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Abstract—We study agents in a social network who learn by observing the actions of their neighbors in the network. In
observing the actions of their neighbors. The agents iterately this case, the focus is on understanding the science of such
estimate an unknown ‘state of the world’ s from initial private systems as they are in reality, witi being a model of a

ilegt?/\ilfll(. and the past actions of their neighbors in the sodia real social network, and the voting rule being a model of the

First, we consider a set of Bayesian agents, and investigatePehavior of real agents. In this paper, we focus the disonssi
the computational problem the agents face in implementing on the social learning interpretation of this setup. Howgeve
the (myopic) Bayesian decision rule. When private signalsra  our results and techniques are general, and are also relevan
independent conditioned ons, and when the social network to the corresponding engineering questions.

graph is a tree, we provide a new ‘dynamic cavity algorithm’ The importance of social learning in networks has been
for the agents’ calculations, with computational effort that is Imp : Ing 1 W

exponentially lower than what is currently known. We use demonstrated in a wide variety of settings (e.g., adoption o
our algorithm to perform the first numerical simulations of agricultural technology in Ghana [7] and Mozambique [4],

interacting Bayesian agents on networks with hundreds of ndes.  choice of contraceptives by European women [16]). Accord-
Second, we investigate a different model of social learning ingly, understanding mathematical models of social leegni

with naive agents who practice ‘majority dynamics’, i.e., & each . . .
round adopt the majority opinion of their neighbors. Under mild by Bayesian agents has been a goal of theoretical economics

conditions, we show that under majority dynamics, agents len 0T the past few decades (cf., Goyal [12]). Typical models in
s with probability 1 — ¢ in O(loglog(1/¢)) rounds. this context assume pure information externalityagent pay-

We conjecture that ond-regular trees, myopic Bayesian agents offs depend only on the action they choose and an underlying
learn s as quickly as agents who practice majority dynamics. ‘state of the world’, and not on the actions of others. Agents

Using our algorithm for Bayesian agents, the conjecture imfes : e ,
that the computational effort required of Bayesian agents ¢ learn observe the actions of their ‘neighbors’, but do not observe

s is only polylogarithmic in 1/e on d-regular trees. Thus, our Payoffs ex interim. Typically, all agents have the sameitytil
results challenge the belief that iterative Bayesian leaing is function. Each agent receives a private signal that cositain
computationally intractable. noisy information about the state of the world. Agents cleoos
Index terms: social learning, Bayesian agents, computatf@l ctions to maximize expected payoff, given their own pevat
efficiency, convergence, algorithm, dynamic cavity methad signal and their observations of the actions chosen by sther
Fully Bayesian models have two advantages over models
that assume ‘bounded rationality’ and prescribe thumbsrule
for agent behavior: First, any bounded rationality apphoac
Consider a graply = (V, E). An edge(i, j) € E indicates s pound to involve a somewhat arbitrary decision of which
that nodesi € V andj € V' can observe each other. Nodegeristics the agents use. Second, a game theoretic anafysi
attempt to learn the trustate of the worlds. Each nodel strategic players is possible only if the players choos®ast
receives noisy information aboutin the form of a ‘private that are optimal by some criterion. Hence game-theoretic
signal’ z;. In each discrete time period (or rourtd¥- 0, 1, .. ., analyses of learning on networks (e.g., [21]) often opt Fa t
each node chooses an actipfit) € S, which we call a ‘vote’. more difficult but fully Bayesian model.
Nodes observe the votes cast by their neighbor§ifThus,  \ych progress has been achieved in models where Bayesian
at the time of voting in round > 1, the information available agents actsequentially such as the herd behavior models
to a node: consists of the private signal;, along with the of Banerjee [5], Bikhchandani, Hirshleifer and Welch [6],
votes cast by neighbors éfin rounds up tol — 1. Smith and Sgrenson [22] and Acemoglu et al [1]. Here,
The above setup is relevant in various contexts, and h@g interaction isnot bidirectional each agent acts only
thus been studied by diverse communities. On one hanghce, taking into account the actions of her predecessors.
engineering problems like decentralized detection [238][ |n comparison, our understanding of Bayesian agents who
and distributed decision making [25] have motivated stuly @ct repeatedly is much more limited. Gale and Kariv [11]
this setup, with the purpose of designing appropriate gapfbnsider Bayesian agents on a network who repeatedly choose
G along with voting schemes to achieve desired engineeriggtions. They show, in the spirit of Aumann’s Agreement
goals such as low infrastructure cost, small error proiigbil Theorem [2], that agents on a network converge to the same
low communication cost, low computation cost, etc. On th§ction under some conditiohsRelated work by Rosenberg,
other hand, this setup has been considered by sociologigts &pjan and Vieille [21] and Ménager [17] sheds more light on

economists interested in the phenomenon of ‘social legininhe phenomenon of agreement on actions and the conditions
wherein agents (nodes) in a social network learn behavior py\which it arises.

I. INTRODUCTION
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Microsoft Research New England and Weizmann Institutqyointed out [18]. However, recent works [21], [19] estdbl@milar results in
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However, the following questions remain essentially unawf Gale and Kariv [11], who simulated the process for three

swered: agents, to much larger netwofkdVe use our algorithm to
() What action do the agents converge to, e.g., what is tiivestigate questions (I) and (II): We numerically evaguat
distribution of this consensus action? the probability that the agents learn the optimal actiord an
(1) What are the dynamics of such interactions, e.g., whidé progress with time. We observe rapid learning of the
is the rate of agreement/convergence? optimal action in certain previously unexplored settingée

