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Abstract. We study how to reduce congestion in two-sidedmatchingmarkets with private
preferences. Wemeasure congestion by the number of bits of information that agents must
(i) learn about their own preferences, and (ii) communicate with others before obtaining
their finalmatch. Previous results suggest that a high level of congestion is inevitable under
arbitrary preferences before the market can clear with a stable matching. We show that
when the unobservable component of agent preferences satisfies certain natural
assumptions, it is possible to recommend potential matches and encourage informative
signals such that the market reaches a stable matching with a low level of congestion.
Moreover, under our proposed approach, agents have negligible incentive to leave the
marketplace or to look beyond the set of recommended partners. The intuitive idea is to
only recommend partners with whom there is a nonnegligible chance that the agent will
both like them and be liked by them. The recommendations are based on both the ob-
servable component of preferences and signals sent by agents on the other side that indicate
interest.
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1. Introduction
In many two-sided marketplaces, agents search to
form matches with potential partners based on mu-
tual compatibility. Examples include labor markets,
college admission, online dating, and accommodation.
Forming matches often requires extensive and costly
communication between participants and their po-
tential partners. For instance, on a large global free-
lancing platform, fewer than 10% of job applications
get a response, and yet more than half of job openings
remain unfilled, including when the employer in-
vites individual freelancers (Horton 2019). We refer
to a market’s inability to reach a satisfactory outcome
because of high communication overhead as conges-
tion.1 A major challenge for such marketplaces is to
ease congestion without reducing the choice available
to participants. In this paper, we explore, in a styl-
ized setting, how matching markets can be efficiently
cleared by encouraging informative signaling among

users and providing good match recommendations to
participants.
To study congestion in a rigorous framework, we

adopt the classic notion of stability introduced by
Gale and Shapley (1962) as our ideal of the market
outcome without congestion. In a stable matching, no
pair of agents would both prefer to match with each
other over their assigned partners. This captures a key
feature of such markets, which is that agents cannot
simply choose their partners, butmust also be chosen.
Stability has been adopted as an equilibrium notion
to capture real-world outcomes (Hitsch et al. 2010,
Banerjee et al. 2013). Moreover, platforms that im-
plement stable outcomes can prevent agents from
looking for matches elsewhere, for instance, on other
platforms.2

Many marketplaces use centralized clearinghouses
that implement stable matchings to ease congestion,
including the National Residency Matching Program
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(NRMP) and many school admission systems. In these
marketplaces, participants on both sides of the mar-
ket submit preferences, which are then converted into a
stable matching using the Gale–Shapley deferred ac-
ceptance (DA) algorithm. But even in these central-
ized platforms, participantsmay be unable to list their
true preferences over all potential partners. For ex-
ample, medical students participating in the NRMP
are only permitted to rank hospitals with which they
have interviewed, so the logistical costs of interviews
limit the length of the ranking. Hence, having a
centralized clearinghouse alone does not eliminate
congestion.

Recent theoretical results suggest that it may be
unrealistic to expect large markets to arrive at stable
matchings. Using the theory of communication com-
plexity,3 which studies the minimum communication
required to accomplish certain tasks from an infor-
mation theory perspective, Segal (2007), Chou and Lu
(2010), and Gonczarowski et al. (2015) prove that, for
anymethod of finding stable matchings, there exists a
class of preferences such that, to clear the market,
agents must each learn and communicate their pref-
erences for a substantial fraction of the entire market.
More precisely, the worst-case amount of commu-
nication needed per agent grows linearly with the
number of agents.4 This communication requirement
is implausibly large for many real markets, which have
many thousands of agents on each side,5 suggesting
that there is an inevitable tension between providing
choice to market participants (as captured by stability)
and reducing communication overhead.

In contrast to these negative results, we show that,
under natural assumptions on the distribution of pref-
erences and prior knowledge of agents, stable match-
ings can be reached with limited communication even
in large markets. We do this by constructing commu-
nication protocols that guide agents on whom to con-
tact. The protocols help agents estimate with whom
they can realistically be matched and encourage them
to reach out to easier-to-get partners while waiting
for harder-to-get partners to reach out to them. When
every agent follows the protocol, the market reaches
a stable matching with high probability and with
low levels of communication and preference learning.
Moreover, with high probability, it is in the best in-
terest of each agent to comply with the protocol, as-
suming that others also do so.

The signaling employed by our protocol resembles
features of real-world marketplaces. For instance, in the
online labor market Upwork, the platform recommends
suitable jobs to freelancers, who then “signal” their in-
terest by applying; employers can also signal by inviting
a suitable freelancer to apply. Both match recommen-
dation and agent signaling play an important role in
helping the market clear efficiently. Our communication

protocols give platforms stylized insights on what kind
of signals to allow and how to recommend matches.

1.1. Our Model and Results
We now describe our precise assumptions and re-
sults. Our assumptions on the preference distribu-
tion are mild. We say that a market is separable if the
preferences of one side, say, firms, follow a latent ran-
dom utility model with an additively separable struc-
ture. The preferences of workers can be arbitrary. For a
firm, its latent utility for a worker is the sum of a
systematic score and an idiosyncratic score,6 both of
which are heterogeneous across firm–worker pairs.
The systematic score represents the worker’s general
level of fit based on observable characteristics, such as
past experience, level of education, and test scores.
This information is known to the worker and the firm
but not necessarily to anyone else. The idiosyncratic
score represents the idiosyncratic component of the
firm’s preference and is drawn independently from a
certain unknowndistribution. The preferences of agents,
including bothworkers andfirms, are unknownapriori
to everyone, including the agents themselves. To learn
their own preferences, agents have to query a choice
function, which returns their most preferred partner
within a given set.
Because the systematic scores can be heterogeneous

across worker–firm pairs, we need the idiosyncratic
scores to be sufficiently important relative to the sys-
tematic scores; otherwise, separable markets would
include general markets, and the previous impossibil-
ity results of Gonczarowski et al. (2015) would hold.
Precisely speaking, we assume that the range of sys-
tematic scores and the hazard rate of idiosyncratic
scores are bounded above. A bounded hazard rate
allows the idiosyncratic scores to take any heavy-tailed
distribution, including the exponential, type I extreme
value, lognormal, and Pareto distributions.
Ourmain result (Theorem 1) is that, in any separable

market, there exists a way to find a stable matching
with high probability using low levels of communi-
cation and preference learning cost. The protocol that
we construct, called communication-efficient deferred
acceptance (CEDA), modifies the worker-proposing
DA algorithm by having workers apply only to firms
at which they have a realistic chance. Workers know
whether they have a chance through signals sent
by firms. We show that, in any separable market, this
protocol yields, with high probability, the worker-
optimal stable match. Furthermore, the communica-
tion cost as measured by the number of bits agents
send, on average, and the preference learning cost as
measured by the number of choice function queries
agents make, on average, both scale with the square
root of the market size in the worst case,7 which is
much smaller than the linear scaling necessary under
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arbitrary preferences. In Theorem 2, we show, by con-
structing a plausible distribution over markets, that
no stable matching protocol can have a better worst-
case efficiency than CEDA for separable markets.

The source of CEDA’s efficiency is the signals sent
by firms, which help workers direct their applica-
tions. There are two types of signals: in the beginning,
each firm bins workers based on their systematic
scores and sends a preference signal to a certain number
of its favorite workers in each bin. Receiving a pref-
erence signal indicates to a worker that the worker
should apply despite having a potentially unfavorable
systematic score. Although workers are applying to
firms, each firm maintains and updates a system-
atic qualification requirement, which is broadcast to all
workers. The qualification requirement is increased
whenever the firm receives sufficiently many appli-
cations from workers whose systematic score meets
the requirement. We show that, if a worker neither
meets the qualification requirement nor receives a
preference signal from a firm, then the worker’s
chance of being matched with that firm is essentially
zero, so the worker should not waste time applying.
Moreover, when workers apply only to firms at which
their systematic scores qualify or fromwhich they have
received preference signals, then the total communi-
cation cost is small.

A drawback of the CEDA protocol is that it may
require many rounds of communication as the signal
an agent sends may depend onwhat signals the agent
has received, which may, in turn, depend on the prior
signals of other agents. We give an example illustrating
that such sequential dependency may be necessary
for any protocol under certain preference distributions.
However, under stronger assumptions on preferences,
we show that a two-round protocol is possible. The
markets we consider are tiered random markets, in
which agents on both sides are partitioned into tiers;
an agent of a higher tier is always preferable to one of
a lower tier, and preferences are uniformly random
and independent within each tier.8 For such mar-
kets, we give a two-round protocol whose preference
learning and communication costs scale only poly-
logarithmically in the market size (Theorem 3). The
protocol has the additional advantage of using only
private signals, which need to be seen only by a single
receiver. The protocol, called the targeted-signaling
protocol, designates for each agent a set of easy-to-get
and hard-to-get partners, based on commonly known
tier information alone. In the first round, each agent
signals a certain number of the agent’s favorite easy-to-
get partners. In the second round, each agent submits
a partial preference ranking, in which the agent ranks
only the subset of potential partners whom the agent
signaled or who signaled the agent. The protocol out-
puts a matching based on these partial preferences, and

we show that this matching is stable with respect to the
full preferences with high probability.
Both of our protocols inherit the incentive prop-

erties of worker-proposing DA under complete in-
formation. More precisely, we show that with high
probability, no worker can unilaterally deviate from
the protocol and improve the worker’s outcome, and
no firm can unilaterally deviate and be matched to
someone better than its partner in the firm-optimal
stable match (Theorem 4). Recent literature has dem-
onstrated that, in large markets, under mild assump-
tions, the vast majority of agents have the same match
partners under the worker- and firm-optimal stable
matchings (Immorlica andMahdian 2005, Kojima and
Pathak 2009, Ashlagi et al. 2017, Lee 2017, Lee and
Yariv 2017). For such markets, all agents have van-
ishing incentives to deviate from our protocols.

1.2. Managerial Insights for Platforms
Our results highlight three features a platform can
implement to reduce congestion. Each feature can
take a variety of forms depending on the context, and
we recommend implementing all three together for
maximum effectiveness. The first feature is to help
agents estimate their chance of obtaining a particular
match. Such a feature can be as simple as publish-
ing predicted9 thresholds for school admissions as
is currently practiced in certain universities in India,
Israel, and Iran. Online platforms have the addi-
tional advantage of having a treasure trove of data
on participant attributes and historical matches, and
such data can be used to predict match compatibility
in each direction (how much an agent may like a
particular partner and vice versa.) As in CEDA, they
can update their predictions by keeping track of how
many favorable contacts a potential partner has re-
ceived and correcting overoptimistic predictions for
getting partnerswho aremore popular than expected.
A secondway for a platform to reduce congestion is

to help both sides of the market better search for
potential partners and signal interest. If only workers
can initiate contact, then the top firms will receive a
deluge of applications, most of which will turn out to
be unfruitful. The market would be more efficient if
there were a database of all workers that the top firms
could use to filter for desirable worker attributes and
initiate contact. Examples of such a database include
class rosters that business schools post of graduating
MBA students and their resumes, or an online plat-
form, such as LinkedIn, which allows both workers
and firms to search for potential partners and initiate
contact. A recent empirical work that supports the
importance of signaling from both sides of the market
is Horton (2019), who finds that, in an online labor
market in which employers recruit freelancers, the
simple intervention of allowing freelancers to signal
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their level of availability substantially increases both
match rates and market welfare.

A third helpful feature for reducing congestion is a
match recommendation engine that targets potential
partners for whom an agent has a realistic chance of
matching. This is different from a naive “one-sided”
recommendation engine that only takes into account
who an agentmay like, but notwhomay like the agent
back. An online matching platform can implement such
a “two-sided” engine as part of its search tool and
only return potential partners who are estimated to be
suitable, available, and willing to match. The value of
such a recommendation engine is highlighted by the
field experiment of Horton (2017) on oDesk/Upwork,
which reports a 20% increase in employers’ job-fill rates
from adopting a recommendation engine that takes
into account worker relevance, ability, and availability.

1.3. Relationship to Literature
As already discussed, this paper contributes to the
literature on two-sided matching by defending the
plausibility of stable matchings in large markets and
by demonstrating the theoretical importance ofmatch
recommendations and informative signals in reduc-
ing congestion.

The conceptual framework we use to study sig-
naling and information friction is distinct and com-
plementary to previous works.10 First, the role of
signaling in this paper differs in that we focus on the
informative aspect of signaling rather than the strategic
aspect. In previous work, signaling changes the set of
equilibrium outcomes, inspired by the literature on
signaling games in economics. In this paper, signaling
does not change the outcome, but enables the market
to reach a desired outcomemore quickly. Second, our
approach on modeling information friction differs
from previous approaches based on search theory in
which agents optimize the matching outcome given
costs or constraints on communication or information
acquisition.11 By contrast, we take the dual approach,
in which the matching outcome is fixed, and we look
for the least amount of communication needed to
obtain that outcome.

The separable market model we study strictly
generalizes previous models with uniformly random
preferences (Wilson 1972; Pittel 1989, 1992; Coles and
Shorrer 2014; Ashlagi et al. 2017), finite preference
ordering on one side (Immorlica and Mahdian 2005,
Kojima and Pathak 2009), andO( ��

n
√ )many acceptable

partners on both sides (Dagsvik 2000, Menzel 2015).
This generalization is necessary for our purposes because
the DA algorithm already yields low communication
cost in the uniformly random case (Wilson 1972), and
communication is trivially easywhen agents have few
acceptable partners. Our model is also distinct from
the models of Lee (2017) and Lee and Yariv (2017)

with bounded idiosyncratic scores and in which ev-
eryone receives the maximum possible idiosyncratic
value in any large stable matching. Our model of
tiered randompreferences is studied in other contexts
by Coles et al. (2013) and Che and Tercieux (2018a, b),
and our analysis extends ideas from Pittel (1989,
1992), and Ashlagi et al. (2017).

