1/ǫ)
computational effort is considered reasonably efficient, with
the corresponding scheme being called a “fully polynomial
time approximation scheme”.

We are handicapped by the fact that very little in known
rigorously about convergence of iterative Bayesian learning in
this sense (cf. questions (I) and (II) in Section I). Nevertheless,
we provide the evidence for doubly exponential convergence
on trees: We study a situation with two possible states of
the world and two possible private signal values. We state a
conjecture and show that it implies doubly exponential conver-
gence of iterative Bayesian learning also on undirected trees.
We provide numerical evidence in support of our conjecture.

1) Bayesian vs. ‘majority’ updates:We conjecture that
iterative Bayesian learning leads to lower error probabilities
(in the weak sense) than a very simple alternative update rule
we call ‘majority dynamics’[13]. Under this rule, the agents

7Thus,1/ǫ serves as an alternative scaling parameter tot.
8Note that this notion of ‘convergence’ differs greatly fromthe ‘agreement

on actions’ sense in which the term is sometimes used.
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adopt the action taken by the majority of their neighbors in
the previous iteration (this is made precise in Definition VI.1).
Our conjecture seems natural since the iterative Bayesian
update rule chooses the vote in each round that (myopically)
minimizes the error probability. We usêσi(t) to denote votes
under the majority dynamics.

Conjecture III.5. Consider binarys ∼ Bernoulli(1/2), and
binary private signals that are independent identically dis-
tributed givens, with P [xi = s] = 1−δ for someδ ∈ (0, 1/2).
Let the majority dynamics (cf. Definition VI.1) be initialized
with the private signals, i.e.,̂σi(0) = xi for all i ∈ V . Then
on any infinite regular tree, for allt ≥ 0, we have

P [σi(t) 6= s] ≤ P [σ̂i(t) 6= s] . (2)

In words, the error probability under iterative Bayesian learn-
ing is no larger than the error probability under majority
dynamics, after the same number of iterations.

In Section VI, we show doubly exponential convergence for
majority dynamics on regular trees.

Theorem III.6. Consider binarys ∼ Bernoulli(1/2), and
binary initial votes σ̂i(0) that are independent identically
distributed givens, with P [σ̂i(0) 6= s] = 1 − δ for some
δ ∈ (0, 1/2). Let i be any node in an infinite (undirected)
d regular tree ford ≥ 5. Then, under the majority dynamics,

P [σ̂i(t) 6= s] = exp
[
− Ω

((
1
2 (d− 2)

)t) ]
.

whenδ < (2e(d− 1)/(d− 2))−
d−2

d−4 .

Thus, if Conjecture III.5 holds:

• We have doubly exponential convergence for iterative
Bayesian learning on regular trees withd ≥ 5, im-
plying that for anyǫ > 0, an error probabilityǫ can
be achieved inO(log log(1/ǫ)) iterations with iterative
Bayesian learning.

• Combining with Corollary III.3), we see that the compu-
tational effort that is polylogarithmic in(1/ǫ) suffices to
achieve error probabilityǫ.

This compares favorably with the quasi-poly(1/ǫ) (i.e.,
exp

(
polylog(1/ǫ)

)
) upper bound on computational effort that

we can derive by combining Conjecture III.5 and the naı̈ve
dynamic program described in Section IV. Indeed, based on re-
cent results on subexponential decay of error probability with
the number of private signals being aggregated [14], it would
be natural to conjecture that the number of iterationsT needed
to obtain an error probability ofǫ obeys(d−1)T ≥ C log(1/ǫ)
for any C < ∞, for ǫ small enough. This would then imply
that the required computational effort using the naı̈ve DP on
a regular tree of degreed grows faster than any polynomial in
1/ǫ.

Since we are unable to prove our conjecture, we instead
provide numerical evidence for it in Table I. Further numerical
results are presented in Section VII, along with a discussion of
the difficulties in proving Conjecture III.5. All computations
leading to our numerical results are exact (modulo finite preci-
sion arithmetic), and were performed using the dynamic cavity

Round Bayesian Majority
0 0.15 0.15
1 2.66119 · 10−2 2.66119 · 10−2

2 7.61832 · 10−4 1.67525 · 10−3

3 2.83839 · 10−7 8.37462 · 10−6

4 1.41065 · 10−12 2.48525 · 10−10

TABLE I
ERROR PROBABILITY ON A REGULAR TREE WITHd = 5 AND
P [xi 6= s] = 0.15, FOR (I) BAYESIAN AND (II ) MAJORITY

UPDATES. THE AGENTS BREAK TIES BY PICKING THEIR ORIGINAL
PRIVATE SIGNALS.

equations. The results are all consistent with our conjecture
over different values ofd andP [xi 6= s].