There has been a parallel development of non-Bayesf@nsider a model with two possible states of the world and
models of reasoning for social learning and social expefwo corresponding actions (‘votes’), so the agents arefacef
mentatiod, e.g., those of Ellison and Fudenberg [10], Balfying to estimate the state of the world and revealing their
and Goyal [3], and DeGroot [8]. Such modelling approach&stimates to their neighbors. The social networks in these
appear to be driven by two primary motivating factors (se@nalyses were chosen to Beegular (infinite) trees, i.e., trees
e.g., [10], [3]): (i) Real agents may not be Bayesian. (ijeThin which each node has neighbors. The simulations suggest
desire to“keep the model mathematically tractabl¢3], and that, on regular trees, the number of iterations neededrunde
also computationally tractable; since Bayesian modelmgee Bayesian learning to estimatecorrectly with probabilityl —e
lack these properties. This leads us to another open guesifpO(loglog(1/¢)).
in the context of Bayesian agents who act repeatedly: We conjecture that the error probability under Bayesian

(1) Are the computations required of the agents feasiblepdates is no larger than the error probability under a eiffe

We consider a model that features repeated bidirection@@jority’ update rule, in which agents adopt the opinion of
interaction between fully Bayesian agents connected byth® majority of their neighbors in the previous round. Our
social network. Our model is a specialization of the mod@umerical results support this conjecture. We prove that fo
of Gale and Kariv [11]. We consider a group of Bayesiaﬂ‘e majority update rule, the number of iterations needed to
agents, each with a private signal that carries informatig@stimates correctly with probabilityl — e is O(log log(1/e)),
on an unknown state of the world The individuals form for regular trees of degree at least fiv©ur conjecture then
a social network, so that each observes the actions of soff@lies, again, that the number of iterations needed tonesé
subset of others, whom we call her neighbors. The agerit§orrectly with probabilityl — e is O(loglog(1/¢)). Thus,
must repeatedly choose between a set of possible actians,@hsuming the conjecture, the computational effort require
relative merit of which depends on the state of the worl@@yesian agents drops from quasi-polynomiallif (using
s. The agents iteratively learn by observing their neighbor1e naive dynamic program) to polynomial lig(1/¢) (i.e.,
actions, and picking an action that is myopically optimateg Polylogarithmic in1/e), making Bayesian learning computa-
their information. Thus, the interaction between agentsos tionally tractable. Thus, our results shed new light on ¢aes
strategic, and is characterized by information exterieslit ~ (/l), suggesting a positive answer in the case of tree gsaph

Even in the simple case of two states of the world, bi- Our algorithmic approach works provided the local neigh-
nary private signals and two possible actions, the requirf@rhood of a node is tree structured. The restriction of the d
calculations appear to be very complicated. A naive dynanfiussion to tree or tree-like social networks certainly edels
programming algorithm is exponential in the number of inmany natural settings that tend to exhibit highly clustered
dividuals. Although this algorithm seems to be well knowr§ocial graphs. However, in some cases artificially conttdic
we could not find a complete description of it in the literaturnetworks have no or few loops by design; these include
and hence supply it for completeness in Section IV. Since $@me highly hierarchical or compartmentalized organires;
iterationt one may consider only agents at distancthen in as well as some physical communication networks where
graphs of maximum degrek(on which we focus) the numberredundancy is expensive, and the least expensive connected
of individuals to consider i%)(min(n,d")), and the compu- network is a tree. Furthermore, the fact that this nondtivi

tational effort required of each individual to compute theiclass of networks does not present a major computational hur
action at timet is +20(min(n.d")) Obviously, this grows very dle for fully Bayesian calculations may in itself be somewha
rapidly. As Gale and Kariv remark [11], “The computationa$urprising.
difficulty of solving the model is massive even in the case A key technique used in this paper is the dynamic cavity
of three persons.” This prevents them from even simulatimgethod, introduced by Kanoria and Montanari [13] in their
networks with more than three nodes. study of ‘majority updates’ on trees, a model also motivated
We describe a novel algorithm for the agents’ calculation ipy social learning. This technique is a dynamical version of
our model, when the social network graph is a tree or neatlye cavity method of statistical physics and appears piomis
a tree. This algorithm has running time that is exponentialfor the analysis of iterative tree processes in general. The
smaller than the naive dynamic program, reducing the cokey idea is the following: In a dynamical setting on a tree
putational effort to2C (min(n.td)) graph, there is correlation in the trajectories of neigkbwoir
Using our algorithm we are able to run numerical simu-

lations of the social learning process. This extends thekwor ®In each of our numerical analyses, agents receive infoomdtirectly or
indirectly) from hundreds of distinct nodes.
2Social experimentation settings are closely related toiasdearning 4This result should be of independent interest. Majority aigits is a
settings: Here agents can observe (noisy) payoffs receiyedhemselves reasonable model of social learning with bounded ratipnatiis also relevant
and their neighbors for different actions, and can use tiselte of these in other contexts like consensus in distributed systenjsfa@ consider the
‘experiments’ to learn. results a main technical contribution of the paper



a node due to a nodes own past actions. The dynamic cawatyd including time. We callo; = (0;(0),0:(1),...) the ‘tra-

method allows to exactly account for these correlations. jectory’ of votes at nodé. Denote byF! = (zi,ogjl,af_l)

this work, we use this method for the first time to give a nethe information available to agenfprior to voting in round.

algorithmic result, enabling efficient computation by nsmdeHereag;1 denotes the votes cast by nodesinup to round

This is in contrast to the case of majority updates, whete- 1. Note that this doesot include her neighbors’ votes at

the update rule is computationally trivial. Our algoritlinaind time .

analytical approach leveraging the dynamic cavity methegim The voteo;(t) is chosen aswgmax, g P [s|F}]. We as-

be applicable to a range of iterative update situations callp sume a deterministic tie-breaking rule. To differentidte t

treelike graphs. random variabler;(¢) from the function used to calculate it,
A short conference version of this paper [15] containge denote the function by;(t) : X x |S|!1?l — S, so that

a description of the dynamic cavity based algorithm and -1

statements of the main results without proofs. oi(t) = gia(wi, 05; )

For convenience, we also define the vector functjérthat

returns the entire history of's votes up to timet, g! =

(gl'_’(), Gils--- 791’,2&)1 so that

We describe and discuss our model in Section Il. We state . i1

our main results in Section Ill. Section IV presents a naive 0 = 9i(€i, 05; )

dynamic programming algorithm. Section V presents our mainin case of a deterministic tie-breaking rule;(t') is a

contribution: a dynamic cavity method based algorithm fofeterministic function of(xi,ggi—l), S0 we can takeF! =

tree graphs, along with a proof of correctness and anal;fsis&h Uglfl)_

running time. We prove our convergence results in Sectian VI

Secti_on VII discusses our conjecture.regarding convement piscussion of our Model

(Conjecture 111.5) and presents numerical results.