2. Model
2.1. Review of Asymptotic Notation
This paper heavily utilizes Big O–type asymptotic no-
tation. For clarity, we define these notations in this
section.
Given two nonnegative functions f , g : N → R+, we

say that f (n) � O(g(n)) if there exists n0 andM> 0 such
that f (n) ≤ Mg(n) for all n ≥ n0. This indicates that up
to a multiplicative constant, the tail of the function f
grows no faster than g. Similarly, we say that f (n) �
O∗(g(n)) if there exists n0 and C> 0 such that f (n) ≤
(logn)Cg(n) for all n ≥ n0.
We say that f (n) � Ω(g(n)) if g(n) � O( f (n)). In other

words, there exists n0 andM> 0 such that f (n) ≥ Mg(n)
for all n ≥ n0.
We say that f (n) � o(g(n)) if, for any ε> 0, there

exists n0 such that f (n) ≤ εg(n) for all n ≥ n0.
A special case is f (n) � o(1), which means that

limn→∞ f (n) � 0.
Intuitively speaking, O(·) and O∗(·) are used to

upper bound the rate at which a function converges to
infinity, andΩ(·) is used to lower bound the rate; o(·) is
used to lower bound the rate at which a function
converges to zero.

2.2. Two-sided Matching Markets with
Preference Learning

In this section, we define a genericmodel of two-sided
matching markets with incomplete information. The
markets studied in this paper, separable markets
(Section 2.4) and tiered randommarkets (Section 4.1),
are special cases of this more general model. Compared
with previous work, the model has two distinguishing
features: agents are allowed to have partial information
on the preference distribution of others, and agents do
not know their own preferences directly andmust query
a choice function to learn them.
A two-sided matching market } is defined by a tuple

(I, J, ω,_,3), where I � {1, 2, . . . , nI} is a set of workers,
and J � {nI +1, · · ·nI +nJ} is a set of firms. Both workers
and firms are called agents. For concreteness, we refer
to each worker as “she” and each firm as “it.” Let
n� nI +nJ . This is the total number of agents, and we
call this the market size. The parameter ω∈W repre-
sents the true state of the world, where W is the set of
possible states. (The state of world captures the dis-
tribution over agents’ preferences.)_ represents the a
priori knowledge of agents about the state of the world.
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It is indexed by each agent i∈ I∪ J, and _i ⊆W contains
the true state ω. A preference realization R is indexed
by the set of agents I∪ J. For worker i∈ I, Ri is a per-
mutation of J∪{0}, which specifies her (strict) prefer-
ence ordering over being matched with each firm and
remaining unmatched, which is represented by the
symbol 0. Similarly, for each firm j∈ J, Rj is a per-
mutation of I∪{0}, which specifies the preference
ordering of firm j. A potential partner is said to be
acceptable to an agent if the agent prefers beingmatched
to the partner over being unmatched. The function 3 :
W→Δ(R) is called the preference function andmaps the
state of the world to a probability distribution over
preference realizations. Because ω is the true state of
the world, 3(ω) is called the true preference distribu-
tion. We assume that each agent i∈ I∪ J a priori knows
the function 3 and that the state of the world ω is
contained in _i, but they do not know the true state
of the world ω or the preference realization R.

To learn the realization of their own preference
ordering, each agent must query their choice function,
which specifies the agent’s most preferred option
within a given set of potential partners. Precisely
speaking, for each worker i ∈ I, the choice function is
Ci : 2J∪{0} → J ∪ {0}, which takes as input a subset of
possible options, S ⊆ J ∪ {0}, and outputs the highest-
ranked element of S according to the preference or-
dering Ri, which the agent does not directly observe.
The choice function is analogouslydefined for everyfirm
j ∈ J except the set of possible options is now I ∪ {0}.

The concept of choice function query is later used
to quantify the preference learning cost of an agent.
For the majority of the paper, we simply count the
number of queries. In Section 6, we discuss an alter-
native formulation in which preference learning costs
account for the size of the input set to each choice
function query, so queries with larger inputs result in
higher costs.

2.2.1. Stable Matchings. A collection of worker–firm
pairs μ ⊆ I × J is called a matching if each worker and
each firm appears at most once.We refer to each (i, j) ∈
μ as a matched pair, and i and j as matched partners
to one another in μ. Agents who have no matched
partner are said to be unmatched in μ. Although a
matching μ is, technically speaking, a set of pairs, we
abuse notation and also use μ as a function that maps
each agent to the agent’s matched partner: if (i, j) is a
matched pair, then μ(i) � j and μ( j) � i; if an agent i ∈
I ∪ J is unmatched, then μ(i) � 0. A potential partner is
said to be acceptable to an agent if the agent prefers to
be matched to the partner over being unmatched.
A blocking pair to a matching μ is a pair (i, j) ∈ I × J that
is not amatched pair, but both agentsfind one another
acceptable, andworker i prefers firm j to μ(i), and firm
j prefers worker i to μ( j). A matching is said to be

stable if there are no blocking pairs. For any preference
realization R, a stable matching always exists and can
be found using the DA algorithm of Gale and Shapley
(1962). Aversionof this algorithm is stated in Section 2.3.

2.3. Stable Matching Protocol and
Communication Cost

In this section, we formalize the concept of the com-
munication cost of finding a stable matching, using
concepts from the communication complexity literature
[see Kushilevitz and Nisan (2006), for an overview of
this literature].
A communication protocol with n agents and input

vector (x1, . . . , xn) is defined as follows. Each agent
i has access only to the agent’s component xi of
the input vector, but agents can send messages to
other agents. Each message is formally represented
as a sequence of zero–one bits, and we measure the
length ofmessages by the number of bits. For now,we
assume that messages are public, which means they
are visible to all agents. (We remove this assumption
in Section 4, in which we study protocols in which
messages are visible only to a particular receiver.) We
define the history of messages to be the sequence of all
messages sent by any agent since the beginning of
the protocol. As a function of the current history of
messages, the protocol either terminates with a final
output or chooses one agent to send the next message.
The protocol also specifies what the chosen agent i’s
message should be (including the length of themessage)
as a deterministic function of the agent’s component xi
of the input vector and the current history of mes-
sages. For every input vector (x1, . . . , xn), the proto-
col must be guaranteed to terminate with an output
within a finite number of messages.
The next three definitions are essential for stating

our main results. Intuitively, a matching protocol de-
scribes a way of finding a stable matching in which
one can rigorously track the amount of communication.
A preference learning strategy specifies how agents
gather the necessary information about their own
preferences when following a matching protocol,
and a good strategy minimizes the expected number
of choice function queries. A good matching pro-
tocol and an associated preference learning strategy
together yield low communication and preference
learning cost while producing stable matches with
high probability.

Definition 1 (Matching Protocol and Communication
Cost). Given a two-sided matching market } � (I, J,
ω,_,3), a corresponding matching protocol Π is a com-
munication protocol in which the set of agents is I ∪ J,
and for each i ∈ I ∪ J, the agent’s component of the in-
put vector is (_i,Ri), which includes the agent’s a priori
knowledge on the state of the world and the agent’s
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preference realization. The output of the protocol is a
matching μ ⊆ I × J. The communication cost of Π is the
expected total length of all messages (in bits) divided
by the total number of agents, in which the expec-
tation is taken over the distribution of preference
realizations 3(ω).
Definition 2 (Preference Learning Cost). Given a two-
sidedmatchingmarket} � (I, J, ω,_,3) and amatching
protocol Π, a corresponding preference learning strategy
specifies for each agent i ∈ I ∪ J how the agent should
use choice function queries to obtain enough infor-
mation on the agent’s preference ordering Ri so that
the agent can follow the protocol. Precisely speaking,
the strategy for an agent specifies the input to the
agent’s next choice function query given the history of
the protocol, the sequence of choice function queries
the agent made so far, and the result of these queries.
(If the strategy specifies the empty set, then the agent
should stop querying during this step of the proto-
col and send the message required of the agent.) The
expected cost of a strategy is the expected total
number of choice function queries across all agents,
divided by the number of agents. The preference
learning cost of matching protocolΠ is the minimum
expected cost of any corresponding preference
learning strategy.

Definition 3 (Stable with High Probability). Consider a
sequence of markets (}n)n∈N indexed by the number
of agents n and a corresponding sequence of matching
protocols (Πn)n∈N. The sequence of matching protocols
(Πn)n∈N is said to be stable with high probability for
markets (}n)n∈N if the probability that the matching
produced is stable with respect to the realized pref-
erences converging to one as the market size n goes to
∞. Here, the probability is taken over the sequence of
preference distributions 3n(ωn).

An example of a matching protocol that is always
stable is the DA algorithm given as follows.12 The
corresponding preference learning strategy is im-
plicitly given and uses one choice function query
each step.

Protocol 1. The sequential DA algorithm.
The protocol keeps track of a “tentative matching,” which

is initialized to be empty.
(1) Consider the set of tentatively unmatched workers

who have not yet applied to all firms they find acceptable.
If this set is empty, then the algorithm terminates and
outputs the current tentative matching. Otherwise, one
worker from this set is selected arbitrarily, say worker i,
and she applies to her favorite firm j that she finds ac-
ceptable to which she has not yet applied.

(2) If firm j is tentatively unmatched and finds her
acceptable, then it becomes tentatively matched to the

worker. Otherwise, if it is already tentatively matched to
some other worker, say worker i′, then it becomes tentatively
matched to the more preferred worker among the two and
rejects the other. The rejected worker becomes tentatively
unmatched and can again be chosen in a future step.
Return to step 1.

This protocol requires high preference learning
and communication cost: each step requires a choice
function query to identify who to apply and who to
accept. If there are Ω(n) firms, then communicating
the identity of each firm requires Ω(logn) bits of in-
formation, so each application requires a communi-
cation cost of Ω(logn). In the worst case, a worker
may apply to and be rejected from every single firm,
and the average number of applications per worker
may be Ω(n) (Itoga 1978). Therefore, the worst case
communication cost is Ω(n logn) per agent, and the
worst case preference learning cost is Ω(n) per agent.
Remark 1. Although Definitions 1 and 2 define costs
for a particular state of the world ω, the protocol that
we propose in Section 3 achieves low cost in all states of
the world that satisfy the assumptions described in
Section 2.4. Moreover, the protocol definition is the
same for all states of the world.

2.3.1. Impossibility of Sublinear Communication Cost
for Arbitrary Markets. The following negative result,
which is a strengthening of an earlier result13 by Segal
(2007), implies that without restrictions on the pref-
erence distribution, one cannot hope to improve much
upon the DA algorithm. There exists a distribution of
preferences such that any matching protocol that is
stable with high probability must require agents to
learn and communicate, on average, at least a constant
fraction of their preferences over the entiremarket. For
real-world markets with many thousands of agents on
each side, this is an unrealistically high requirement for
communication and preference learning.

Proposition 1 (Adapted from Gonczarowski et al. 2015).
There exists a sequence of two-sided matching markets}n �
(In, Jn, ωn,_n,3n) with _n

i � {ωn} (everyone knows the
state of the world and, hence, the precise distribution of
preferences), such that any sequence of matching protocols
that is stable with high probability requires a communication
cost of at leastΩ(n) per agent and a preference learning cost
of at least Ω(n/(log n)) per agent.14
However, this negative result requires an unreal-

istic preference distribution in which agent prefer-
ences are highly correlated in a contrived way.15 The
takeaway from the present paper is that, because
preferences in real markets are not worst case but
usually exhibit additional structure, this structure can
be used to find stable matchings much more effi-
ciently than what the previous result suggests.
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2.4. Separable Markets
In this section,we define separablemarkets, a restricted
class of two-sided matching markets for which we
show in Section 3 that the communication requirement
is much less than in arbitrary markets. After precisely
stating the assumptions behind separable markets, we
discuss in Section 2.4.1 why this is a reasonable model.

A separable market} � (I, J, ω,_,3) is a two-sided
matching market with the following restrictions on
the preference distribution 3, the true state of the
world ω, and the a priori knowledge _ of the agents.

We assume no restrictions on the preferences of one
side. Without loss of generality, let the unrestricted
side be the workers. We assume the preferences of
the firms follow a latent random utility model with the
following additively separable structure (hence, the
term “separable” markets). The latent utility of firm j
for worker i is

uji � aji + εji, (1)

where aji is the systematic score of worker i for firm j,
which represents the observable characteristics for
this worker–firm pair, and εji is the idiosyncratic score
ofworker i forfirm j, which represents the unobserved
component of the firm’s preference for that worker.
The utility of the firm for being unmatched, uj0, is
unrestricted. Denote this as firm j’s outside utility. We
assume that all idiosyncratic scores for firm j are
distributed independently and identically according
to a distribution Fj and are independent of systematic
scores, the preferences of workers, and the utility of
firms for being unmatched.

Let 3(ω) denote the preference distribution de-
scribed, inwhich the state of theworldω encapsulates
the preferences of workers, the outside utilities of
the firms, the set of systematic scores {aji}, and the
idiosyncratic score distributions {Fj}. The worker
preferences and firm outside utilities are completed
unrestricted, and the systematic and idiosyncratic
scores satisfy the following parametric assumptions,
which together guarantee that the idiosyncratic scores
are sufficiently important compared with the systematic
scores.

Assumption 1 (Range of Systematic Scores). Without
loss of generality,16 we assume that all systematic scores
aji are nonnegative, andmini∈I aji � 0 for all j ∈ J. Further,
we assume the range of systematic scores is upper
bounded by a polylogarithmic function of market size n,
that is,

a � O∗(1), (2)

where a � maxi∈I,j∈J{aji}. That is, there exists a constant
C> 0 such that a ≤ logC n.

Assumption 2 (Bounded Hazard Rate). For every firm j,
the distribution of idiosyncratic scores, Fj, satisfies a uniform
bound on its hazard rate:

h(x) :� F′j (x)
1 − Fj(x) ≤ 1 ∀x ∈ R. (3)

A bounded hazard rate is satisfied by any distribution
with a sufficiently heavy tail, including the expo-
nential, the type I extreme value, the log normal, and the
Pareto distributions. Note also that the bound of one
on the right side of (3) is without loss of generality
because one can multiplicatively scale latent utilities
by an arbitrary positive constantwithout affecting the
underlying preferences, and the same multiplicative
constant would become the bound on the right side
of (3).