We would like to emphasize that several of the error
probability values could be feasibly computed only becauseof
our new efficient approach to computing the decision functions
employed by the nodes. For instance, withd = 5, computing
the decision function at iteration3 using the dynamic program
(cf. Proposition III.1 and Section IV) would require enumer-
ation over280 ∼ 1024 possibilities, which is infeasible even
on state-of-the-art supercomputers. With our approach, weare
able to compute the decision function at iteration3 and even at
iteration4, on a desktop machine. This aggregates information
from the∼ 400 nodes within 4 hops of a given node.

Figure 1 plots decay of error probabilities in regular trees
for iterative Bayesian learning withP [xi 6= s] = 0.3, where
the agents break ties by picking their original private signals.
Each of the curves (for different values ofd) in the plot of
log(− logP [σi(t) 6= s]) vs. t appear to be bounded below by
straight lines with positive slope, suggesting doubly exponen-
tial decay of error probabilities witht.

The empirical rapidity of convergence, particularly ford =
5, 7, is noteworthy.

IV. A S IMPLE ALGORITHM: PROOF OFPROPOSITIONIII.1

A sign of the complexity of evaluating the Bayesian decision
function gti(xi, σ

t−1
∂i ), is that even the brute-force solution

approach to it is not trivial. We therefore describe it here.
One way of thinking of the agents’ calculation is to imagine

that they keep a long list of all the possible combinations of
private signals of all the other agents, and at each iteration
cross out entries that are inconsistent with the signals that
they’ve observed from their neighbors up to that point. Then,
they calculate the probabilities of the different possiblestates
of the world by summing over the entries that have yet to be
crossed out.

This may not be as simple as it seems. To understand which
private signal vectors are ruled out by the observed actionsof
neighbors, an agent “simulates” the network for every possible
private signal vector: Each agent calculates the functiongti for
every other agenti and every possible set of observations by
i. We formalize this below.

Let x ∈ Xn be the vector of private signals(xi)i∈V . The
trajectory ofi, denoted byσi, is a deterministic function ofx.
Assume then that up to timet − 1 each agent has calculated
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Fig. 1. Error probability decay on regular trees for iterative Bayesian learning, withP [xi 6= s] = 0.3 (cf. Section VII). The data used to generate this figure
is presented in Table III.

the trajectoryσt−1
i (x) for all possible private signal vectorsx

and all agentsi. This is trivial for t− 1 = 0.
We say thaty ∈ Xn is feasible fori at time t if xi = yi

andσt
∂i = σt

∂i(y). We denote this set of feasible private signal
vectors byIti (xi, σ

t
∂i) ⊆ Xn. To calculateσt

i(x), one observe
that for all i, xi andσt−1

∂i , we have

P
[
s|F t

i

]
∝ P [s]P

[
xi, σ

t−1
∂i |s

]

= P [s]
∑

y∈It−1

i (yi,σ
t−1

∂i )

P
[
x = y

∣∣s
]

and

gi,t(xi, σ
t−1
∂i ) = argmax

s∈S
P
[
s|F t

i

]

by definition. We use the standard abusive notationP [xi]
instead ofP [xi = yi], P

[
σt
j

]
instead ofP

[
σt
j = ωt

j

]
, etc.

It is easy to verify that using the equations above, the
‘simulation’ can be advanced fromt− 1 to t with additional
computational effortO(n|X |n). Thus, the calculation ofσt

i(x)
for all i andx requires total effortO(tn|X |n). This leads to an
upper bound oft2O(n) for this method. Note that up to time
t an agent need only consider agents at distance at mostt,
so on a graph with maximum degreed, we obtain a bound of
t2O((d−1)t). This improves the bound above for ‘large’ graphs,
i.e., graphs for whichn > (d − 1)t for relevant values oft.
Thus, we obtain the result stated in Proposition III.1.

We call this algorithm ‘the naı̈ve dynamic program’.

V. THE DYNAMIC CAVITY ALGORITHM ON TREES

In this section we develop the dynamic cavity algorithm
leading to Theorem III.2. We present the core construction
and key technical lemmas in Section V-A. In Section V-B, we
show how this leads to an efficient algorithm for the Bayesian
computations on tree graphs, and prove Theorem III.2.