A. Outline of the paper

The decision rules can be interpreted/motivated as follows
Supposé? [s], P [z|s] andG are common knowledge. Suppose
Il. MODEL that, for each state of the worlgl actions has utility one
The model we consider is a simplified version of the mod#fhen the state of the world is = o, and zero otherwise.
of social learning introduced by Gale and Kariv [11]. We firsThen, the action that myopically maximizes the expected
give a minimal mathematical description of our model, postttility corresponds to the maximura posteriori probability
poning a discussion on knowledge assumptions and ratignal(MAP) estimator of the state of the world. This leads to
For ease of exposition, we make use of a simple model tHBe decision rule we consider, with;(t) being chosen as
captures the essential features of the problem. In Sedtian | arg max,c s P[s|Ff]. We would like to emphasize that we
we motivate our model in the context of rational agentsgsta@nly restrict the ‘action’ spacel to S (thus calling actions as
our knowledge assumptions, and explain how some of odptes’), with this simple “1 if you vote correctly, O otherse”
simplifications are merely cosmetic. utility function, for simplicity of presentation. Indeedur
Consider a grapl; = (V, E), representing a network of Main computational result, Theorem IIl.2 admits a trivial
agents, withV being the set of agents arfd being the social 9eneralization to the case of a general finite action space
ties between them. An eddé, j) indicates that agentsand and a general common utility functidii : A x & — R.
j can observe each other. A natural objection to such a model of behavior is that
Agents attempt to learn the trsate of the worlds € S, the agents should want to maximize the discounted sum of
wheres is finite. Each agentreceives a private signa} € &, their future utilities, instead of making the myopic optima
whereX is finite. Private signals are independent conditionédioice. Gale and Kariv [11] deal with this by assuming a

ons, ie., continuum of agents at each node, so that no one of them
can hope to influence the future by their choice of votes. We

Pls,z1,...,2,) =P|s] H P[z;]s] can do the same here: Thén;(t)} and {F}} form a weak

ieV perfect Bayesian equilibrium (cf. [11, Definition 1]) foreth

right utility function (see above).

The model presented above is a special case of the Gale-
Kariv model [11]. Our choice of a ‘state of the world’
and conditionally independent private signals, with aitytil
function dependent only ananda, is typical in herd behavior
models (e.g., [5], [6], [22]), but is a specialization of {Gale-

In each discrete time period (or rountd)= 0,1,..., each
agenti € V chooses an action;(t) € S, which we call a
‘vote’. Agents observe the votes cast by their neighbor§.in
Thus, at the time of voting in rountl > 1, the information
available to an agent consists of the private signal sheveste
initially, along with the votes cast by her neighbors in rdsn

up tot—1. In each round, each agent votes for the most Iike|§asrIV r|1_10del. . h dinalit f the sefsand
state of the world that she currently believes is most likely caling regime.We treat the cardinalities of the sefsan

given the Bayesian posterior distribution she computes. A as fixed, whereas the scaling parame_ters are the number
We denote bydi the neighbors of agent not includ- of agentsn = |V|, and the number of iterations Later,

ing i, ie, 9i = {j : (i,j) € E}. We useo; = 5Most of this work also treats the maximum degegef the network as a
(0:(0),04(1),...,04(t)) to denote all of agents votes, up to fixed parameter.



in Section lll, we argue that since agents are trying to leagstimate, the agents would have little incentive to comtinu
s, an alternative scaling parametert#tas 1/¢, wheree > 0 observing their neighbors actions and updating their tefie

is the desired probability of error. We will be interested if2) In many situations we would like to model, we might
how the computational effort increasesagrows, and ag expect only a small number (e.g., single digit) number of
or 1/e grow. Such a scaling regime is of much interest withierative updates to occur, irrespective of network size Eor

the emergence of massive online networks, where non-exgaedtance, voters may discuss an upcoming election with each
agents interact on a variety of issues, and individual agewther over a short period of time, ending on the election day
are expected to have limited private information, and tgilyc when ballots are cast.

choose from a (relatively) small set of available actions.

B. Convergence

Since an agent gains information at each round, and since

A. Efficient computation she is Bayesian, then the probability that she votes cdyrect
To the best of our knowledge, the literature (e.g., [11]][21is non-decreasing i, the number of rounds. We say that

[19]) does not contain an explicit description of an alguritto  the agentconvergesif this probability converges to one, or

compute the actions chosen by agents in our model. Howewguivalently if the probability that the agent votes ineatty

it seems that a dynamic programming algorithm that perforragnverges to zefo

this computation is well known. The proposition below state We say that there isloubly exponential convergende

the computational complexity of this algorithm. the state of the worlds if the maximum single node error

probability max;cy P [0;(t) # s] decays with round number

I1l. M AIN RESULTS

Proposition Ill.1. On any graphG, there is a dynamic
programming (DP) based algorithm that allows agents to

compute their actions up to timewith computational effort max [P [oi(t) # s] = exp ( — Q(b")), (1)
20(min(n,(d=1)%) " \where d is the maximum degree of the '
graph. whereb > 1 is some constant.