The assumptions on the a priori knowledge _ of
agents are as follows.

Assumption 3 (Lower Bound on Prior Knowledge). Each
agent knows the systematic scores that are associated with
them. (The systematic score aji is a priori known to firm j and
worker i.) In addition, workers and firms know that the state
of the world ω satisfies Assumptions 1 and 2.

Note that Assumption 3 requires certain informa-
tion to be included in _, but leaves much flexibility
on the remaining content. In particular, it does not
specify whether agents have additional information
on the state of the world, such as the systematic scores
among other agents, the distribution Fj for each firm,
the preference of workers, or the outside utility of
firms. Such knowledge assumptions are not neces-
sary as all of our results hold regardless of how
much additional knowledge agents possess be-
yond that specified in Assumption 3.
As described in Section 2.2, each agent does not

know the agent’s own preference realization a priori
but can learn this via choice function queries. Agents
can learn about the other agents’ preferences only
through communication.

2.4.1. Discussion of Assumptions. The key assump-
tions behind separable markets are

(1) The additively separable structure offirm latent
utilities with systematic score aji mutually known to
firm j and worker i.

2. The idiosyncratic scores are independent and
identically distributed (i.i.d.).

3. Firm preferences are sufficiently idiosyncratic
(Assumptions 1 and 2).
The additively separable structure of firm prefer-

ences is motivated as follows: in many real matching
markets, the preference of at least one side depends on
observable characteristics in a predictable way. For
example, in hiring for a position, a firm may value an

Ashlagi et al.: Clearing Matching Markets Efficiently
Management Science, Articles in Advance, pp. 1–31, © 2019 INFORMS 7



applicant’s education, GPA, relevant certification, and
relevant work experience. An interested worker may
also have reasonable a priori knowledge of how im-
portant each of these characteristics is for a particular
position and can assess her general level of fit without
communicating with the firm. Likewise, the firm may
observe many of a potential worker’s characteristics
from LinkedIn or a university’s alumni database. The
systematic score aji represents this mutually observ-
able general level of fit between worker i and firm j.
Note that we allow this to vary for each worker–firm
pair, allowing for rich heterogeneities.

The idiosyncratic score εji represents everything
that is unexplained by the observable component. The
assumption that they are i.i.d. is for technical conve-
nience and is prevalent in the discrete choice literature as
well as in most empirical studies in matchingmarkets.17

In our analysis, this assumption allows us to claim
that, with high probability, after examining many
workers, the firm must have found someone with a
high idiosyncratic score. Furthermore, it allows us
to upper bound the number of workers with a idio-
syncratic score above a certain quantile. Because these
are the only times we use this assumption, we expect
the analysis to be generalizable tomodels inwhich the
unobservable component of firm preferences exhibits
mild correlations or mild variations in magnitude
across workers for each firm.18

Regarding our assumption that firm preferences are
sufficiently idiosyncratic, we note that some variant of
this assumption is necessary to bypass the previous
impossibility results. This is because, if idiosyncratic
scores were identically zero or if the systematic scores
were to have anunbounded range, then one can embed
any arbitrary deterministic preferences into the sep-
arablemarketmodel, and a variant of the impossibility
result of Proposition 1 would apply to any protocol act-
ing on a particular distribution over separable markets.19

However,AppendixB shows thatAssumption 1maybe
relaxed to allow the range of systematic scores to be an
arbitrary sublinear function of n while still obtaining
a nontrivial bound.

Note also that Assumptions 1 and 2 still allow a
substantial amount of systematic variation in the firm
preferences. For example, suppose Fj is the expo-
nential distribution with parameter 1; then a differ-
ence in systematic scores of 3 log n implies that the
firmwill prefer the worker with the higher systematic
score with a probability of 1 − 1/n3. Because there are
only O(n2) worker–firm pairs, our assumptions al-
low enough systematic variation for each firm to have
multiple tiers of workers, such that, with high proba-
bility, every worker in a better tier is preferred to ev-
ery worker in a lower tier.20 The number of tiers can
also grow to infinity as long as it is controlled by a
polynomial of log n, and the tiers for each firm can be

completely distinct. This allows the separable market
model to be flexible enough to capture rich preference
structures.

3. Main Results
Our main technical results for separable markets are
as follows.

(1) We propose a matching protocol called the
CEDA protocol, which is stable with high probabil-
ity and in the worst case incurs communication and
preference learning costs of O∗( ��

n
√ ) per agent (see

Theorem 1 in Section 3.1). This is much lower than the
Ω(n) cost needed for arbitrary two-sided markets (see
Proposition 1).

(2) This O∗( ��
n

√ ) communication and preference
learning cost is essentially the best possible guarantee
for separable markets as we give an example of a
separablemarket inwhich anymatching protocol that
is stable with high probability requires O( ��

n
√ ) bits of

communication and O( ��
n

√
/ log n) bits of preference

learning (see Theorem 2 in Section 3.2).
The CEDA protocol itself is a main contribution of

the paper as it has an intuitively appealing structure
and provides guidance on how matching platforms
can facilitate efficient market clearing. We also show
in Section 5 that the protocol has good incentive
properties.21

3.1. CEDA
The protocol we construct, which achieves theO∗( ��

n
√ )

guarantee, is called the CEDA protocol. The high-
level idea is to allow workers to better target their
applications with the help of signals sent by firms,
which help workers identify the firms at which they
have a nonnegligible chance of acceptance. There are
two types of signals:
• Preference signal: A firm j signals to worker i if

it has a high idiosyncratic score εji for the worker. All
preference signals are sent at the outset.
• Qualification requirement signal: A firm j broad-

casts a qualification requirement zj to the entire mar-
ket, which specifies the minimum systematic score a
worker who did not receive a preference signal needs
to apply to the firm. Qualification requirement up-
dates are sent throughout the protocol.
The key property of the protocol is that if a worker i

does not receive a preference signal from a firm and
if her systematic score is below its qualification re-
quirement, then she would almost certainly be rejected
and so should not bother applying. We explain this
point in more detail in Section 3.1.1.

Definition 4. A worker i is said to systematically qualify
for firm j if her systematic score meets its qualification
requirement, aji ≥ zj. The worker is said to qualify for
the firm if she either systematically qualifies for it or
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receives a preference signal from it. See Figure 1 for an
illustration.

The protocol is defined formally as follows and also
implies a preference learning strategy.

Protocol 2 (CEDA). Initialize the qualification requirement
for each firm j to the minimum possible systematic score22

zj � 0. There are two phases in CEDA.
(1) Preference signaling: Each firm j places workers

based on their systematic scores into unit-ranged bins [0, 1),
[1, 2), · · ·, [a − 1, a].

The firm sends a preference signal to its top 2e
��
n

√
most

preferred workers from each bin.23

(2) Deferred acceptance with qualification requirement:
Run the sequential worker-proposing deferred acceptance
algorithm (Protocol 1 in Section 2.3) with the following
modifications24:

(a) Workers apply only to firms for for which they
qualify (see Definition 4).

(b) Each firm j, after every 3e logn
��
n

√
applications

received from systematically qualified applicants, increases its
qualification requirement zj by one and broadcasts this increase
to the market by sending a qualification requirement signal.

In practice, a platform can make it easier for agents
to follow the protocol by estimating the systematic
scores, automating the qualification requirement up-
dates, and only showing workers the firms for which
they currently qualify. This would also eliminate the
need for broadcast messages. We highlight also that the
CEDA protocol is exactly the same for any market with
set of workers I, set of firms J, and range of systematic

scores a; thus, it demands only minimal knowledge
on the part of the protocol designer; compare with
Remark 1 in Section 2.3.
The following is our main result about CEDA.

Theorem 1. In any sequence of separable markets satisfying
Assumptions 1–3, the CEDA protocol (Protocol 2) is a
matching protocol that is stable with high probability. Its
communication cost and preference learning cost are both at
most O∗( ��

n
√ ) per agent in the worst case.

Before sketching the proof, we present the high-level
intuition on what drives the reductions in communi-
cation overhead in CEDA. Worker-proposing DA
(Protocol 1) yields high communication cost if there
are many applications before the algorithm converges,
and this can happen if either

(i) most applications by worker are rejected by
firms or

(ii) firms’ utility only improves slightly with every
acceptance, implying that afirmmay tentativelymatch
with many candidates before reaching its final match.
CEDA overcomes the first problem by only allow-

ing applications from workers who have a significant
chance of being accepted. The second problem does
not occur in separable markets because idiosyncratic
scores are heavy tailed (Assumption 2), implying that
each acceptance is likely to improve a firm’s utility by
a significant amount.

3.1.1. Sketch of theProof. The formal proof of Theorem
1 is in Appendix A. Themain reason behind this result
is what we call CEDA’s no-false-negatives property.

Lemma 1 (No-False-Negatives Property). With high prob-
ability, throughout the running of CEDA, if a worker does
not qualify for a firm at a certain time, then she will not be
accepted if she had applied to the firm at that time.

This property implies that, with high probability,
CEDA prevents only applications that would have
been rejected anyway. So the sequence of acceptances
in CEDA exactly matches that in the DA protocol, and
CEDA succeeds in finding the worker-optimal stable
match.
The high-level intuition of why the property holds

is as follows. At least one of two things must occur for
a worker to be (tentatively) accepted by a firm: she
must have either a high systematic score or a high
idiosyncratic score. The definition of “not qualifying”
(the inverse of Definition 4) rules out both these pos-
sibilities, so workers who do not qualify would not have
been accepted anyway.
More precisely, define γj to be the

(
1 − 1/

��
n

√ )
th

fractile of the idiosyncratic scores for firm j,
γj :�F−1j

(
1 − 1/

��
n

√ )
. Define xj to be firm j’s latent util-

ity for the current tentative match in CEDA. (This
is initialized to uj0 and increases whenever the firm

Figure 1. (Color online) Illustration of Qualification Rules in
CEDA for Applying to a Firm

Notes. The vertical axis shows the systematic score of workers for
firm j. The long rectangle on the left represents the set of all workers
with the dashed regions to the right representing workers who
received a preference signal from the firm. There are three workers
in the figure: i, i′, and i′′. Worker i qualifies for firm j because her
systematic score exceeds the threshold zj, worker i′ qualifies because
she received a preference signal, butworker i′′ does not qualify because
she neither meets the qualification requirement zj nor received a
preference signal.
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tentatively accepts a new worker.). We show in Ap-
pendix A that CEDA satisfies the following two
properties with high probability.

(1) Every worker i whose idiosyncratic score for
firm j is higher than γj receives a preference signal.
(This follows from the i.i.d. property of idiosyncratic
scores, the definition of γj, and the number of pref-
erence signals sent.)

(2) For every firm j, the tentative match value xj
increases sufficiently quickly relative to zj so that the
following invariant holds throughout the running of
the CEDA protocol:

zj ≤ max(0, xj − γj), (4)

which implies that, if a worker does not systematically
qualify for firm j, then her systematic score satisfies
aji < xj − γj. This invariant holds because of the fol-
lowing concentration bound: the maximum idio-
syncratic score among 3e logn

��
n

√
independent draws

of Fj is at least γj + 1 with probability at least 1 − 1/n3.
Intuitively, themaximumofmany independent draws
of a heavy-tailed distribution is large with high
probability, and we can make the probability as
high as 1 − 1/nk by taking ke logn

��
n

√
draws.

These two points together imply the no-false-negatives
property because, when worker i does not qualify
for firm j, then the first property implies that εji <γj,
and the second implies that aji < xj − γj, so the firm’s
utility for the worker satisfies uji � aji + εji < xj, and
thus, the worker would not have been accepted
anyway.

Having explained the intuition as to why CEDA
successfully computes the worker-optimal stable match
with high probability, we now explain the reasoning
behind the O∗( ��

n
√ ) bounds in communication and

preference learning cost. This follows from the ob-
servation that, in CEDA, both communication and
preference learning can be upper bounded by the
number of signals sent and the number of applica-
tions. By construction, each firm sends only O∗( ��

n
√ )

preference signals andO∗(1) qualification requirement
signals. This implies that it can receive only O∗( ��

n
√ )

applications fromworkers who do not systematically
qualify, and O∗( ��

n
√ ) applications from workers who

do systematically qualify. This last bound follows
from the observation that there are at most O∗(1)
updates to the qualification requirement for each firm
because Assumption 1 implies that, after this many
updates, the qualification requirement will have
exceeded the highest possible systematic score, and
no worker would systematically qualify. Finally, for
each update to the qualification score, there are—
by construction—only O∗( ��

n
√ ) applications from sys-

tematically qualified workers.

The argument is formalized in Appendix A. The
proof shows that the probability that the resulting
matching is not stable is bounded above by (a(n))/n2 +
ne−

��
n

√
/3, where a(n) � O∗(1) is the bound on the range

of systematic scores in Assumption 1.

3.2. The Optimality of the O∗( ��
n

√ ) Guarantee
The following example shows that the O∗( ��

n
√ ) guar-

antee of CEDA is asymptotically near optimal: con-
sider a market with n workers and n firms. The
preferences of both workers and firms follow a sep-
arable structure with all systematic scores being zero
and all idiosyncratic scores being drawn from an
exponential distribution with rate parameter one.
Each agent has an outside option of value (logn)/2,
which implies that each agent finds a uniformly ran-
dom subset of about

��
n

√
partners acceptable. Agent

preferences among acceptable partners are also uni-
formly random.
Intuitively, it is hard tofind a stablematching in this

market without at least Ω( ��
n

√ ) bits of communication
because otherwise it is difficult even to identify which
pairs of agents find each other mutually acceptable:
out of n possible partners, an agent has, on average,
only one who the agent finds acceptable and who re-
ciprocally finds the agent acceptable, so finding mu-
tually acceptable partners is like finding needles in a
haystack. Themost obviousway of finding all mutually
acceptable partners is for every agent to communicate
the set of agents that the agent finds acceptable, which
requires Θ(log n ��

n
√ ) bits per agent. Theorem 2 shows

that no protocol can do much better.