Assume in this section that the graphG is a tree with finite
degree nodes. Forj ∈ ∂i, let Gj→i = (Vj→i, Ej→i) denote
the connected component containing nodej in the graphG
with the edge(i, j) removed. That is,Gj→i is j’s subtree
whenG is rooted ati.

A. The Dynamic Cavity Method

We consider a modified process where agenti is replaced
by an inert agentwho takes a fixed sequence of actionsτi =
(τi(0), τi(1), . . .), andthe true state of the world is assumed to
be some fixeds. Furthermore, this ‘fixing’ goes unnoticed by
the agents (excepti, who is inert anyway) who perform their
calculations assuming thati is her regular Bayesian self, and
that s was drawn randomly according toP [s]. We denote by
Q [A||τi, s] the probability of eventA in this modified process.

Remark V.1. We emphasize that the modified process with
an ‘inert’ agent is a theoretical constructwe use to derive
an efficient implementation for the iterative Bayesian decision
rules. Our algorithm does not involve actual replacement of
nodes in the network.

This modified process is easier to analyze, as the processes
on each of the subtreesVj→i for j ∈ ∂i are independent:
Recall that private signals are independent conditioned ons,
and the inert agent ensures that the subtrees stay independent
of each other. This is formalized in the following claim, which
is immediate to see:

Claim V.2. For any i ∈ V , s ∈ S and any trajectoryτi, we
have

Q
[
σt
∂i

∣∣∣∣τi, s
]
=

∏

j∈∂i

Q
[
σt
j

∣∣∣∣τ ti , s
]
. (3)

(Sinceσt
j is unaffected byτi(t′) for all t′ > t, we only need

to specifyτ ti , and not the entireτi.)
Now, it might so happen that for some number of steps

the ‘inert’ agent behaves exactly as may be expected of a
rational player. More precisely, givenσt−1

∂i , it may be the case
that τ ti = gti

(
xi, σ

t−1
∂i

)
. This event provides the connection

between the modified process and the original process, and is
the inspiration for the following theorem.

Proposition V.3. Consider anyi ∈ V , s ∈ S, t ∈ N, trajectory
τi andσt−1

∂i . For anyxi such thatP [xi|s] > 0, we have

P
[
σt−1
∂i

∣∣s, xi

]
1
(
τ ti = gti

(
xi, σ

t−1
∂i

))

= Q
[
σt−1
∂i

∣∣∣∣τi, s
]
1
(
τ ti = gti

(
xi, σ

t−1
∂i

))
. (4)
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Proof: We couple the original process, after choosings,
to the modified processes by setting the private signals to be
identical in both.

Now, clearly if it so happens thatτ ti = gti
(
xi, σ

t−1
∂i

)
then

the two processes will be identical up to timet. Hence the
probabilities of events measurable up to timet will be identical
when multiplied by1

(
τ ti = gti

(
xi, σ

t−1
∂i

))
, and the theorem

follows.
Using Eqs. (3) and (4), we can easily write the posterior on

s computed by nodei at time t, in terms of the probabilities
Q [·||·]:

P
[
s|F t

i

]
∝ P [s]P

[
xi, σ

t−1
∂i |s

]

= P [s]P [xi|s]P
[
σt−1
∂i |s, xi

]

= P [s]P [xi|s]
∏

j∈∂i

Q
[
σt−1
j

∣∣∣∣σt−1
i , s

]
(5)

(Recall thatσt−1
i is a deterministic function of(xi, σ

t−1
∂i ).

Also, note that ifP [xi|s] = 0, we simply obtainP [s|F t
i ] = 0.

Eq. (5) deals with the non-trivial caseP [xi|s] > 0.)

Remark V.4. A näıve (and incorrect) method to estimate the
posterior P [s|F t

i ] would be to treat the trajectories of the
neighbors andxi as being independent conditioned ons, lead-
ing to the estimatẽP [s|F t

i ] ∝ P [s]P [xi|s]
∏

j∈∂i P
[
σt−1
j

∣∣s
]

for posterior beliefs9. Eq. (5) gives us a variation on this
estimate that is exact on trees. In other words, it provides the
right way to ‘combine’ information from neighbors to compute
the Bayesian posterior ons.