. ) N ) ) The following is an immediate corollary of Theorem IIl.2.
The algorithm leading to Proposition 1ll.1 is described

in Section IV. This proposition provides the baseline O(rtorollary_ 1.3. _Consider iterative Bayesian learning on a

benchmark that we compare our other algorithmic resulf§€ Of with maximum degree If we have doubly exponential

to. In particular, we do not consider this algorithm a majdfonvergence te, then computational effort that is polynomial

contribution of this work. in log(1/¢) (i.e., polylogarithmic in1/¢) suffices to achieve
A key advantage of the DP algorithm is that it works for an§"or probability P[o;(t) # s] < e for all i in V.

grath. The disadvantage, Of course, iS that the ComputationalNote that |f Weaken our assumption to doub'y exponen_

effort required grows doubly exponentially in the number gfg convergence in only a subsét C V of nodes, i.e.,

Iterationst. . maxey, Plo;(t) #s] = exp (— Qb)), we still obtain a
Our main result concerns the computational effort needgghilar result with nodes iV, efficiently learnings.

when the grapld’ is a treé. We show that computational effort

exponentially lower than that of the naive DP suffices in thidémark lll.4. If computational effort grows only polylog-
case. arithmically in an approximation parameter (like here),

_ . this is typically considered asgery efficient. Everpoly(1/e)
Theorem [I1.2. In a tree graphG with maximum degree computational effort is considered reasonably efficierith w
d, each agent can calculate her actions up to timevith the corresponding scheme being called a “fully polynomial
computational efforg20(min(m.td), time approximation scheme”.

The algorithm we use employs a technique called thewe are handicapped by the fact that very little in known
dynamic cavity method [13], previously used only in analgti rigorously about convergence of iterative Bayesian leayim
contexts. A full description of the algorithm and analysigis sense (cf. questions (1) and (1) in Section I). Nevelgsss,
leading to Theorem 111.2 is described in Section V. we provide the evidence for doubly exponential convergence

An apparent issue is that the computational effort requirggh trees: We study a situation with two possible states of
is exponential ins; typically, exponentially growing effort is the world and two possible private signal values. We state a
considered as large. However, in this case, we expect {hjecture and show that it implies doubly exponential env
number of iterations to be typically quite small, for two gence of iterative Bayesian learning also on undirectesbtre
reasons: (1) In many settings, agents appear to convergepi® provide numerical evidence in support of our conjecture.
the ‘right’ answer in a very small number of iterations [11]. 1) Bayesian vs. ‘majority’ updatesWe conjecture that
In Section IlI-B below, we argue that it is the desired jterative Bayesian learning leads to lower error probtedi
probability of error, then the number of rounds requiredstio (in the weak sense) than a very simple alternative updage rul

be only O(loglog(1/e)), leading to computational effort of e call ‘majority dynamics’[13]. Under this rule, the agent
only polylog(1/¢). Having obtained an approximately correct
"Thus, 1/e serves as an alternative scaling parametef. to
A tree graph, in this work, refers to a graph that contains no lodjpss 8Note that this notion of ‘convergence’ differs greatly frahe ‘agreement
is sometimes called a ‘forest’ in the literature. on actions’ sense in which the term is sometimes used.



adopt the action taken by the majority of their neighbors in Round | Bayesian | Majority

. . : 7 . S 0 0.15 0.15
the previous iteration (this is made_ precise in Defl_nltlonl\)’.l _ 1 266119 -10-2 | 2.66119 - 10~2
Our conjecture seems natura_\l since the iterative Ba)_/e5|an 2 7.61832-10~* | 1.67525-10~3
update rule chooses the vote in each round that (myopically) 3 2.83839 - 107 | 8.37462-10~°
minimizes the error probability. We ugg(t) to denote votes 4 1.41065 - 10712 | 2.48525 - 10710
under the majority dynamics.
_ . _ . TABLE |
Conjecture 1I1.5. Consider binarys ~ Bernoulli(1/2), and E;FEOR;R]OBABILITY ON(A) FéEGULAR TREEENI)THd = 5 AND
; ; ; ; ; ; i x; # s] = 0.15, FOR (1) BAYESIAN AND (1) MAJORITY
b|_nary private S|gnals that are independent identicalls-di UPDATES. THE AGENTS BREAK TIES BY PICKING THEIR ORIGINAL
tributed g|VenS, with P [Il = S] = 1—5 for somesd S (O, 1/2) PRIVATE SIGNALS.

Let the majority dynamics (cf. Definition VI.1) be initiak
with the private signals, i.eg;(0) = z; for all i € V. Then
on any infinite regular tree, for alt > 0, we have
N equations. The results are all consistent with our conjectu
Ploi(t) # s] < P[o(t) # o] - (2)  over different values ofl andP [2; # s].

We would like to emphasize that several of the error
probability values could be feasibly computed only becaise
our new efficient approach to computing the decision fumgtio
employed by the nodes. For instance, with- 5, computing

In Section VI, we show doubly exponential convergence fehe decision function at iteratighusing the dynamic program
majority dynamics on regular trees. (cf. Proposition 1I1.1 and Section V) would require enumer
and  ation over2®Y ~ 102%* possibilities, which is infeasible even
on state-of-the-art supercomputers. With our approachanee
able to compute the decision function at iteratdboand even at
iteration4, on a desktop machine. This aggregates information
from the ~ 400 nodes within 4 hops of a given node.

Figure 1 plots decay of error probabilities in regular trees

In words, the error probability under iterative Bayesiarmaia-
ing is no larger than the error probability under majority
dynamics, after the same number of iterations.