Theorem 2. There exists a sequence of separable markets for
which any sequence of matching protocols that is stable with
high probability requires a communication cost of Ω( ��

n
√ )

per agent and a preference learning cost ofΩ( ��
n

√
/ log n) per

agent.25

The sequence of markets in Theorem 2 is exactly
the example described. An outline of the proof in
Appendix C is as follows. First, we show that any
matching protocol that is stable with probability at least
90% must approximately identify the set of worker–
firm pairs who find each other mutually acceptable.
(The precise definition of “approximately identify” is
technical and is presented in the formal proof in the
appendix.) The reason is that there are O(n) such
mutually acceptable pairs, and a significant fraction
of them must be matched in all stable matchings
because O(n) agents are matched in total. There are
n2 worker–firm pairs in total. For each pair, we use
ideas from information theory based on Shannon’s
entropy and Shannon’s mutual information (see
Braverman 2015) to show that the protocol must
use Ω(1/ ��

n
√ ) bits of communication, on average,

to approximately determine mutual acceptability.
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This implies that n2 ×Ω(1/ ��
n

√ ) � Ω(n3/2) total bits of
communication are needed, which implies the Ω( ��

n
√ )

per agent bound.
Finally, we show that this Ω( ��

n
√ ) lower bound on

communication cost immediately implies a Ω( ��
n

√
/

log n) lower bound on preference learning cost. The
reason is that any protocol that usesQ choice function
queries can be modified into a communication pro-
tocol with a communication cost of O(Q logn) bits.
4. Simultaneous Two-Round Protocol with

Private Communication
The CEDA protocol in Section 3.1 is sequential: a
worker’s decision about to which firms to apply de-
pends on the firms’ current qualification require-
ments, which, in turn, depend on other workers’
application decisions. Implementing such a protocol
may result in slowmarket convergence as agents need
to wait for other agents to act before knowing what
preference information to learn next and how to act
next. In this section, we explore the possibility of si-
multaneous protocols, in which the dependence of
each agent’s action on prior actions is minimized. In
particular, we consider two-round protocols.26 In the
first round, agents simultaneously signal to various
partners, and in the second round, everyone reports a
partial preference list to a central matchmaker based
on signals received during the first round. One in-
terpretation of the central matchmaker is a centralized
clearinghouse as in the NRMP. Another interpretation
is that it is a proxy for a decentralized matching pro-
cess after which agents arrive at a matching in which
no pair of agents who contacted one another form a
blocking pair.

It turns out that one can construct a separable
market in which any two-round protocol of this form
that is stable with high probability requires Ω(n) bits
of communication per agent (see Appendix H). To
obtain a positive result, we introduce a simpler model
of matching markets, which we call tiered random
markets. In such markets, agents are partitioned into
tiers, and each agent prefers better tiers to worse tiers
and has uniformly random preferences among agents
in a given tier (see Section 4.1). This model still allows
both vertical and horizontal differentiation, and it
yields clean insights about what kind of signals are
most informative. Moreover, there is a highly effi-
cient two-round stable matching protocol, which we
present in Section 4.4.

This protocol has an additional advantage: it uses
only private messages, which are messages visible only
to a sender and a receiver and not to anyone else.
Requiring messages to be private models markets in
which there is no efficient way to broadcast a par-
ticular message to all agents simultaneously. The formal
definition is as follows.

Definition 5. A communication protocol Π is said to
use only privatemessages if everymessage specifies the
identity of a receiving agent and is visible only to that
agent. Furthermore, each message an agent sends can
depend only on the history of messages that the agent
has seen and not on messages the agent has not seen.

As in the definition of a communication protocol in
Section 2.3, the protocol still observes all messages
and chooses when to terminate with an output and
who should send the next message.27

4.1. Tiered Random Markets
A tiered market is a two-sided matching market (I, J,
ω,_,3) in which agents are partitioned into com-
monly known tiers, and every agent prefers partners
from a better tier to those from a worse tier and has
uniformly random preferences for partners within a
given tier.28

Precisely speaking, there are K ≥ 1 tiers of workers
and L ≥ 1 tiers offirms. The state of theworldω � (s, t),
where s is a K-dimensional vector of positive integers
and t is an L-dimensional vector of positive integers,
satisfying

0 �: s0 < s1 < · · · < sK � nI ,

and 0 �: t0 < t1 < · · · < tL � nJ .

Let Ik � {sk−1 + 1, sk−1 + 2, . . . , sk}. This denotes the kth
tier of workers. I1 is the best tier and IK the worst.
Given worker i ∈ I, let k(i) denote the tier of the
worker. This is the unique k such that sk−1 < i ≤ sk.
Similarly, let Jl � {nI + tl−1 + 1, . . . ,nI + tl} denote the
lth tier of firms. (We add nI becausewe index the firms
from nI + 1 to nI + nJ .) For every firm j, let l( j) denote
the tier of the firm. The a priori knowledge_i of every
agent i ∈ I ∪ J is {ω}. The true preference distribution
3(ω) is such that the preference realization Ri of each
worker i ∈ I is a uniformly random permutation of J1,
followed by a uniformly random permutation of
J2 and so on. We assume that every firm is acceptable
to the worker. The preferences of firms are defined
analogously.
Tiered randommarkets model markets in which the

vertical differentiation is coarse and the horizontal
differentiation is idiosyncratic. For example, in the
academic job market for certain subfields, one may
argue that departments are clustered into quality-
differentiated tiers, and every applicant prefers better
tiers, but preferences within each tier are driven by
personal preferences that can bemodeled as essentially
random. Furthermore, applicants may also be clus-
tered into tiers based on publication record and school
of origin with different departments having essen-
tially random preferences within each tier based on
their particular needs at the moment.
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4.2. Better and Worse Positions
We define a notion of relative competitive position,
which intuitively indicates who has more market power
in a tiered randommarket. We say that a worker i is in a
weakly better position than firm j if sk(i) ≤ tl( j). In other
words, there are weakly fewer workers in tiers as good
as i as there are firms in tiers as good as j (workers as
good as i are in short supply). Similarly define this for
firms. Define weakly worse position in an analogous
way with the inequality reversed.

These definitions are motivated by the following
result frompreviouswork. Inauniformly randommarket,
which is a special case of tiered randommarkets with
one tier on each side, the DA algorithm terminates
quickly when the proposing side has weakly fewer
agents but not when it has strictly more agents. (For
example, Ashlagi et al. (2017) show that, in a market
with n − 1workers and nfirms, the average number of
applications in the worker-proposing DA algorithm
is about log n per agent, whereas the average number
of applications in the firm-proposing DA is about
n/(log n) per agent.) This implies that it is more effi-
cient in terms of communication to have the side with
fewer agents do the proposing.

The protocol we propose has agents only initial-
izing contact with potential partners in weakly worse
positions than themselves.

4.3. Example and Intuition
Before giving the full protocol, we consider a simple
numerical example, which illustrates the main in-
sights. Suppose that there are two tiers of workers of
50 workers each. We call these the top workers and
average workers, respectively. Similarly, there are

two tiers of firms, which we call the top and average
firms. There are 20 top firms and 90 average firms as
illustrated in Figure 2.
The first observation is that the tier structure pre-

cludes certain matches in a stable matching. For ex-
ample, in every stable matching, every top firmmust
be matched with a top worker. The reason is that
there are more top workers than top firms, and any
top worker who is not matched with a top firm
would like to be matched to one. Thus, the average
workers in this example have no chance whatsoever
of being matched with a top firm. More generally, in
a tiered random market, worker i can be matched
with firm j only if their tiers overlap: sk(i)−1 < tl(j) and
sk(i) > tl(j)−1.
The second observation is that it is more efficient to

have the agents signal partners with (weakly) worse
positions than themselves. In the example, it is more
efficient for top firms to signal top workers than the
reverse because there are fewer top firms than top
workers. Similarly, it is more efficient for average
firms to wait for signals from both top and average
workers because, when we take out the top workers
who will be matched to the top firms, there are 100 −
20 � 80 workers left and 90 average firms. So the pre-
vious results for uniformly randommarkets suggest that
it is better for the workers to signal. These directions of
signaling are shown in the arrows in Figure 2.
The third observation is that because preference

signals are sent in parallel, certain agents may have
to send extra signals to account for the fact that po-
tential partners may already be taken up by com-
petitors from better tiers. For example, for each of the
average workers, there are 90 average firms she can
signal, but 30 of these will end upmatchingwith a top
worker against whom she has no chance. So, for every
three signals she sends, in expectation, one would
be wasted. This means that she should amplify the
number of signals she sends by a factor of 3/2.
For certain agents, this amplification effect may be

large. For example, consider the case in which there
is a single tier of n firms and there are n tiers of
one worker each so that the workers are completely
vertically differentiated. In this example, the last ranked
workers need to signal order n firms because of the
amplification effect. However, one can show that the
average amplification needed is only O(log n) in this
case.29 For arbitrary tier structures, one can show that
the average amplification needed is always small.

4.4. The Targeted Signaling Protocol
In this section, we describe a two-round protocol
for tiered random markets that is stable with high
probability and uses only private messages. We begin
with a high-level summary. The protocol designates
for each agent a target tier based on the tier structure

Figure 2. An Example of a Tiered Random Market (See
Section 4.3)

Notes. There are two tiers of workers, I1 and I2, and two tiers of firms,
J1 and J2. The height of each rectangle corresponds to the number
of agents in that tier. The arrows show the direction of the most
informative signaling. The topworkers I1 should signal to the average
firms J2 and wait for the top firms to signal to them. The bottom
workers I2 should signal to the bottom firms as well, but they need to
amplify the number of signals they send because some of the bottom
firms would already be taken by top workers.
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alone (Definition 6). In the first round, every agent
signals a certain number of favorite partners within
the agent’s target tier. A signal intuitively represents
initiating contact in a decentralized job market. In
the second round, agents submit a partial preference
ranking of partners among those they signaled or
received a signal from, and the protocol runs the DA
algorithm using the partial preferences collected.

Definition 6. The target tier of a worker i is the best tier
of firms that is in a weakly worse position than she is.
In other words, this is Jl, where l � min{l : tl ≥ sk(i)}.
Similarly define the target tier of each firm j.

In the example in Figure 2, the target tiers are in-
dicated by the arrows so that the target tier of top
firms is top workers, the target tier of top workers is
bottomfirms, and so on. The bottom firms do not have
a target tier because they are in the worst position
possible. As explained in Section 4.3, it is most effi-
cient for agents to each limit signals to their target
tier. However, the number of signals sent needs to
be amplified in inverse proportion to the fraction of
target-tier agents left over after competitors in better
tiers have found matches. This is precisely stated.

Definition 7. For each worker i in tier kwith target tier l,
define her relative competitiveness for her target tier

ρ(i) � min 1,
tl − sk−1
tl − tl−1

( )
.

This is the proportion of the target tier that will not be
matched to workers from better tiers. Similarly define
ρ(j) for firms.

Definition 8. Define the target number of an agent i ∈
I ∪ J as

r(i) � 24 log2 n
ρ(i) .

In the example, the relative competitiveness of top
firms and top workers is one, whereas the relative
competitiveness of the bottom workers is the pro-
portion of bottom firms that are unshaded in Figure 2,
which is equal to 60/90 � 2/3. The most important
feature of the target number is that it is inversely
proportional to ρ(a), which matches the level of am-
plification in the example. The log2 n multiplier ac-
counts for competition from the agent’s own tier.30

The constant 24 is an artifact of the analysis in Ap-
pendix E and is not the minimum possible constant.

The protocol is precisely defined as follows.

Protocol 3 (Targeted Signaling Protocol). The protocol has
two rounds and uses only private messages.

(1) Signaling round: Every agent i ∈ I ∪ J signals to the
agent’s favorite r(i) partners in the agent’s target tier.

(2) Matching round: Every agent submits to the pro-
tocol a partial preference ranking of partners with the
ranking restricted to partners who either signaled to the
agent or to whom the agent signaled. The protocol then
outputs the worker-optimal stable matching with respect to
the submitted preferences (computed by running worker-
proposing DA off-line).

Theorem 3. For any sequence of tiered random markets, the
targeted signaling protocol is a matching protocol that uses
only private messages and is stable with high probability. Its
average communication cost is O(log4 n) per agent, and its
average preference learning cost is O(log3 n) per agent.
The proof of Theorem 3 is in Appendix E. The main

steps are as follows. First, we show that, with high
probability, a certain subset of signals sent in the
signaling round contains a stable matching. This re-
sult, stated in Lemma 5, is obtained by proving a new
bound on the average rank of agents in any stable
matching in unbalanced uniform random markets.31

Second, we show that whenever this subset of sig-
nals contains a stable matching, running DA on the
partial preferences, as in the matching round, returns
a stable matching. This result uses the structure of
tiered markets and the definition of target tier. (In
general, even if a set of partial preferences contains
a stable matching with respect to full preferences,
running DA on these partial preferences may result
in a matching that is stable only with respect to the
partial preferences.) Third, we count the total number
of signals and show that it is no more than O(log3 n)
per agent, and the communication cost naturally has
an additional logarithmic factor.32 The proof shows
that the probability that the resultant matching is not
stable is no more than 18/n, and the average number
of signals sent per agent is no more than 60 log3 n.

Remark 2. An immediate corollary of Theorem 3 is that,
in the targeted signaling protocol, with high probability,
the number of agents who experience more than

��
n

√
bits of communication is at most33 O∗( ��

n
√ ). Intuitively

speaking, some agents may experience relatively more
communication, but the number of such agents is a
vanishing fraction of the population. In Theorem 8 of
Appendix I, we demonstrate a tiered random market
in which some agents must experience Ω( ��

n
√ ) bits of

communication under any protocol that uses private
messages and is stable with high probability.

Remark 3. We also have a variant of the targeted sig-
naling protocol that saves a factor of logn: its com-
munication cost is O(log3 n) bits per agent and its
preference learning cost is O(log2 n) per agent. It in-
volves a much more complicated formula for the target
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number than in Definition 8. In the interest of a clean
exposition, we show the simpler version here.

Remark 4. The targeted signaling protocol presented
above achieves near optimal communication cost. In
Theorem I.1, we give an example of a tiered random
market in which any matching protocol that uses only
private communication and is stable with high prob-
ability must use at least Ω(log2 n) bits of communica-
tion per agent. This lower bound includes protocols
that allow an arbitrary number of rounds of commu-
nication. The targeted signaling protocol achieves near
optimal cost using only two rounds.