The decision function, defined as before, then follows from
the posterior:

gi,t(xi, σ
t−1
∂i ) = argmax

s∈S
P
[
s|F t

i

]
. (6)

As mentioned earlier, we assume there is a deterministic tie
breaking rule.

We are left with the task of calculatingQ [·||·]. The follow-
ing theorem is the heart of the dynamic cavity method and
allows us to perform this calculation:

Proposition V.5. For any i ∈ V , j ∈ ∂i, s ∈ S, t ∈ N, τ ti
and σt

j , we have

Q
[
σt
j

∣∣∣∣τ ti , s
]

=
∑

σt−1

1
... σt−1

d−1

∑

xj

P [xj |s]1
[
σt
j = gtj

(
xj , (τ

t−1
i , σt−1

∂j\i)
)]

·

d−1∏

l=1

Q
[
σt−1
l

∣∣∣∣σt−1
j , s

]
, (7)

where the neighbors of nodej are ∂j = {i, 1, 2, . . . , d− 1}.

We mention without proof that the recursion easily gener-
alizes to the case of arandomtie-breaking rule; it is a matter
of replacing the expression1

[
σt
j = · · ·

]
with P

[
σt
j = · · ·

]
,

where this probability is over the randomness of the rule.
Eq. (5) continues to be valid in this case.

9Thus, the logarithm of this estimated belief is a linear combination of
information from neighbors. This has motivated some of the heuristic updates
rules studied in the literature [8], [9].

The following proof is similar to the proof of Lemma 2.1
in [13], where the dynamic cavity method is introduced and
applied to a different process.

Proof: In the modified process, the events in the different
branches thati sees are independent. We therefore consider
Gj→i only, and view it as a tree rooted atj. Also, for
convenience we defineσt

i ≡ τ ti ; note that the random variable
σt
i does not exist in the modified process, asi’s trajectory is

fixed to τi.
Let x be the vector of private signals ofj and all the vertices

up to a deptht in Gj→i (call this set of verticesV t
j→i). For

eachl ∈ {1, . . . , d− 1}, let xl be the vector of private signals
of V t−1

l→j . Thus,x = (xj , x1, x2, . . . , xd−1).
The trajectory σt

j is a function -deterministic, by our
assumption- ofx and τ ti . We shall denote this function by
Fj→i and writeσt

j = F t
j→i(x, τ

t
i ). This function is uniquely

determined by the update rulesgtl
(
xl, σ

t−1
∂l

)
for l ∈ V t

j→i.
We have therefore

Q
[
σt
j = λt

∣∣∣∣τ ti , s
]
=

∑

x

P [x|s]1
(
λt = F t

j→i(x, τ
t
i )
)
. (8)

We now analyze each of the terms appearing in this sum. Since
the private signals are independent conditioned ons, we have

P [x |s] = P [xj |s]P [x1|s]P [x2|s] . . .P
[
xd−1

∣∣s
]
. (9)

The functionF t
j→i(· · · ) can be decomposed as follows:

1
(
λt = F t

j→i(x, τ
t
i )
)

=
∑

σt−1

1
...σt−1

d−1

1

(
λt = gtj(xj , σ

t−1
∂j )

)

·

d−1∏

l=1

1

(
σt−1
l = F t−1

l→j (xl, λ
t−1)

)
. (10)

Using Eqs. (9) and (10) in Eq. (8) and separating terms that
depend only onxi, we get

Q
[
σt
j = λt

∣∣∣∣τ ti , s
]

=
∑

σt−1

1
... σt−1

d−1

∑

xj

P [xj |s]1
(
λt = gtj(xj , σ

t−1
∂j

)
·

·

d−1∏

l=1

∑

xl

P [xl|s] 1
(
σt−1
l = F t−1

l→j (xl, λ
t−1)

)
.

The recursion follows immediately by identifying that the
product overl in fact has argumentQ

[
σt−1
l

∣∣∣∣σt−1
j , s

]
.

B. The Agents’ Calculations

We now have in place all we need to perform the agents’
calculations. At timet = 0 these calculations are trivial.
Assume then that up to timet each agent has calculated the
following quantities:

1) Q
[
σt−1
j

∣∣∣∣τ t−1
i , s

]
, for all s ∈ S, for all i, j ∈ V such

that j ∈ ∂i, and for allτ t−1
i andσt−1

j .
2) gti(xi, σ

t−1
∂i ) for all i, xi andσt−1

∂i .
Note that these can be calculated without making any obser-
vations – only knowledge of the graphG, P [s] andP [x|s] is
needed.
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At time t+ 1 each agent makes the following calculations:

1) Q
[
σt
j

∣∣∣∣τ ti , s
]

for all s, i, j, σt
j , τ

t
i . These can be calculated

using Eq. (7), given the quantities from the previous
iteration.