Theorem I11.6. Consider binarys ~ Bernoulli(1/2),
binary initial votes 7;(0) that are independent identically
distributed givens, with P[5;(0) #s] = 1 — ¢ for some

§ € (0,1/2). Let ¢ be any node in an infinite (undirected)
d regular tree ford > 5. Then, under the majority dynamics,

P[5,(t) # s] = exp {_ 0 ((%(d _ 2))t) } for iterative Bayesian learning witl [z; # s] = 0.3, where
the agents break ties by picking their original private ailgn
whens < (2¢(d — 1)/(d — 2))-g_ Each of the curves (for different values df in the plot of
log(—logP[o;(t) # s]) vs. t appear to be bounded below by
Thus, if Conjecture 1.5 holds: straight lines with positive slope, suggesting doubly exgo
« We have doubly exponential convergence for iterativigel decay of error probabilities with.
Bayesian learning on regular trees with > 5, im- The empirical rapidity of convergence, particularly o

plying that for anye > 0, an error probabilitye can 5,7, is noteworthy.
be achieved inO(loglog(1/€)) iterations with iterative
Bayesian learning.

« Combining with Corollary 111.3), we see that the compu-
tational effort that is polylogarithmic il /¢) suffices to A sign of the complexity of evaluating the Bayesian decision
achieve error probability. function g!(z;,05; "), is that even the brute-force solution

This compares favorably with the quasi-pdlye) (i.e., approach to it is not trivial. We therefore describe it here.

exp ( polylog(1/e))) upper bound on computational effort that One way of thinking of the agents’ calculation is to imagine
we can derive by combining Conjecture 1.5 and the naivBat they keep a long list of all the possible combinations of
dynamic program described in Section IV. Indeed, based-on mivate signals of all the other agents, and at each iteratio
cent results on subexponential decay of error probabilitih w cross out entries that are inconsistent with the signals tha
the number of private signals being aggregated [14], it wouthey've observed from their neighbors up to that point. Then
be natural to conjecture that the number of iteratidnmseeded they calculate the probabilities of the different possistiates
to obtain an error probability af obeys(d—1)7 > C'log(1/¢) of the world by summing over the entries that have yet to be
for any C' < oo, for ¢ small enough. This would then imply crossed out.
that the required computational effort using the naive DP o This may not be as simple as it seems. To understand which
a regular tree of degreggrows faster than any polynomial inprivate signal vectors are ruled out by the observed actibns
1/e. neighbors, an agent “simulates” the network for every fassi
Since we are unable to prove our conjecture, we insteptvate signal vector: Each agent calculates the fungfjdfior
provide numerical evidence for it in Table I. Further nurali every other agent and every possible set of observations by
results are presented in Section VII, along with a discussfo i. We formalize this below.
the difficulties in proving Conjecture II.5. All computatis Let x € X" be the vector of private signalg:;);cv. The
leading to our numerical results are exact (modulo finiteipre trajectory ofi, denoted byy;, is a deterministic function of.
sion arithmetic), and were performed using the dynamictgaviAssume then that up to time— 1 each agent has calculated

IV. A SIMPLE ALGORITHM: PROOF OFPROPOSITIONIII.1
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Fig. 1. Error probability decay on regular trees for itetBayesian learning, witl [x; # s] = 0.3 (cf. Section VII). The data used to generate this figure
is presented in Table IIl.

the trajectorys’~*(z) for all possible private signal vectors A. The Dynamic Cavity Method

and all ageﬂts?. This :letrl;llaﬂ fglrtf_ 1, = 0'_ " We consider a modified process where ageis replaced
Wet say tt ay € X is feasible fori at imet if z; =y by aninert agentwho takes a fixed sequence of actians-
andoy,; = U?z'(g)- \tNe dengte this set of fe;';13|ble private signgl-. () r.(1),.".), andthe true state of the world is assumed to
vectors byl;(z;, o) tg_lX . To calculater;(z), one observe o some fixed. Furthermore, this fixing’ goes unnoticed by
that for alli, z; andop, *, we have the agents (except who is inert anyway) who perform their
P [S|]_—lp] x P[s]P [% ngflb} calculations assuming thatis her re_gular Bayesian self, and
that s was drawn randomly according 1®[s]. We denote by
=P[s] Z Q[A||7, s] the probability of eventd in this modified process.
yel; ™ (yi.05; ")

=
IEX

Il
<
&,

Remark V.1. We emphasize that the modified process with

and an ‘inert’ agent is atheoretical constructve use to derive
i . an efficient implementation for the iterative Bayesian sieci
gip(@i, 09,7 ) = ar%glgaxp [s1F7] rules. Our algorithm does not involve actual replacement of

nodes in the network.
by definition. We use the standard abusive notafioj;]
instead ofP [z; = y,], P o] instead ofP [0 = w}], etc.

It is easy to verify that using the equations above, t
‘simulation’ can be advanced from— 1 to ¢ with additional
computational efforO(n|X|™). Thus, the calculation of! (x)
for all i andz requires total efforO(¢n|X'|™). This leads to an
upper bound o#2°( for this method. Note that up to time
t an agent need only consider agents at distance at mosglaim V.2. For anyi € V, s € S and any trajectoryr;, we
so on a graph with maximum degréewe obtain a bound of hgye

O((d-1)* P ‘ ’
t2 ((d=1)) This improves the bognd above for ‘large’ graphs, Q [0l |71, 5] = H Q[ot||7, 5] 3)
i.e., graphs for whiclm > (d — 1)* for relevant values of.
Thus, we obtain the result stated in Proposition 111.1.

We call this algorithm ‘the naive dynamic program’. (Sinceo—§ is unaffected byr; (¢') for all ¢’ > ¢, we only need
to specify7!, and not the entire;.)