5. Incentive Compatibility
The DA protocol, even in the setting with full preference
elicitation, is not completely incentive compatible: an
agent on the nonproposing side may profitably deviate
from truthful reporting by truncating the agent’s pref-
erence ranking.34Nevertheless, the DAmechanism is
known to be strategy-proof for the proposing side.35

Moreover, assuming truthful reporting by other agents,
an agent on the nonproposing side cannot unilaterally
deviate (misreport the agent’s preferences) and be
matched with someone better than the agent’s best
stable partner.36

We show that, with high probability, all the matching
protocols proposed in this paper are in a certain sense
“as incentive compatible” as DA with full preference
elicitation. By theorem 4.11 in Roth and Sotomayor
(1990) (originally resulting from Demange et al. 1987),
being as incentive compatible as DA is the best one
can hope for in any mechanism that returns stable
matchings.

Definition 9. For a given sequence of two-sided match-
ing markets, a sequence of matching protocols is as
incentive compatible as DA with high probability if
there exists a function δ(n) with δ(n) → 0 as n → ∞,
such that for any fixed agent with probability at most
δ(n), the agent can unilaterally deviate from the pro-
tocol and be matched with someone better than the
agent’s best stable partner (under complete prefer-
ences). The probabilities are defined with respect to
the distribution of preferences 3(ω).
Theorem 4. For any sequence of separable markets, the
CEDA protocol is as incentive compatible as DA with high
probability. For any sequence of tiered random markets, the
targeted signaling protocol is as incentive compatible as DA
with high probability.

The “with high probability” caveat is needed be-
cause, with a small probability, the protocols may fail
to find a stable matching. The proof of Theorem 4 is
in Appendix G. The proof is based on applying a
“blocking lemma” by Gale and Sotomayor (1985) to a
market in which preferences are restricted to the

subgraph of signals, which is the set of worker–firm
pairs in which at least one member of each pair sent
a signal to the other (i.e., a preference signal or an
application in the CEDA protocol, or a signal in the
targeted signaling protocol). The same lemma is used
to prove the incentive properties of the original DA
algorithm.37 The new ingredient here is to use prop-
erties of the subgraph of signals generated by our
protocols. In particular, we make use of the fact that a
single deviating agent has little control over the edges
of the subgraph between other agents.
The proof shows that the respective protocols are

as incentive compatible as DA whenever they suc-
ceed in finding a stable matching. By the proofs of
Theorems 1 and3, we can set the function inDefinition 9
to δ(n) � (a(n))/n2 + ne−

��
n

√
/3 for CEDA, where a(n) �

O∗(1) is the upper bound to the range of systematic
scores in Assumption 1 and to δ(n) :� 18/n for the
targeted signaling protocol.
Because both protocols we propose are based on

the worker-proposing DA, they are also, with high
probability, strategy-proof for workers.

Corollary 1. For any sequence of separable markets, the
CEDA protocol is strategy-proof for all workers with high
probability. For any sequence of tiered random markets, the
targeted signaling protocol is strategy-proof for all workers
with high probability.38

Theorem 4 also implies that, whenever an agent has
a unique stable partner, the probability that the agent
can profitably deviate from the protocol vanishes in
large markets. Thus, if each agent’s probability of hav-
ing multiple stable partners is small, then follow-
ing the protocol is an ε-Bayes Nash equilibrium. In
“typical” tiered random markets, we can prove that
agents have a vanishing probability of having mul-
tiple stable partners, thus implying approximate in-
centive compatibility of the targeted signaling protocol
for everyone. This is made precise as follows.

Definition 10. A tieredmarket satisfies general imbalance
if the sets {t1, t2, · · ·} and {s1, s2, · · ·} are disjoint.

Theorem 5. There exists a function δ : N → R satisfying
δ(y) → 0 as y → ∞ such that the following holds. For any
y ∈ N, consider any tiered random market satisfying general
imbalance in which the number of agents in each tier is at
least y. Then, for each agent, the probability that the agent
can profitably deviate from the targeted signaling protocol is
at most δ(y).
The proof is in Appendix G. Besides applying Theo-

rem 4, the proof uses ideas fromAshlagi et al. (2017) to
show that the proportion of agents with multiple
stable partners converges to zero under the general
imbalance condition when the number of agents in
each tier is large. The convergence rate shown in
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the proof is δ(y) � o
(
1/( �������

log y
√ )) and is close to the best

possible.39

6. Discussion
Although we study particular mathematical models
in this paper, the generalmessage is broader: amarket
clearing outcome (stable matching) can be achieved
in large matching markets by informative signaling,
despite real-world limitations in communication. The
types of informative signals we uncover for matching
markets include the following: signaling partners for
whom one has a particular idiosyncratic preference,
broadcasting to the market a requirement on ob-
servable characteristics (the platform can do this) and
focusing on initiating contact with easy-to-get part-
ners while waiting for hard-to-get partners to initiate
contact. These types of signaling are already present
inmany realmatchingmarkets, and our results highlight
their importance to market efficiency.

One potential criticism of our model is that pref-
erence learning costs do not distinguish between
finding one’s best option among many or few alter-
natives. However, if we alter the cost model so each
choice function querywith input set S incurs cost c(|S|)
for some increasing function c(·), then Theorem 1 still
holds with the guarantees on preference learning cost
weakened to O∗( ��

n
√

c(n)) bits per agent. This is still
an asymptotic improvement over previous results if
c(n) � o( ��

n
√ ). Another model of preference learning

would be to only allow each agent to query for the
agent’s idiosyncratic score for one partner at a time,
but in that model, it is hopeless to achieve sublinear
preference learning cost because there is always the
chance that one’s favorite partner was not queried.

Another potential criticism is that agents in our
model know the systematic scores associated with
them perfectly. However, if agents know their sys-
tematic scores up to an additive error of no more than
a constant δ> 0, then Theorems 1 and 4 still hold with
the following variant of CEDA: (1) an agent sys-
tematically qualifies for firm j if the agent’s estimate
of the agent’s systematic score is no less than zj − δ;
(2) increase by amultiplicative factor of eδ the number
of preference signals sent by firms to each bin as well
as the number of applications from systematically
qualified agents before increasing the qualification
requirement by one.

This paper raises several questions for future re-
search. One question is how many rounds of com-
munications are required to keep the overall level of
communication low.40 In Appendix H, we give a simple
example of a separable market in which no two-round
protocol can reach a stable matching with low com-
munication cost. In that example, the problem would
be solved by having an additional “aftermarket”
round.41

Anotherquestion is,“Howheterogeneousdo incurred
communication and preference learning costs need to
be across agents?” In the targeted-signaling protocol,
although most agents incur a very low communication
cost (polylogarithmic in the market size), some agents
require more communication effort. To see this, con-
sider the following example: there are n tiers of one
worker each, and one tier of n firms. In this example, the
top workers can essentially choose whichever firm they
like, but the bottom workers can be matched only with
leftover firms after workers from higher tiers have al-
ready made their choices. In the targeted-signaling pro-
tocol, the bottom worker in this example incurs a
linear communication cost. Moreover, we show in Ap-
pendix I that, for thismarket, any protocol that uses only
private messages requires some agent to incur a com-
munication cost on the order of the square root of the
market size. It would be interesting to study, either
theoretically or empirically, the relationship between the
market position of an agent and the minimum com-
munication effort required from the agent.
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Appendix A. Proof of Correctness and Efficiency of
CEDA (Theorem 1)

In this appendix, we prove Theorem 1 from Section 3.1,
which states that in any separable market, the CEDA protocol
is a matching protocol that is stable with high probability (see
Definition 1) and that it uses only communication and
preference learning costs ofO∗( ��

n
√ )per agent. After proving

this, we give a generalization of CEDA that works when the
range of systematic scores is upper bounded by a general
function g(n) instead of the O∗(1) upper bound assumed in
Section 2.4.

Proof of Theorem 1. We first prove that CEDA is stable with
high probability in separable markets. (In other words, it
succeeds in finding a stable matching with high probability.)
Define γj to be the

(
1 − 1/

��
n

√ )
th fractile of idiosyncratic score

for firm j, γj � F−1j
(
1 − 1/

��
n

√ )
. Define xj to be firm j’s latent

utility for the current tentative match. (This is initialized
to uj0 and increases with every tentative acceptance by the
firm.) The proof relies on the two following lemmas, which
we prove later:

LemmaA.1. With probability at least 1 − o(1/n), for every firm j,
every worker i whose idiosyncratic score for the firm is at least γj

receives a preference signal from the firm.

Lemma A.2. With probability at least 1 − o(1/n), throughout the
running of the CEDA protocol, we have the following invariant for
every firm j,

zj ≤ max(0, xj − γj). (A.1)
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Given Lemmas A.1 and A.2, we show that CEDA suc-
cessfully computes the worker-optimal stable match with
high probability. The argument is that, by showing
what is referred to as the no-false-negatives property in
Section 3.1, which is that with high probability, CEDA
never prevents an application that would have been ac-
cepted. The usefulness of this property comes from the
fact that when CEDA does not prevent any application
that would have been accepted, then CEDA reproduces
the outcome of the standard DA algorithm (Protocol 1),
which is the worker-optimal stable match.

The no-false-negatives property follows from these two
lemmas. This is because the only applications CEDA pre-
vents are from worker–firm pairs (i, j) in which worker i
does not qualify to firm j. By definition, this means that the
worker does not systematically qualify for the firm and has
not received a preference signal from the firm. Suppose that
we are in the 1 − o(1/n) fraction of preferences in which the
statements in both Lemmas A.1 and A.2 are true. Then the
first clause implies that aji < zj, which implies that zj > 0, so
by inequality (A.1), aji < zj < xj − γj. The second clause im-
plies that εji <γj. Together, these two clauses imply that

uji � aji + εji < xj − γj + γj � xj,

so worker i would not have been accepted by firm j even if
the worker applied. This implies that with probability 1 −
o(1/n) (with probability defined on the randomness in the
preferences), CEDA produces the worker-optimal stable
match.

Having established that CEDA is stable with high proba-
bility in separable markets, we now prove the O∗( ��

n
√ ) bounds

on the average communication cost per agent as well as on
the average preference learning cost per agent.

First, we bound the number of signals sent per firm. For
preference signals, this is, at most,O∗( ��

n
√ ) because there are

O∗(1) bins and 2e
��
n

√
signals per bin. For qualification sig-

nals, this is at mostO∗(1) because this is the maximum range
of systematic scores for any firm, and the qualification
requirement increases by one for every signal. (When the
qualification requirement exceeds the maximum system-
atic score, then the increases in qualification requirement
would also stop because there are no systematically qual-
ified applicants.)

The bounds on the number of signals sent per firm imply
a O∗( ��

n
√ ) bound on the number of applications received

by each firm. This is because the number of applications
from workers who do not systematically qualify is upper
bounded by the number of preference signals. The number
of applications fromworkers who do systematically qualify
is upper bounded by 3e logn

��
n

√
times the number of quali-

fication requirement updates. Both of these are O∗( ��
n

√ ).
To bound preference learning cost, observe that the only

choice function queries needed in CEDA are for preference
signals, applications, and responses to an application, and
each of these requires exactly one choice function query.
This proves the O∗( ��

n
√ ) per agent bound on preference

learning cost. For communication cost, observe that each
preference signal, application, and response to an appli-
cation can be communicated in O(log n) bits as this suffices
to encode the identity of an agent. Each qualification

requirement signal can also be represented by O∗(1) bits
because each qualification requirement zj only takes integer
values and has a range of O∗(1) bits.

Tocomplete theproof ofTheorem 1,we prove LemmasA.1
and A.2. Both of these use LemmaA.3, which we derive first.

Lemma A.3. A random variable Z is distributed according to
CDF F with bounded hazard rate

h(x) � F′(x)
1 − F(x) ≤ 1 ∀x ∈ R.

Then, for all x ∈ R,

P(Z ≥ x + 1)
P(Z ≥ x) ≥ 1

e
.

Proof of Lemma A.3. Define φ(x) � log(1 − F(x)). Note that
the bounded hazard rate implies the derivative φ′(x) ≥ −1.
The result follows from the fact that the desired conditional
probability is simply exp(φ(x + 1) − φ(x)). □

Proof of Lemma A.1. For a given firm j, suppose, on the
contrary, that there exists a worker i whose idiosyncratic
score exceeds γj butwho does not get a preference signal from
the firm. Then theremust be at least 2e

��
n

√
other workers in the

same bin as worker iwho do receive a preference signal. This,
in turn, implies that there are 2e

��
n

√
other workers with an

idiosyncratic score at least γj − 1.
Let random variable Y denote the number of workers in the

bin with an idiosyncratic score of at least γj − 1. Define
y � E[Y]. By Lemma A.3 (with x in the lemma being γj − 1),
we get y ≤ e

��
n

√
. Furthermore, y ≥ ��

n
√

by definition of γj. Let
M � 2e

��
n

√
. Note that 2y ≤ M. By Chernoff bound,

P(Y ≥ M) ≤ P(Y ≥ 2y) ≤ exp − 1
3
y

( )
≤ exp − 1

3
��
n

√( )
� o

1
n2

( )
.

(A.2)

Thus, after a union bound on the O∗(1) bins per firm and
O(n) firms, we get the desired result. □

Proof of Lemma A.2. Fix firm j, the invariant on zj (see
inequality (A.1)) is initially satisfied by definition as zj �
0 ≤ max(0, xj − γj). There are, at most, O∗(1) increases to zj
throughout the running of CEDA. Because the right-hand
side of the invariant can only increase, it suffices to upper
bound the probability that zj > xj + γj after each of these in-
creases in zj.

Now, suppose that the qualification requirement zj is equal
to y at some point in CEDA.We show that, with probability at
least 1 − 1/n3, after 3e log n

��
n

√
applications from systemati-

cally qualified workers, the tentative match value xj is at least
y + γj + 1. This is because, if xj is less than this after so many
applications from systematically qualified workers, then it
must be that all of those workers had an idiosyncratic score
less than γj + 1. By Lemma A.3, the chance that any worker
has an idiosyncratic score at least γj + 1 is at least 1/(e ��

n
√ ).