2) gt+1
i (xi, σ

t
∂i) for all i, xi and σt

∂i. These can be cal-
culated using Eqs. (5) and (6) and the newly calculated
Q
[
σt
j

∣∣∣∣τ ti , s
]
.

Since agentj calculatesgt+1
i for all i, then she, in particular,

calculatesgt+1
j . This allows her to choose the (myopic) Bayes

optimal action in rounds up tot+1, based on her neighbors’
past actions. A simple calculation yields the following lemma.

Lemma V.6. In a tree graphG with maximum degreed,
the agents can calculate their actions up to timet with
computational effortn2O(td).

In fact, each agent does not need to perform calculations for
the entire graph. It suffices for nodei to calculate quantities
up to timet′ for nodes at distancet− t′ from nodei (there are
at most(d− 1)t−t′ such nodes). A short calculation yields an
improved bound on computational effort, stated in Theorem
III.2.

Proof of Theorem III.2:
Consider an agentj, who wants to determine her own

decision function up to roundt, i.e., she wants to determine
gtj( · , · ). The computation is performed int steps, that we
number0, 1, . . . , t − 1. Step 0 involves the following: (i)
Evaluateg0i (xi) = argmaxs∈S P [s|xi] for all i at a distance at
mostt from j. (ii) EvaluateQ

[
σ0
i

∣∣∣∣τ0k , s
]

for all k at distance
at mostt − 1 from j, for all i ∈ ∂k, and for allσ0

i , τ0k , s,
using Eq. (7).

For any1 ≤ t′ ≤ t − 1, step t − t′ proceeds as follows.
Consider any agenti at distance at mostt′ ≥ 1 from j. Sup-
pose that we have already computedQ

[
σt−t′−1
l

∣∣∣
∣∣∣τ t−t′−1

i , s
]

for all such i, for all l ∈ ∂i, and for all possible
σt−t′−1
l , τ t−t′−1

i , s. Then we can use Eqs. (5) and (6) to
computegt−t′

i (xi, σ
t−t′−1
∂i ) for all possiblexi, σ

t−t′−1
∂i . Using

these values, for anyk at a distancet′−1 from j, we can com-
puteQ

[
σt−t′

i

∣∣∣
∣∣∣τ t−t′

k , s
]

for all i ∈ ∂k, for all σt−t′

i ,τ t−t′

k , s,
using Eq. (7). The computational effort involved is boundedby
C(d−1)t

′

|S|d(t−t′)+1|X | for the computation ofgt−t′

i ( · , · ) ’s
and bounded byC(d − 1)t

′

|S|(d+1)(t−t′+1)|X | for the com-

putation ofQ
[
σt−t′

i

∣∣∣
∣∣∣τ t−t′

k , s
]

’s. Hered is maximum degree,

andC = C(d) < ∞ is a constant. Thus, stept − t′ requires
effort bounded by2C

′td for someC′ = C′(d, |S|, |X |) < ∞.
This bound also holds for step0. Thus, the overall computa-
tional effort is bounded byt2C

′td = 2O(td).

VI. CONVERGENCE OF MAJORITY DYNAMICS: PROOF OF

THEOREM III.6

In this section we study a very simple update rule, ‘majority
dynamics’. We usêσi(t) ∈ {−1,+1} to denote votes under
the majority dynamics.

Definition VI.1. Under the majority dynamics, each agent
i ∈ V chooses her vote in roundt+1 according to the majority

of the votes of her neighbors in roundt, i.e.

σ̂i(t+ 1) = sign


∑

j∈∂i

σ̂j(t)




Ties are broken by flipping an unbiased coin.

Let s ∈ {−1,+1} be drawn from a uniform prior and nodes
receive ‘private signals’̂σi(0) that are correct with probability
1 − δ, and independent conditioned ons. We consider an
undirectedd regular tree. The analysis is complicated by de-
pendencies which have to be carefully handled. Our analytical
approach here is again closely related to the dynamic cavity
method.