Now, it might so happen that for some number of steps
the ‘inert’ agent behaves exactly as may be expected of a
In this section we develop the dynamic cavity algorithreational player. More precisely, giveﬁhfl, it may be the case

leading to Theorem IIl.2. We present the core constructiQRat r! = ¢! (z;,05;"). This event provides the connection
and key technical lemmas in Section V-A. In Section V-B, wgetween the modified process and the original process, and is
show how this leads to an efficient algorithm for the BayesiaRe inspiration for the following theorem.

computations on tree graphs, and prove Theorem I11.2.

Assume in this section that the graghis a tree with finite
degree nodes. For € 0i, let G;; = (Vj-i, Ej—;) denote
the connected component containing ngda the graphG t—1 , t_ (. -1
with the edge(i, j) removed. That isG;_,; is j's subtree P log: LS,’;UZ] 1(n = tgl (:vzt, T0i )t)71
whenG is rooted at. =Qloy; |7, s] 1 (7 = gi (wi,05,7)) - (4)

This modified process is easier to analyze, as the processes
N each of the subtreeg;_,; for j € Ji are independent:
Recall that private signals are independent conditioned,on
and the inert agent ensures that the subtrees stay indegende
of each other. This is formalized in the following claim, whi
is immediate to see:

jEDI

V. THE DYNAMIC CAVITY ALGORITHM ON TREES

Proposition V.3. Considerany € V, s € S, t € N, trajectory
7 and oy; ', For any z; such thatP [z;]s] > 0, we have



Proof: We couple the original process, after choosing
to the modified processes by setting the private signals to
identical in both.

Now, clearly if it so happens that’ = g (2;,05;") then
the two processes will be identical up to timeHence the
probabilities of events measurable up to titneill be identical
when multiplied byl (7{ = g! (z;,0%;")), and the theorem
follows. [ |

The following proof is similar to the proof of Lemma 2.1
ine[13], where the dynamic cavity method is introduced and
applied to a different process.

Proof: In the modified process, the events in the different
branches that sees are independent. We therefore consider
G- only, and view it as a tree rooted gt Also, for
convenience we definel = 7/; note that the random variable
o! does not exist in the modified process,iastrajectory is

Using Egs. (3) and (4), we can easily write the posterior dixed to 7;.

s computed by nodée at time¢, in terms of the probabilities
QLI:
P [s|]:f] x P[s]P [xi, ag;
P[s] P[zi|s] P [0}
—PLs] Plaifs] [ @[of ||t "]

jEBI

1|S}

1|S,5Ei:|

(5)

(Recall thato!™! is a deterministic function ofz;, o}, ").
Also, note that ifP [z;|s] = 0, we simply obtairP [s|F}] = 0.
Eq. (5) deals with the non-trivial cag®[z;|s] > 0.)

Let z be the vector of private signals ¢fand all the vertices
up to a depthr in G;,; (call this set of verticed/}" ;). For
eachl € {1,...,d—1}, letz,; be the vector of private signals
of Vlt__)j1 Thus,z = (zj,21, 29, ..., Zy_1)-

The' trajectory cr} is a function -deterministic, by our
assumption- ofz and r/. We shall denote this function by
Fj,; and writeo? = F}_,,(z,7}). This function is uniquely
determined by the update rulgs(x;, o, ') for 1€ V1.
We have therefore

Qlof = M|t s] = ZP[£|S]1(/\

"=F(zT)). 8

Remark V.4. A ndive (and incorrect) method to estimate the

posterior P [s|F/] would be to treat the trajectories of the
neighbors and:; as being independent conditioned griead-
ing to the estimaté® [s| F¢] oc P[s] P [x;[s] [[;c; P [0} 5]
for posterior beliefd Eq. (5) gives us a variation on this
estimate that is exact on trees. In other words, it provides t
right way to ‘combine’ information from neighbors to comgut
the Bayesian posterior og.

The decision function, defined as before, then follows from

the posterior:

gii(zi, 05 1) = argmax P [s|F] (6)
seS
As mentioned earlier, we assume there is a deterministic
breaking rule.
We are left with the task of calculatin@ [-||-]. The follow-

We now analyze each of the terms appearing in this sum. Since
the private signals are independent conditioned,ome have

Pz]s] = P [x;|s] Play|s] P [zo]s] ... P [zg4]s] . (9)
The functionF! _,,(---) can be decomposed as follows:

)
)

z, 7}

1A' = Fi

> 1()\t = g (x5,

t—1

Ut71 ..Ut71

1 d—1

d—1
1(of " = FSba, X)) o)

=1
Uféing Egs. (9) and (10) in Eg. (8) and separating terms that
depend only orx;, we get

ing theorem is the heart of the dynamic cavity method and Q [05 = )\tHTfa S}

allows us to perform this calculation:

Proposition V.5. For anyi € V, j € 9i, s € S, t € N, 7}
and o}, we have

Qo[ 5]

P>

91

t—1
1 Og4\i

— t—1
= T;

> Playls] 1|0} = g} (@, (

T

)]

()

t—1
ogy

d—1
Ll leg 8]
=1

where the neighbors of nodeare 95 = {i,1,2,...,d — 1}.

t—1

) :

= 2 LRk (/\t = g;(;, 0,
o’f’l,,,gsill T
d—1
TPl 1 (o = RSN )
=1 z,

The recursion follows immediately by identifying that the
product overl in fact has argumer® [o{ '[|o "', s]. m

B. The Agents’ Calculations

We now have in place all we need to perform the agents’
calculations. At timet = 0 these calculations are trivial.

We mention without proof that the recursion easily genef:SSume then that up to timeeach agent has calculated the

alizes to the case of @ndomtie-breaking rule; it is a matter
of replacing the expressioh [o—§ =] with P [cr;. =],

where this probability is over the randomness of the rule.

Eq. (5) continues to be valid in this case.

9Thus, the logarithm of this estimated belief is a linear coration of
information from neighbors. This has motivated some of theristic updates
rules studied in the literature [8], [9].

following quantities:

1) Qof |7t s], forall s € S, for all i,j € V such
that j € i, and for all7/~" ando} .