(Lemma A.3 applies because of the restriction in footnote
24 regarding how the next worker applicant is picked: as a
result, as analysts, we can pretend we don’t know which
preference signals were sent, and when a worker i applies
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to firm j, we can first check if the worker is systematically
qualified for that firm. If so, εji remains independent of the
information we know so far and is, thus, a fresh draw from
distribution Fj.) So the chance that not one of 3e log n

��
n

√
workers had such a high idiosyncratic score is at most

1 − 1
e

��
n

√
( )

3e log n
��
n

√
≤ 1
n3

.

This statement implies that, regardless of what the value
of y � zj is at a certain time, after 3e logn

��
n

√
applications

from systematically qualified workers, we have that, with
probability at least 1 − 1/n3, the qualification requirement
at that time is

zj � y + 1 ≤ xj − γj ≤ max(0, xj − γj).

Using this argument and counting from the first applica-
tion from a systematically qualified applicant, we get that,
with probability at least 1 − (O∗(1))/n3 � 1 − o(1/n2), the
invariant is satisfied after every qualification requirement
update. A union bound on the O(n) firms yields the desired
result. □

This completes the proof of Theorem 1. □

Appendix B. Extension of CEDA to Larger Range of
Systematic Scores

Suppose now that the range in systematic scores for a firm is
upper bounded by a general function g(n) instead of by the
O∗(1) bound assumed in Assumption 1. Finding a stable
match in such a market is a more difficult problem because
there is a greater variation of possible unknowns. In fact, if
we allow g(n) to be as high asO∗(n), then one can show that,
even with idiosyncratic scores satisfying the bounded haz-
ard rate, it is possible to embed the worst-case examples of
Gonczarowski et al. (2015) into our model so that any
matching protocol that is stable with high probability must
use at least Ω(n) bits of communication per agent.

Nevertheless, we can generalize CEDA to cases in which
g(n) � o(n) and still provide a O∗( ��������

ng(n)√ )
guarantee on com-

munication and preference learning costs. This is nontrivial
becauseO∗( ��������

ng(n)√ ) � o(n), so this bypasses the impossibility
result for arbitrary markets (Proposition 1). The protocol is
as follows.

Protocol B.1 (Generalized CEDA). Initialize the qualification
requirement for each firm j to zj � 0. There are two phases.

(1) Preference signaling: Each firm j bins workers according to
systematic scores into unit-ranged bins [0, 1), [1, 2), · · ·. For each
bin, let the number of workers be l. The firm sends a preference
signal to its top

M(n, l) � max (log n)2, 2el
������
g(n)
n

√( )
(B.1)

most preferred workers from the bin.

(2) Deferred acceptance with qualification requirement: Proceed
as in step 2 of the CEDA protocol (see Section 3.1) except that we

change the number of systematically qualified applications received
before increasing the qualification requirement by one to

3e log n
������
n

g(n)
√

.

Note that the only changeswhen generalizingCEDAare the
number of preference signals sent in each bin and the
number of applications to wait for before each update of
the qualification requirement. The underlying framework
is the same.

Theorem B.1. In any separable market in which the range of
systematic scores is at most g(n), the generalized CEDA protocol
(Protocol B.1) is a matching protocol that is stable with high
probability. In the worst case, its communication cost and pref-
erence learning cost are O∗( ��������

ng(n)√ ) per agent.
Proof of Theorem B.1. Define γj to be now the 1−(���������
g(n)/n√ )th fractile of idiosyncratic scores. By the argu-

ment in the proof of Theorem 1, to show that the gener-
alized CEDA protocol is stable with high probability, it
suffices to prove that Lemmas A.1 and A.2 hold in this new
context with this new definition of γj.

For Lemma A.1, the same argument works except we
need to modify the Chernoff bound (A.2) to handle bins
with few workers. As in the previous proof of Lemma A.1,
for a particular binwith lworkers, defineY to be the number
of workers in the bin with idiosyncratic score at least γj − 1,
and y � E[Y]. By Lemma A.3, y ≤ e

�����������(g(n))/n√
l. Define β �

M(n, l)/y − 1. By definition of M (Equation (B.1)), β ≥ 1, and
βy ≥ 1/2M(n, l) � Ω(log2 n). By Chernoff bound,

P(Y ≥ M(n, l)) ≤ max e−
β2y
3 , e−

β2y
2+β

( )
≤ exp − 1

2
βy
3

( )

≤ exp −Ω(log2(n))( ) � o
1
n3

( )
.

As before, a union bound over all g(n) bins for each firm and
the O(n) firms yields the desired result.

For Lemma A.2, the same argument as in the previous
proof applies. Concretely speaking, suppose that the ten-
tative match value zj is equal to some value y at some
point. With probability at least 1 − 1/n3, after seeing
3e log n

�����������
n/(g(n))√

applications from systematically qualified
workers, the tentative match value xj is at least y + γj + 1.
This is because the chance that any worker has an idio-
syncratic score of at least γj + 1 is at least 1/e

�����������(g(n))/n√
, and

the chance that none of these systematically qualified ap-
plicants have such a high idiosyncratic score is at most

1 − 1
e

������
g(n)
n

√( )
3e log n

���
n

g(n)
√

≤ 1
n3

.

After establishing Lemmas A.1 and A.2 for this new setting
with range of systematic score being g(n), we get from the
argument in the proof of Theorem 1 that the generalized
CEDA protocol is stable with high probability for such
markets.

As before, to prove the bound on communication and
preference learning costs, it suffices to bound the number
of signals and applications per agent. By definition and by
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the assumption that g(n) � o(n), each firm sends at most
O∗( ��������

ng(n)√ ) preference signals. This also bounds the number
of applications from workers who are not systematically
qualified. Each firm also sends at most g(n) qualification
requirement signals and, for each such signal, receives
at most O∗ n/(g(n))( )

applications from systematically qual-
ified workers. So the total number of signals and applica-
tions is at most O∗( ��������

ng(n)√ ) per agent, which is what we
needed to prove. □

Appendix C. Proof of Near Optimality of CEDA
(Theorem 2)

We obtain the communication lower bound in a model that
is even stronger than the broadcast model. Consider the
following two-party relaxation of the problem of finding a
stable matching. Alice controls all the workers, and Bob
controls all the firms. The workers’ and firms’ preferences
are generated according to themodel. Alice andBobwant to
figure out a stable matching by communicating with each
other. Note that if there is a distributed broadcasting proto-
col thatusesa total ofBbits of communication, thenAlice and
Bob can simulate it using B bits of communication: Alice
will simulate all the workers’ messages, and Bob will
simulate all the firms’ messages. Note that the converse is
not true because Alice’s messages are allowed to depend on
the preferences of all workers simultaneously (which
amounts to having “free” communication amongworkers).
We show an example in which Ω(n3/2) communication be-
tween Alice and Bob is necessary, which immediately
implies an Ω(n3/2/n) � Ω( ��

n
√ ) lower bound on average

communication per agent needed to solve the original
(harder) problem.

In fact, we show our lower bound under a further re-
striction of the model with the workers’ preferences being
stochastic and similar to the firms’ preferences. The con-
struction is as follows. There are nworkers and n firms. Let
vij be worker i’s latent utility for firm j and uji be firm j’s
latent utility for worker i. Let both be distributed in-
dependently according to Exp(1), which is the exponential
distribution with rate parameter one (i.e., the systematic
scores are zero, and the idiosyncratic scores are exponen-
tially distributed). Let the value of the outside option be
(logn)/2 for every agent. Note that P(vij ≥ (logn)/2) � 1/

��
n

√
.

Therefore, we expect every agent to have around
��
n

√
ac-

ceptable partners.
Let Alice be given all theworkers’ preferences and Bob be

given all the firms’ preferences. Let π be the communica-
tion protocol, at the end of which Alice and Bob output a
matching μπ that is stable with probability at least 0.9 (that
is, the matching protocol is successful with a high constant
probability). We claim that it must be the case that the
length of the protocol (i.e., the number of bits of commu-
nication) is bounded as |π| � E[|Π|] � Ω(n3/2), whereΠ is the
realization of the protocol π.

We focus only onwhether a pair of agents find each other
mutually acceptable (ignoring other ordinal information),
such mutually acceptable pairs being the only pairs that
can be matched under any stable matching (this leads to
Claim C.2). If worker i and firm j are a mutually acceptable
pair, andmoreover, this is the only mutually acceptable pair of
which eachof i and j is amember, then (i, j)must be amatched

pair under any stable matching. This yields Claim C.1. We
draw on ideas from information complexity theory (see,
e.g., Braverman 2015), together with Claims C.1 and C.2, to
establishClaimC.3 and, hence, our lower bounds.Note that
our proof is short and self-contained, using only basic facts
from information theory (Cover and Thomas 2012).

We define the following Boolean random variables for
each worker–firm pair (i, j):

Aij :� 1 if vij ≥ logn
2 ,

0 otherwise and

{
(C.1)

Bij :� 1 if uji ≥ logn
2 ,

0 otherwise.

{

In other words, Aij � 1means that worker i likes firm jmore
than the outside option, and Bij � 1 means that firm j likes
worker i more than the outside option. Note that all Aij, Bij

are distributed as Bernoulli(α), where α � 1/
��
n

√
, and are

independent of each other. In addition, let Mij be the in-
dicator random variable of whether worker i is matched to
firm j under μπ.

Claim C.1. For sufficiently large n, we have P[Mij � 1|Aij �
Bij � 1]> 10−2.

Proof of Claim C.1. Assume Aij � Bij � 1, so worker i and
firm j find one another acceptable. By a standard Chernoff
bound, the probability that worker i has more than 2

��
n

√
acceptable partners is at most exp(− ��

n
√

/3). Because the
probability that each of these firms finds worker i to be ac-
ceptable is exactly 1/

��
n

√
, and the probability that another firm

out of these other than j finds worker i acceptable is at most
1− (1 − 1/

��
n

√ )2 ��
n

√
, which converges to 1 − e−2 for large n. For

sufficiently large n, the sum of these two probabilities is no
more than 1 − e−2.1, so the chance that j is the unique firm that
both finds i acceptable and also is acceptable to i is at least
e−2.1. Because the preferences of workers and firms are in-
dependent, the chance that both i and j are the unique
mutually acceptable partners for one another is at least e−4.2

for sufficiently large n. Therefore, for sufficiently large n,

P[Mij � 1|Aij � Bij � 1]
≥ P[π outputs a stable match]
· P[i is with j in all stable matches|Aij � Bij � 1]

> (.9) · e−4.2
> 10−2. □

Claim C.2. P[Mij � 1|Aij � 1,Bij � 0] � 0, P[Mij � 1|Aij � 0,
Bij � 1] � 0, and P[Mij � 1|Aij � 0,Bij � 0] � 0.

Proof of Claim C.2. This follows from the fact that two
agents can be matched with one another in a stable matching
only if both find one another acceptable (more preferable than
the outside option). □

Note that Claims C.1 and C.2 together imply that πmust
approximately compute the value of the AND functionAij ∧
Bij in the sense that knowing that Mij � 1 implies that Aij∧
Bij � 1, and when Aij ∧ Bij � 1, we know that Mij � 1 with at
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least a constant probability. Next, we make the follow-
ing information-theoretic claim, which quantifies the
information complexity of approximately computing the
Boolean AND function (this line of reasoning is similar to
Braverman et al. 2013).

Claim C.3. We have

I(AijBij; Π) � Ω(α) � Ω(1/ ��
n

√ ). (C.2)

Here Π is again the random variable representing the re-
alization of the protocol π, and I(X;Y) is Shannon’s mutual
information, which, informally, measures the amount of
information a random variable X contains about a variable
Y (and vice versa). In terms of Shannon’s entropy H(·),
the mutual information is I(X;Y) � H(X) −H(X|Y) � H(Y) −
H(Y|X). In other words, Alice and Bob cannot hope to even
approximate the value of Aij ∧ Bij without revealing a sub-
stantial amount of information about themselves. Note
that fully revealing the values of Aij,Bij corresponds to
Shannon’s entropy H(Aij,Bij) � Θ(logn/ ��

n
√ ).42 Let us prove

Claim C.3.

Proof of Claim C.3. We rely on the following basic facts
about protocols and about mutual information.

(1) If Aij and Bij are independent and independent of
the players’ other inputs, then, for each transcript reali-
zation π of Π, the variables (Aij|Π � π) and (Bij|Π � π) are
also independent. The reason is that one player speaking
at a time cannot introduce a dependence between these
variables (the formal proof is by induction on protocol
rounds).

(2) Therefore, we have by the chain rule (see, e.g., Cover
and Thomas (2012) for information theory basics):

I(AijBij; Π) � I(Aij; Π) + I(Bij; Π|Aij)
� I(Aij; Π) + I(Bij; ΠAij) − I(Bij;Aij)
� I(Aij; Π) + I(Bij; ΠAij)
� I(Aij; Π) + I(Bij; Π) + I(Bij;Aij|Π)
� I(Aij; Π) + I(Bij; Π).

Therefore, it will be enough to lower bound I(Aij; Π) +
I(Bij; Π).

(3) We can write the mutual information expression we
are interested in in terms of KL-divergence as follows:

I(Aij; Π) � Eπ∼ΠDKL(Aij|Π�π‖Aij
)
. (C.3)

A similar expression holds forBij. Again, a proof and further
discussion can be found in information theory texts, such as
Cover and Thomas (2012).

(4) It can be shown by direct calculation that for any
constant c< 1, and x< 1/2, it is the case that for c′ < c

DKL(Bernoulli(c′ · x) Bernoulli(x)‖ ) � Ωc(x), (C.4)

where the Bernoulli random variable Bernoulli(x) takes the
value one w.p. x, and the value zero w.p. 1 − x.