Lemma VI.2. Consider the setting in Theorem III.6. Leti and
j be adjacent nodes in the tree. Then for all(σ̂t−1

i , σ̂t−1
j ) ∈

{−1,+1}2t

P
[
σ̂i(t) = −1|σ̂t−1

i , σ̂t−1
j , s = +1

]
≤ δt (11)

whereδt is defined recursively byδ0 ≡ δ, and

δt ≡ P [Binomial(d− 1, δt−1) ≥ d/2− 1] (12)

Proof: We proceed by induction. Clearly Eq. (11) holds
for t = 0. Suppose Eq. (11) holds for somet. We want to
show

P
[
σ̂i(t+ 1) = −1 | σ̂t

i , σ̂
t
j , s = +1

]
≤ δt+1 , (13)

for all (σ̂t
i , σ̂

t
j) ∈ {−1,+1}2(t+1).

Let l1, l2, . . . , ld−1 be the other neighbors of nodei (besides
j). We will show that, in fact,

P

[
σ̂i(t+ 1) = −1 | σ̂t

i , σ̂
t
j , σ̂

t−1
l1

, . . . , σ̂t−1
ld−1

, s = +1
]
≤ δt+1 ,

(14)

for all possibleξ ≡ (σ̂t
i , σ̂

t
j , σ̂

t−1
l1

, σ̂t−1
l2

, . . . , σ̂t−1
ld−1

).
We reason as follows. Fix the state of the worlds and the

trajectorieŝσt
i and σ̂t

j . Now this induces correlations between
the trajectories of the neighborsl1, . . . , ld−1, caused by the
requirement of consistency with the majority rule at nodei,
but only up to timet− 1. If we further fix σ̂t−1

lm
, then σ̂lm(t)

(and σ̂lm at all future times) is conditionally independent of(
σ̂t
lm′

)
m′ 6=m

. Thus, we have10

P [σ̂lm(t) = −1| ξ, s = +1]

= P
[
σ̂lm(t) = −1| σ̂t−1

lm
, σ̂t−1

i , s = +1
]
,

and therefore, using the induction hypothesis

P [σ̂lm(t) = −1| ξ, s = +1] ≤ δt (15)

for all m ∈ {1, 2, . . . , d − 1}. Also, the actions
σ̂l1(t), . . . , σ̂ld−1

(t) are conditionally independent of each
other givenξ, s = +1. We have

σ̂i(t+ 1) = sgn(σ̂j(t) + σ̂l1(t) + . . .+ σ̂ld−1
(t)) ,

10A alternate argument can be constructed using the modified process with
an inert agent, mirroring the reasoning used in the proof of Proposition V.5.
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with sgn(0) being assigned value−1 or +1 with equal
probability. This yields

P [σ̂i(t+ 1) = −1 | ξ, s = +1] ≤ P [Binomial(d− 1, δt) ≥ d/2− 1]

from Eq. (15) and conditional independence of
σ̂l1(t), . . . , σ̂ld−1

(t). Thus, we obtain Eq. (14). Eq. (13)
follows by summing over̂σt−1

l1
, σ̂t−1

l2
, . . . , σ̂t−1

ld−1
.

Proof of Theorem III.6: By applying the multiplicative
version of the Chernoff bound11 to Eq. (12) we have that

δt+1 ≤ e(d−2)/2−(d−1)δt(2δt(d− 1)/(d− 2))(d−2)/2

Dropping the terme−(d−1)δt , we obtain

δt+1 ≤ (2eδt(d− 1)/(d− 2))
1
2 (d−2). (16)

This is a first order non-homogeneous linear recursion in
log δt. If it were an equality it would yield

log δt =

(
log δ +

d− 2

d− 4
log[2e(d− 1)/(d− 2)]

)[
1
2 (d− 2)

]t

−
d− 2

d− 4
log[2e(d− 1)/(d− 2)] ,

and so

− log δt ∈ Ω
((

1
2 (d− 2)

)t)
, (17)

as long as

− log δ <
d− 2

d− 4
log[2e(d− 1)/(d− 2)] .

Theorem III.6 is non-trivial ford ≥ 5. The upper limit
of the ‘noise’ δ for which it establishes rapid convergence
approaches(2e)−1 as d grows large (see also the discussion
below for larged).