2) gtz oh; ) for all i, z; andoh; .

Note that these can be calculated without making any obser-

vations — only knowledge of the gragh, P [s] andP [z]|s] is

needed.



At time ¢ + 1 each agent makes the following calculationsof the votes of her neighbors in rourndi.e.

1) Q [ot||7},s] forall 5,4, j, o, 7/. These can be calculated

_using_ Eq. (7), given the quantities from the previous ,(t + 1) = sign Z/U\j(t)
iteration.

2) gt (@, 0t,;) for all i, z; and o%,. These can be cal-

culated using Egs. (5) and (6) and the newly calculatddes are broken by flipping an unbiased coin.

Q o[ ]- Lets € {—1,+1} be drawn from a uniform prior and nodes
Since agenj calculategy; ** for all i, then she, in particular, receive ‘private signals5; (0) that are correct with probability
calculatesy’*". This allows her to choose the (myopic) Bayes — 5, and independent conditioned an We consider an
optimal action in rounds up to+ 1, based on her neighbors’yndirectedd regular tree. The analysis is complicated by de-
past actions. A simple calculation yields the following lem  pendencies which have to be carefully handled. Our analytic
approach here is again closely related to the dynamic cavity

method.

JEOi

Lemma V.6. In a tree graphG with maximum degree,
the agents can calculate their actions up to timewith

computational effortz29(4), Lemma VI.2. Consider the setting in Theorem I11.6. Lisand
In fact, each agent does not need to perform calculations f’ope adjagct:ent nodes in the tree. Then for @', U;' e
the entire graph. It suffices for nodeto calculate quantities —1,+1}
up to timet" for nodes at distance-#’ from node: (there are P6i(t) = —1)50 1,601 s = +1] < 6, (11)
at most(d — 1)!~* such nodes). A short calculation yields an ! J
improved bound on computational effort, stated in Theorewhered; is defined recursively by, = §, and
.2.
Proof of Theorem I11.2: 6; = P [Binomial(d — 1,6,—1) > d/2 — 1] (12)
Consider an agenf, who wants to determine her own
decision function up to round i.e., she wants to determine
g5(-, ). The computation is performed in steps, that we
number0, 1, ..., ¢t — 1. Step O involves the following: (i)
Evaluatey) (z;) = arg max, g P [s|z;] for all i at a distance at P[oi(t+1)=—1|06},6%,s = +1] < 0¢41, (13)
most¢ from j. (i) EvaluateQ [¢?||77, s] for all & at distance
at mostt — 1 from j, for all i € ok, and for allo?, 70, s, for all (5},5%) € {—1,+1}2(+D),
using Eq. (7). Letly,lo,...,l4—1 be the other neighbors of nodébesides
For anyl < ¢/ <t — 1, stept — ¢ proceeds as follows. j). We will show that, in fact,

Consider any agentat distance at most > 1 from 5. Sup-

Proof: We proceed by induction. Clearly Eq. (11) holds
for t = 0. Suppose Eq. (11) holds for sonteWe want to
show

~ ~t ~t ~t—1 ~t—1
- - ; =—1|0;,0% . = <
pose that we have already comput@do; "’ 1HTf =1 s P {UZ(H' 1) 1G5,05,0, 75,07, +1} < Ottt
for all such i, for all | € 9i, and for all possible (14)
t—t'—1 _t—t'—1
o \T; ,s.tl'tr)?? we can use Egs. (5) and _(6) 901 all possible¢ = (65’8;_’6;1—176;2—1’.”’826;11).

t—t ; t—t'—1
computey; (i, 05, ) for all possibler;, o;" =" UsiNg e reason as follows. Fix the state of the wosldnd the

these values, for ani at a distance’ — 1 from j, we can cOm- aiectoriess! and &t. Now this induces correlations between
puteQ |o; " ‘Lﬂi_t ,s] for all i € 9k, for all o™ ,7,™", s, the trajectories of the neighbots, ..., 1.1, caused by the
using Eq. (7). The computational effort involved is bountigd requirement of consistency with the majority rule at nade
C(d—1)'|8|4¢=#)+1x| for the computation of; " (-, -)’s  butonly up to timet — 1. If we further fix 5!, theng;,, (t)
and bounded by’(d — 1) |S|(+D(='+1)| x| for the com- (and 5, at all future times) is conditionally independent of
putation ofQ [af‘t/‘ i s} 's. Hered is maximum degree, (%tm,)m,#m- Thus, we hav¥®

andC = C(d) < o is a constant. Thus, step—t' requires .

effort bounded by2¢"* for someC’ = C’(d, |S|, |X|) < cc. P[o1,(t) = —1]& s = +1]

This bound also holds for step Thus, the overall computa- =P [@m (t) = —1|3zt;1733_178 = +1} )

; ; C'td _ 90(td)
tional effort is bounded by2 2 ' and therefore, using the induction hypothesis

P, (t) = —1]&s=+1] <0 (15)
VI. CONVERGENCE OF MAJORITY DYNAMICS PROOF OF

THEOREMIIIL.6 for al m € {1,2,...,d — 1}. Also, the actions

oy, (t),...,01,_,(t) are conditionally independent of each
In this section we study a very simple update rule, ‘majorityther given¢, s = +1. We have
dynamics’. We use;(t) € {—1,+1} to denote votes under
the majority dynamics. oi(t+1) =sgn(@;(t) + 71, (t) + ... +71,, (1),

Definition VI.1. Under _the majority dynlamiCS, eaCh_ agent 10 alternate argument can be constructed using the modifieckps with
1 € V chooses her vote in rourtd-1 according to the majority an inert agent, mirroring the reasoning used in the proofrop@sition V.5.