By Claims C.1 and C.2, we have that

P[Mij � 0] ≥ P[(Aij,Bij) �� (1, 1)] � (1 − α2), (C.5)

and

P[Mij � 0, (Aij,Bij) � (1, 1)]<α2 · (1 − 10−2). (C.6)

Therefore, for a sufficiently large n (and, thus, a sufficiently
small α),

P[(Aij,Bij) � (1, 1)|Mij � 0]< α2(1 − 10−2)
1 − α2 ≤ α2 · (1 − 9 · 10−3).

(C.7)

Let ΠMij�0 be the distribution of the history of the protocol,
conditional on Mij � 0, we have by observation 1 that

Eπ∼ΠMij�0P[(Aij,Bij) � (1, 1)|Π � π]
� P[(Aij,Bij) � (1, 1)|Mij � 0],

and, thus, by Markov’s inequality

Pπ∼ΠMij�0 [P[(Aij,Bij)�(1, 1)|Π � π]<α2 ·(1 − 2·10−3)]
≥ 1 − 0.991

0.998
> 7 · 10−3. (C.8)

Note thatP[(Aij,Bij) � (1, 1)|Π � π]<α2 · (1 − 2 · 10−3) implies
that either P[Aij � 1|Π � π]<α · (1 − 10−3) or P[Bij � 1|Π �
π]<α · (1 − 10−3), and by (C.4), for any π ∈ ΠMij�0,

DKL(Aij
∣∣
Π�π Aij

 ) +DKL(Bij
∣∣
Π�π Bij

 ) � Ω(α). (C.9)

By (C.5) and (C.8), the probability of such a π is at least 7 ·
10−3 · (1 − α2)> 6 · 10−3 for sufficiently large n. The contri-
bution of such πs to the expectation of DKL(Aij

∣∣
Π�π Aij

 ) +
DKL(Bij

∣∣
Π�π Bij

 )
is, therefore, at least Ω(α) because DKL is

always nonnegative, which implies by (C.3) that

I(Aij; Π) + I(Bij; Π) � Eπ∼Π[DKL(Aij
∣∣
Π�π||Aij)

+DKL(Bij
∣∣
Π�π||Bij)] � Ω(α),

concluding the proof. □

Fact C.1. If X and Y are independent, then I(X,Y;Z) ≥
I(X;Z) + I(Y;Z).

We can now conclude the proof of Theorem 2. Because
Aij,Bij are mutually independent for the different values of
(i, j), we get using the preceding fact and the fact that en-
tropy is always an upper bound on mutual information,

H(Π) ≥ I(A11B11 . . .AnnBnn; Π) ≥ ∑n
i�1

∑n
j�1

I(AijBij; Π)
� n2 ·Ω(1/ ��

n
√ ) � Ω(n3/2).

(We have usedClaimC.3 here.) Observing that |π| ≥ H(Π) �
Ω(n3/2) concludes the proof of the lower bound on com-
munication cost.

The preference learning lower bound follows because, if
there is a protocol of preference learning cost R, each time a
preference oracle call is made, Alice (or Bob) can share the
learned preference with the other player at cost O(logn),
yielding a communication protocol with costC �O(R logn).
Therefore, R � Ω(n3/2/ log n).
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Appendix D. A Generic Algorithm for Stable
Matchings in Tiered Markets

In this section, we present a generic algorithm for com-
puting stable matchings in tiered markets based on the
ability to compute stable matchings between single tiers of
workers and firms. One corollary of this is that the CEDA
protocol in Section 3.1 can be generalized to tiered separable
markets, which are tiered markets in which the prefer-
ences between any tier of workers and any tier of firms
follow assumptions of the separable market as in Section
2.4. This implies that the O∗( ��

n
√ ) average communication

cost of computing a stable matching can also be attained for
generalizations of separable markets that allow for arbi-
trarilymany tiers. (Recall that the assumptions on separable
markets in Section 2.4 restrict it to having only a constant
number of tiers.)

Before presenting the algorithm (Theorem D.1), we first
define the concept of submatching. For anymatching μ, any
subset A ⊆ I of workers, and B ⊆ J of firms, let μ(A,B) be the
submatching restricted to agents A × B, which is defined as
{(i, j) ∈ μ : i ∈ A, j ∈ B}. We say that the submatching μ(A,B)
is stable if everyone prefers to be matched to their partner
over being unmatched and there are no blocking pairs in
A × B.

Theorem D.1. A stable matching in a tiered market can be
constructed as follows. Initialize μ � ∅.

(1) Construct a stable submatching between the top tiers I1 and
J1. Add these matches to μ.

(2) Remove any matched agent in the submatching as well as any
unmatched agent in I1 or J1 who finds someone in J1 or I1 unac-
ceptable. (These agents find all agents in worse tiers unacceptable.)
After this, either I1 or J1 would have been completely removed.

(3) If either all of the workers or all of the firms have been re-
moved, then return μ. Otherwise repeat step 1 for the top remaining
tiers on both sides.

Moreover, every stable matching can be constructed in
this way.

Proof of Theorem D.1. The theorem follows from the fol-
lowing claim, which implies that the set of stablematchings in
tiered markets can be decomposed into the Cartesian prod-
uct of stable submatchings for the top tiers and stable sub-
matchings for the rest of market.

Claim D.1. In a tiered market, a matching μ is stable if and
only if

(1) Submatching μ(I1, J1) is stable.
(2) Submatching μ(I1\(Im1 ∪ Iu1 ), J1\(Jm1 ∪ Ju1 )) is stable, where

Im1 ⊆ I1 denotes the matched workers in μ(I1, J1), and Iu1 ⊆ I1
denotes the unmatched workers who find someone in J1 un-
acceptable. The sets of firms Jm1 and Ju1 are similarly defined.

Given this claim, both directions of Theorem D.1 follow
from straightforward induction. To show the first direction
of this claim, assume that μ is a stable matching for the
tiered market. Note that, in any stable matching μ, for a
fixed set A of workers and fixed set B of firms, the sub-
matching μ(A,B) must be stable. Therefore, submatching
μ(I1, J1)must be stable. Apply the rural hospital theorem on
this submarket, we have that the sets Im1 , I

u
1 , J

m
1 , and Ju1 are

fixed in all possible stable matchings μ. Hence, the sets

I1\(Im1 ∪ Iu1 ) and J1\(Jm1 ∪ Ju1 ) are fixed and the submatching
μ(I1\(Im1 ∪ Iu1 ), J1\(Jm1 ∪ Ju1 )) must be stable.

For the second direction of the claim, suppose that the
designated submatchings are stable; we show that μ must
be stable. To do this, we need to show that workers in Iu1 and
firms in Ju1 cannot bematched in any stablematching and that
there can be no blocking pairs between workers Im1 and any
firm in J and no blocking pairs between firms Jm1 and any
worker in I.

First, observe that workers Iu1 are unmatched in the stable
submatching μ(I1, J1), which implies that these workers
cannot be matched to anyone in J1 in a stable matching for
the wholemarket. However, because they find certain firms
in the top tier J1 unacceptable, they must find every firm in
worse tiers unacceptable, so they cannot be matched to
them either. A similar statement can be made for firms in Ju1 .

Now, there can be no blocking pairs between workers in
Im1 and firms in J1 by the fact that submatching μ(I1, J1) is
stable. Moreover, there cannot be any blocking pairs be-
tween workers in Im1 and firms in J\J1 because the worker is
already matched to someone of a better tier. This implies
that there cannot be blocking pairs between workers in Im1
and any firm. A similar statment can bemade for firms in Jm1 .
This implies that μ is stable as desired. □

Corollary D.1 (Generalization of the Rural Hospital Theorem).
In a tiered market, if we define the partner tier of a given agent in a
matching as the tier index of the agent’s matched partner (and zero if
the agent is unmatched), then, for every agent, the partner tier of that
agent is the same in every stable matching.

Appendix E. Proof of Correctness and Efficiency of
the Targeted Signaling Protocol
(Theorem 3)

In this section, we prove Theorem 3, which claims that the
targeted signaling protocol succeeds with high probability
and bounds its communication and preference learnings
costs. The proof is based on studying the properties of the
following mathematical object.

Definition E.1. In the targeted-signaling protocol, define the
subgraph of signals as the collection of tuples (i, j) for which
either

(1) the worker i signaled to firm j in the signaling round or
(2) The firm j signaled to the worker i and sk(i) �� tl(j). (We

do not count signals from firms that are at an equal position
with their target tier, sk(i) � tl(j).)

We break the proof of Theorem 3 into three claims.
• Claim E.1: With probability at least 1 − 18/n, the sub-

graph of signals contains a stable matching.
• Claim E.2: Whenever the subgraph of signals contains a

stable matching, the matching returned by the targeted sig-
naling protocol is stable (with respect to complete preferences).

• Claim E.3: The total number of signals is at most
Θ(n log3 n).

Claims E.1 and E.2 imply that the targeted signaling pro-
tocol succeeds with probability at least 1 − 18/n. Claim E.3
implies the desired bounds on communication and pref-
erence learning costs. This is because, in the signaling
round, sending each signal requires O(logn) communica-
tion cost and O(1) preference learning cost. In the matching
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round, the sum of the length of everyone’s partial rankings
is exactly twice the total number of signals, and producing
each ranking of length k requires O(k log n) communication
cost and O(k) preference learning cost.

Appendix E.1. Proof of Claim E.1

Definition E.2. Define the tiered DAmatching as the matching
produced when running the algorithm from Theorem D.1 on
the tiered random market with the stable submatching be-
tween top tiers I1 and J1 in step 1 being produced by the
following algorithm: if |I1| ≤ |J1|, run the worker-proposing
DA algorithm in the submarket with only tiers I1 and J1; oth-
erwise, run the firm-proposingDA algorithm in this submarket.

We prove Claim E.1 by proving that, with probability
1 − 18/n, the tiered DA matching is contained in the sub-
graph of signals. The crux is proving the following lemma,
which gives a bound on the rank obtained by a given agent
in a uniformly random matching market with certain part-
ners being unavailable. (Intuitively, the unavailable partners
represent those that have been matched to better tiers in
the tiered DA matching). As in the whole paper, log here
denotes the natural logarithm.

Lemma E.1. Consider a matching market with m workers, n ≥ m
available firms, and u unavailable firms. The preferences of workers
for the n + u firms are uniformly random, and the preference of
available firms for workers are uniformly random. The unavailable
firms prefer to be unmatched. Let N ≥ 2 be such that N ≥ n + u.
For any given worker with probability at least 1 − 9/N2, we have
that, in the worker-proposing DA algorithm, the given worker is
matched to one of the worker’s top r firms, where

r � 24
n + u
n

log2(N).

Proof of Lemma E.1. First, note that, without loss of gen-
erality, N ≥ 100 because, otherwise, r>N.

Label the fixed worker to be worker 1. Label the available
firms 1 through n and the unavailable firms n + 1 through
n + u. Consider the firm-optimal stable match in the sub-
market without worker 1 and without the unavailable firms
and call this matching μ1. Note that μ1 does not depend on
worker 1’s preferences, nor does it depend on the preference
of firms for worker 1. Define E1 as the event that the total
rank of workers in matching μ1 (ignoring the unavail-
able firms) does not exceed R � 4e(m − 1) logN. We lower
bound the probability of E1 using a proposition we prove
in Appendix F about the average rank of workers in this
setting (Proposition F.1). By plugging z � 2 logN into
Proposition F.1, we have that the probability of event E1 is
at least 1 − 8/N2.

Let μ2 be the matching formed by running the worker-
proposing DA algorithm from initialization μ1. In other
words, suppose that we start with everyone else matched
according to μ1 and have worker 1 propose to worker 1’s top
choice as in the DA algorithm. This may cause a previously
matched worker to be rejected from a firm, and we will have
this worker apply to the worker’s next choice, which may
result in a chain of rejections leading to someone applying
to one of the n −m + 1 unmatched available firms. μ2 is a

stable matching (with respect to the entire market). Because
the rank of worker 1 in μ2 is no better than in the worker-
optimal stable match, it suffices to upper bound the rank
obtained by worker 1 in μ2.

First, let us make a few structural observations on μ1 and
μ2 under event E1. For each firm j ≤ n, let Bj be the set of
workers who weakly prefer firm j to their partner in μ1. (We
use the letter “B” because this is the set of workers whowant
to block with j in μ1.) In μ1, firm j is matched to the firm’s
favorite worker in Bj. Furthermore, the sum

∑n
j�1 Bj ≤ R �

4e(m − 1) logN as this sum always equals the total rank
obtained by workers in μ1 (ignoring the unavailable firms).
Now, consider running the DA algorithm with initialization
μ1, drawing only as needed the preference of firms for
worker 1. When worker 1 applies to an available firm j, the
probability that worker 1 is accepted is exactly pj � 1/(1 + |Bj|)
because this is worker 1’s chance of being the firm’s favorite
worker among a set of size 1 + |Bj|. If the worker is rejected,
then the worker applies to the worker’s next choice, and the
same formula for acceptance probability applies. If the
worker is accepted, then this triggers a rejection chain that
ends with one of the n −m + 1 unmatched available firms.
Note that this rejection chain can never circle back to firm j
and cause worker 1 to be rejected because that would con-
tradict the assumption that μ1 is the firm-optimal sta-
ble match in the submarket without worker 1. For the
unavailable firms j ≥ n, define pj � 0. We have that by Jen-
sen’s inequality,

∑n+u
j�1

pj �
∑n
j�1

pj ≥ n
4e logN + 1

. (E.1)

Now, conditional on event E1, let P be the probability that
worker 1 is not matched to worker 1’s top r firms in the
worker-proposing DA algorithm. Let A be all subsets of the
n + u firms of cardinality �r�. We have,

P ≤ 1
|A|

∑
S∈A

∏
j∈S

(1 − pj) (E.2)

≤ 1 −
∑n

j�1 pj
n + u

( )r
(E.3)

≤ exp − nr
(n + u)(4e logN + 1)

( )
(E.4)

<
1
N2 . (E.5)

Inequality (E.2) follows from the independence between
the preference of worker 1, the event E1, and each firm j’s
preference for worker 1. Inequality (E.3) follows from
the fact that the sum of product in the inner part of
Equation (E.2) increases if we replace any two different
pi, pj with their average (pi + pj)/2, so the maximum is
attained when all of them are equal. Inequality (E.4) fol-
lows from inequality (E.1) and the bound (1 − x) ≤ exp(−x),
and inequality (E.5) follows from the fact that when
N ≥ 100, we have (24 log2 N)/(4e logN + 1)> 2 logN.