VII. F URTHER NUMERICAL RESULTS AND DISCUSSION ON

CONJECTUREIII.5

Table II, together with Table I above, contrast the error
probabilities of Bayesian updates with those of majority up-
dates. All cases exhibit lower error probabilities (in the weak
sense) for the Bayesian update, consistent with Conjecture
III.5. Table III contains the data plotted in Figure 1. Also for
these parameters, we found that the Bayesian updates showed
lower error probabilities than the majority updates (compare
with Table IV).

The running time to generate these tables was less than a
minute on a standard desktop machine. We did not proceed
with more rounds because of numerical instability issues
which begin to appear as error probabilities decrease.

We now discuss briefly the difficulties in proving Conjecture
III.5. Order the possible private signals by the implied likeli-
hood ratio ofs, with higherxj corresponding tos = +1 being
more likely. We say a learning rule with successive rounds
of ‘voting’ is monotonicif the following occurs: If somex
leads toσi(t) = 1, then increasingxj in x for somej ∈ V

11P [X ≥ (1 + η)E [X]] ≤
(

exp η

(1+η)1+η

)E[X]
. We substituteE [X] =

δt(d − 1) and1 + η = (d/2 − 1)/[δt(d− 1)].

Round Bayesian Majority
0 0.15 0.15
1 6.075 · 10−2 6.075 · 10−2

2 1.57158 · 10−2 2.95136 · 10−2

3 2.99170 · 10−3 1.59849 · 10−2

4 3.39853 · 10−4 9.15458 · 10−3

5 2.72958 · 10−5 5.46501 · 10−3

6 2.21981 · 10−6 3.35117 · 10−3

TABLE II
d = 3, P [xi 6= s] = 0.15

Round d = 3 d = 5 d = 7
0 0.30 0.30 0.30
1 0.216 0.16308 0.126036
2 0.134038 5.07053 · 10−2 1.1966 · 10−2

3 7.77755 · 10−2 4.06495 · 10−3 3.67884 · 10−6

4 3.79502 · 10−2 1.61786 · 10−5

5 1.71209 · 10−2

6 5.73294 · 10−3

7 1.59587 · 10−3

TABLE III
ERROR PROBABILITIES FORBAYESIAN AGENTS WITH

P [xi 6= s] = 0.3, FOR REGULAR TREES OF DIFFERENT DEGREESd.
THIS DATA IS DISPLAYED IN FIGURE 1.

leavesσi(t) unchanged. One might expect most reasonable
learning rules, including iterative Bayesian learning, tosatisfy
monotonicity. For instance, there is a simple proof that the
majority rule is monotonic [13]. However, it turns out that
iterative Bayesian learning is not always monotonic12! It is
not very surprising, then, that it is hard to prove convergence
of Bayesian learning to the ‘right’ answer, even in simple
settings. Controlling the rate of convergence, as in Conjecture
III.5, is even harder.

Despite non-monotonicity, it is tempting to hope for a direct
proof of Conjecture III.5, by showing inductively (in time)that
iterative Bayesian learning is always at least as good majority
dynamics. The difficulty that arises here is that though iterative
Bayesian learning minimizes the error probability at a node,
given the available information, this is not the case if we
condition on the state of the world. After conditioning on the
state of the world, iterative Bayesian learning does betterthan
majority dynamics on some nodes, and worse on others. It is
very hard to control the difference between the two processes
beyond a small number of iterations, making a direct proof of
Conjecture III.5 difficult.

VIII. D ISCUSSION

We presented a new algorithmic approach that questions the
belief that fully Bayesian computations for agents interacting
on a social network are computationally intractable. The chief
drawback is that our approach does not seem amenable to
graphs with short loops, though many real networks possess
this feature. A significant open question suggested by our
results is: What is the ‘computational boundary’ between

12Elchanan Mossel and Omer Tamuz, private communication.
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Round d = 3 d = 5 d = 7
0 0.30 0.30 0.30
1 0.216 0.16308 0.126036
2 0.170489 0.0733673 0.0232861
3 0.146010 0.0215952 2.99165 · 10−4

4 0.130070 2.61093 · 10−3

5 0.119647
6 0.112267
7 0.107006

TABLE IV
ERROR PROBABILITIES FOR AGENTS USING MAJORITY UPDATES

WITH P [xi 6= s] = 0.3, FOR REGULAR TREES OF DIFFERENT
DEGREESd.

networks where exact Bayesian calculations can be efficiently
performed, and networks where this is not possible? In par-
ticular, can graphs with a few short loops be handled at some
additional computational cost?

Acknowledgments.We would like to thank Andrea Monta-
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