with sgn(0) being assigned value-1 or +1 with equal ORound g?éesian (l\)/l?éority
probability. This yields 1 6.075 - 10—2 6.075 - 10-2
~ S, 2 1.57158 - 1072 | 2.95136 - 107>
Plo;(t+1)=-1]¢,s=+1] < P[B I(d—1,0¢) >d/2 -1 . _
[oit+1) €5 =+1] < P[Binomial( 1) 2 d/2—1] 3 2.99170 - 1073 | 1.59849 - 102
from Eq. (15) and conditional independence of 4 3.39853 - 10:‘; 9.15458 - 10:2
61, (t),...,51, ,(t). Thus, we obtain Eq. (14). Eq. (13) > 272958 - 107" | 5.46501 - 10—
follows by summing oveb] *,5;',....5] . n 6 2.21981 - 1077 | 3.35117 - 10
Proof of Theorem 111.6: By applying the multiplicative TABLE I
version of the Chernoff bourRéito Eq. (12) we have that d=3 Pl # 5] =0.15
6t+1 < e(d72)/27(d71)5t (26t(d _ 1)/(d _ 2))(d72)/2
Dropping the terme—(¢=1)%  we obtain Round | d =3 d=5 d=17
1 0 0.30 0.30 0.30
i1 < (2e8:(d —1)/(d —2))2@=2), (16) 1 0.216 0.16308 0.126036
o ] ) o 0.134038 5.07053 - 1072 | 1.1966 - 102
This is a first order non-homogeneous linear recursion in 3 777755 - 1072 | 4.06495 - 1073 | 3.67884 - 106
log ;. If it were an equality it would yield 4 3.79502 - 1072 | 1.61786-107°
d—9 , 5 1.71209 - 10>
log 6; = (log5 + log[2e(d —1)/(d — 2)]> [3(d—2)] 6 5.73294-107°
d—4 7 1.59587 - 102
d—2
_ log[2e(d — 1)/(d — 2)], TABLE Il
d—4 gl2e( M ) ERROR PROBABILITIES FORBAYESIAN AGENTS WITH
and so P [x; # s] = 0.3, FOR REGULAR TREES OF DIFFERENT DEGREES
THIS DATA IS DISPLAYED IN FIGURE 1.
~1og, € 2 ((3(d-2)"), (17)
as long as
d—9 leaveso;(t) unchanged. One might expect most reasonable
—logé < T log[2e(d — 1)/(d — 2)]. learning rules, including iterative Bayesian learningsatisfy

monotonicity For instance, there is a simple proof that the
B majority rule is monotonic [13]. However, it turns out that
Theorem 111.6 is non-trivial ford > 5. The upper limit jterative Bayesian learning is not always monotéfiidt is
of the ‘noise’ § for which it establishes rapid convergenceot very surprising, then, that it is hard to prove conveogen
approacheg¢2e)~" asd grows large (see also the discussiogy Bayesian learning to the ‘right’ answer, even in simple
below for larged). settings. Controlling the rate of convergence, as in Cdnjec
l11.5, is even harder.
VII. FURTHER NUMERICAL RESULTS AND DISCUSSION ON Despite non-monotonicity, it is tempting to hope for a direc
CONJECTUREIIILS proof of Conjecture 111.5, by showing inductively (in tim#)at
Table 1I, together with Table | above, contrast the errdierative Bayesian learning is always at least as good ritigjor
probabilities of Bayesian updates with those of majority uglynamics. The difficulty that arises here is that thouglattee
dates. All cases exhibit lower error probabilities (in thea Bayesian learning minimizes the error probability at a node
Sense) for the Bayesian update’ consistent with Conjectlgiéen the available information, this is not the case if we
I11.5. Table Il contains the data plotted in Figure 1. Alsar f condition on the state of the world. After conditioning o th
these parameters, we found that the Bayesian updates sho®fatf of the world, iterative Bayesian learning does beéftizn
lower error probabilities than the majority updates (corapaMajority dynamics on some nodes, and worse on others. It is
with Table V). very hard to control the difference between the two processe
The running time to generate these tables was less thaReyond a small number of iterations, making a direct proof of
minute on a standard desktop machine. We did not procdegniecture I11.5 difficult.
with more rounds because of numerical instability issues
which begin to appear as error probabilities decrease. VIIl. DISCUSSION

We now discuss briefly the difficulties in proving Conjecture \ye presented a new algorithmic approach that questions the
I11.5. Order the possible private signals by the impliecelik  pejief that fully Bayesian computations for agents intéirag
hood ratio ofs, with higherz; corresponding ta = +1 being 4 5 social network are computationally intractable. Thiefch
more likely. We say a learning rule with successive roundgawback is that our approach does not seem amenable to
of ‘voting’ is monotonicif the following occurs: If somez  granhs with short loops, though many real networks possess
leads too;(t) = 1, then increasing:; in « for somej € V' ihis feature. A significant open question suggested by our
results is: What is the ‘computational boundary’ between

11 expn E[X] .
PIX>(1+mEX] < (528%) . We substituteE[X] =

0¢(d—1)andl+n=(d/2 —1)/[6:(d —1)]. 12E|chanan Mossel and Omer Tamuz, private communication.



Round | d =3 d=5 d="17
0 0.30 0.30 0.30
1 0.216 0.16308 0.126036
2 0.170489 | 0.0733673 0.0232861
3 0.146010 | 0.0215952 2.99165 - 104
4 0.130070 | 2.61093 - 1073
5 0.119647
6 0.112267
7 0.107006
TABLE IV

ERROR PROBABILITIES FOR AGENTS USING MAJORITY UPDATES

WITH P [x; # s] = 0.3, FOR REGULAR TREES OF DIFFERENT
DEGREES.
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networks where exact Bayesian calculations can be efflgieni2s]
performed, and networks where this is not possible? In par-
ticular, can graphs with a few short loops be handled at some
additional computational cost?
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