Because the probability that E1 does not occur is at most
8/N2, we have that the total probability that worker 1 does
not get one of worker 1’s top r choices is at most 8/N2 +
1/N2 � 9/N2, which is what we needed. □
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Claim E.1 follows from Lemma E.1 and taking a union
bound over the m + n ≤ 2n agents, observing that, in the
tiered DAmatching, every agent is in a scenario described by
Lemma E.1. So, with probability at least 1 − 18/N, the tiered
DA matching is contained in the subgraph of signals.

Appendix E.2. Proof of Claim E.2
We break the proof of Claim E.2 into two parts.

(1) Claim E.2(a). Whenever the subgraph of signals con-
tains a stable matching, running worker-proposing DA with
preferences restricted to this subgraph returns a matching
μ that is stable with respect to complete preferences.

(2) Claim E.2(b). Whenever this happens, the targeted
signaling protocol returns the same matching μ.

We first show Claim E.2(b). Let μ denote the matching
that arises from running worker-proposing DA with pref-
erences restricted to the subgraph of signals. If μ is stable
(with respect to complete preferences), then it must match
every worker iwho has a target tier: that is, there exists firm
tier l such that tl ≥ sk(i). Now, observe that the output of the
targeted signaling protocol is simply running the worker-
proposing DA with respect to the subgraph of signals plus
certain additional edges. Precisely speaking, these edges are the
ones ruledout inDefinition E.1,which are tuples (i, j), where j
signaled to i and they sk(i) � tl(j). Because the DA algorithm
without these edges ended up matching every one of these
agents i incident to one of these edges, and the favorite
partner of agent i are already included in the subgraph of
signals, running DAwith these edges would not change the
result. Therefore, the targeted signaling protocol returns μ.

Claim E.2(a) follows from the following structural result
(Lemma E.2) on the subgraph of signals. First, let us give a
few definitions. For any subgraph (defined as a collection of
worker-firm tuples (i, j)), we say that a matching μ is stable
with respect to the subgraph if every matched agent in μ
prefers to be matched than unmatched and there are no
blocking pairs to μwithin the subgraph. Define the complete
graph as the Cartesian product I × J. (The original definition
of stability is equivalent to stability with respect to the
complete graph.) Define a matching to be full if it has
cardinality min(nI , nJ), which corresponds to matching all
agents of at least one of the sides.

Lemma E.2. Any matching μ that is full and stable with respect to
the subgraph of signals is stable with respect to the complete graph.

To see why Claim E.2(a) follows from Lemma E.2, note
that, when the subgraph of signals contains a stable matching,
then running worker-proposing DA with preferences re-
stricted to the subgraph returns a matching that is full and
that is stable with respect to the subgraph. Lemma E.2 im-
plies that this matching is stable with respect to the com-
plete graph.

Proof of Lemma E.2. Let the subgraph of signals be G and
let μ be a full matching stable with respect to G; we show that
μ is stable with respect to the complete graph. It suffices to
show that μ does not contain any blocking pairs.

We show that no tuple (i, j) in the complete graph can be
a blocking pair. Let worker i be in worker-tier k and firm j be
in firm-tier l. First, any (i, j) ∈ G cannot be a blocking pair
by the definition of μ being stable in G.

Suppose first that sk �� tl. Without loss of generality, let
sk < tl. In this case, worker i must be matched in μ, say, to
firm j′. Let l̃ be the target tier of worker i and let l′ be the tier
of firm j′. Note that l′ ≤ l̃ because G can only contain edges
between i and weakly better tiers than l̃. Moreover, we have
l̃ ≤ l because l̃ � min{l : tl ≥ sk} by definition. Combining the
two inequalities, we have l′ ≤ l̃ ≤ l. Suppose that l′ < l, then i
would prefer j′ to j, so (i, j) cannot be a blocking pair. Suppose
that l′ � l, then both must equal l̃, which is the target tier of
workers Ik. This means that the target tier of firms Jl must be
a strictly worse tier of workers than Ik. (Otherwise, we would
need sk � tl.) So the only reason that (i, j′) ∈ μ is in the
subgraph of signals G is that i signals to j′. But i does not
send a signal to j, and both j and j′ are in the same tier, so i
must prefer j′ to j, so (i, j) cannot be a blocking pair.

Theonly remaining case is sk � tl. In this case, the subgraph
of signals (Definition E.1) only includes signals from Ik to Jl.
Thus, imust be matched in μ, say to j′, and we have that j′ is
either in a better tier than j or is signaled to by i. In either
cases, imust prefer j′ to j, so (i, j) cannot be a blocking pair.

Because there are no blocking pairs, μmust be stable with
respect to the complete graph. □

Appendix E.3. Proof of Claim E.3
We complete the proof of Theorem 3 by proving Claim E.3.

Lemma E.3. The total number of signals sent during the signaling
round of the targeted signaling protocol is at most 60n log3 n.

Proof of Lemma E.3. The result is trivially true if n ≤ e4 < 60
because the average number of signals is at most n. Assume
now that log n ≥ 4.

Define a grouping of tiers as the set of all tiers of agents
that share the same target tier. For example, if the shared
target tier is firm-tier Jl, then the grouping is all worker-tiers
Ik such that tl−1 < sk ≤ tl.

Consider an arbitrary grouping. Without loss of gener-
ality, let the shared target tier be Jl as before. Let !k � {k :
tl−1 < sk ≤ tl} as before. Let the minimum and maximum
element of !k be k0 and k1, respectively. For each k ∈ !k,
define rk as the target number of workers in tier Ik (see
Definition 8).

Let the total number of signals sent by this grouping be
σ � ∑k1

k�k0 mkrk. Note first that rk0 � 24 log2 n because the
competitiveness of workers (see Definition 7) in Ik0 must be
one. For !k\{k0}, we have

∑k1
k�k0+1

mkrk � 24nl log2 n
∑k1

k�k0+1

mk

tl − sk−1

≤ 24nl log2 n
∑k1

k�k0+1

1
tl − sk−1

+ · · ·
(

+ 1
tl − sk + 1

)

≤ 24nl log2 n
1

tl − sk0
+ 1
tl − sk0 − 1

+ · · ·
(

+ 1
2
+ 1
1

)
≤ 24nl log2 n log(tl − sk0 + 1)
≤ 24nl log3 n

This shows that

σ ≤ 24mk0 log
2 n + 24nl log3 n ≤ (6mk0 + 24nl) log3 n.
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From this, the desired result follows because the sum of all
possible mk0 is at most 2n, and the same holds for the sum
of all possible nl. □

Appendix F. Average Rank in Unbalanced
Matching Market

The proof of Lemma E.1 requires a concentration bound
for the average rank obtained by workers in any stable
matching in a uniformly random matching market with
strictly more firms than workers. When there are n − 1
workers and n firms, Ashlagi et al. (2017) implies that this is
asymptotically log nas n → ∞. Comparedwith their result,
the following proposition gives up a constant factor of 2e in
the asymptotics but obtains a stronger probabilistic guar-
antee that holds for any n. The proof builds on the techinques
from Pittel (1989, 1992), which are based on an integral
formula from Knuth (1976).

Proposition F.1. Consider a uniformly randommatching market
with n − 1 workers and n firms. For any z ≥ 2, we have that, with
probability at least 1 − 8 exp(−z), the average rank obtained by
workers in any stable matching is no more than

r̄ � e(2 log n + z).
Proof of Proposition F.1. Define m � n − 1. Let P0 be the
probability that a uniformly randommatchingmarket withm
workers and n firms has a stable matching in which the
average rank of workers is greater than r̄. We upper bound P0

by 8 exp(−z). Observe that this is trivially true if m ≤ 7 be-
cause r̄ ≥ 3e> 8, so we assume from now on that m ≥ 8.

As in Pittel (1989), define the standard matching μ0 as the
matching in which for each 1 ≤ i ≤ m, worker i is matched to
firm i. The unmatched firms are denoted by indices j>m. For
each tuple (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Xij and Yij be i.i.d.
draws from Uniform[0, 1]. These values induce the prefer-
ences of workers and firms as follows: the smaller the value
of Xij, the more worker i prefers firm j. Similarly, the smaller
the value of Yij, the more firm j prefers worker i. For sim-
plicity, define xi � Xii and yi � Yii for 1 ≤ i ≤ m. We call the
matrices X and Y the cardinal preferences of workers and
firms and the vectors x and y the matching values of workers
and firms.

Adapting equation 2.2 of Pittel (1989), we have that given
the matching values x and y, the probability that the standard
matching is stable and the total rank of workers equals R is
exactly

[ξR−m] ∏
m

i�1
(1 − xi) ∏

1≤i ��j≤m
(1 − xi + ξxi(1 − yj))

{ }
, (F.1)

where [ξa]{f (ξ)} denotes the coefficient of ξa in the ex-
pansion of polynomial f (ξ). This formula is analogous to
equation 2.2 of Pittel (1989), and we provide a brief ex-
planation. The rank obtained by each worker is exactly one
plus the number of firms the worker wants to block with, so
the total rank of workers is R if and only if the total number
of firms workers want to block with is R −m, counting with
multiplicity. The expression in the braces computes the
probability that the standard matching μ0 is stable while
keeping track of who wants to block with whom using
dummy variable ξ. The expression is a product of various

terms, and is based on the i.i.d. assumptions of entries of X
and Y. In the first product, (1 − xi) is the probability that
worker i does not want to block with the unmatched firm
as P(Xin >Xii) � 1 − xi. In the second product, we have the
linear combination of two terms: 1 − xi is the probability
that worker i does not want to block with firm j, and xi(1 −
yj) is the probability that worker iwants to block with j but j
does not reciprocate. Expanding the product as a poly-
nomial in ξ and examining the coefficient of ξR−m obtains
exactly the probability that the matching is stable and the
total rank of workers is R.

Define A � {(x, y) : 0 ≤ xi, yi ≤ 1, 1 ≤ i ≤ m}. We have

P0 ≤ n!
∫
A

∑∞
R��mr̄�+1

[ξR−m] ∏
m

i�1
(1 − xi) ∏

1≤i ��j≤m
1 − xi(

{

+ ξxi(1 − yj))∏m
i�1

}
dx dy (F.2)

≤ n!
∫
A
inf
ξ≥1 ξm(1−r̄) exp(−m∑m

i�1
xi

{

+ξ ∑
1≤i ��j≤m

xi(1 − yj))
}
dx dy. (F.3)

Inequality (F.2) follows from integrating Equation (F.1)
over the uniform distribution of matching values; then using
a union bound over all n! matchings based on symmetry.
Inequality (F.3) comes from the Chernoff method of
bounding the tail of power series43 and using the fact that
�mr̄� + 1 ≥ mr̄.

Define μ � r̄/e � 2 logn + z. Partition the region of in-
tegrationA intoA1 � {(x, y) ∈ A :

∑m
i�1 xi ≥ μ}, andA2 � A\A1.

Define this integral in regions A1 and A2 to be P1 and P2,
respectively. It suffices to bound P1 and P2. For convenience,
define s � ∑m

i�1 xi.
To bound P1, we set ξ � 1. Let si � s − xi, Ψ(x) �∫ 1

0 exp(−xy)dy � (1 − exp(−x))/x, and Ax
1 � {x : 1≤ xi ≤ 1,∑m

i�1 xi ≤μ}. For clarity, we write a series of inequalities
and explain them one by one afterward.

P1 ≤ n!
∫
A1

exp(−s −∑m
i�1

siyi) dx dy (F.4)

� n!
∫
Ax

1

exp(−s)∏
m

i�1
Ψ(si) dx (F.5)

≤ e2n!
∫
Ax

1

exp(−s) 1
sm

dx (F.6)

≤ e2n!
∫ m

μ
exp(−s) 1

sm
sm−1

(m − 1)! ds (F.7)

≤ e2n(n − 1)
∫ m

μ
exp(−s) dx. (F.8)

≤ e2 exp(−z) (F.9)

Inequality (F.4) follows from plugging in ξ � 1 into in-
equality (F.3). In Equation (F.5), we integrate with respect
to each yi. In inequality (F.6), we make use of the fact that
for each a> 0,

(logΨ(a)) � 1
exp(a) − 1

− 1
a
≥ − 2

a + 2
.
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So

log ∏
m

i�1
Ψ(si)

( )
≤ 2 +∑m

i�1
log(Ψ(si)) − 2xi

s + 1

( )

≤ 2 +∑m
i�1

log(Ψ(si)) − 2xi
si + 2

( )

≤ 2 +∑m
i�1

log(Ψ(si + xi)) � 2 +m log(Ψ(s))
≤ 2 −m log(s).

In inequality (F.7), we use a standard change of variable
from x to s (see equation 3.2 and inequality 3.3 of Pittel
1989). In inequality (F.8), we use the fact that 1/s is de-
creasing in s and that μ ≥ 1. In inequality (F.9), we integrate
out s and make use of the definition of μ and z ≥ 1.

To bound P2, we set ξ � eμ/s. As before, we state a series of
inequalities and explain them afterward.

P2 ≤ n!
∫
A2

eμ
s

( )
m(1−eμ)exp(−ms + e(m − 1)μ) dx dy (F.10)

≤ n2
∫ μ

0

eμ
s

( )
m(1−eμ)exp(−ms + e(m − 1)μ)sm−1 dx dy (F.11)

≤ n2
∫ μ

0
exp(−(m + e)μ +m)μm−1 ds (F.12)

� [n2 exp(−μ)][exp(−(m + e − 1)μ)μm] exp(m) (F.13)

≤ 1
e
exp(−z). (F.14)

Equation (F.10) substitutes in ξ � eμ/s to inequality (F.3)
and uses the fact that

∑
1≤i ��j≤m xi(1 − yj) ≤ s(m − 1). Inequal-

ity (F.11) again integrates out each yi and uses the change
of variable from x to s as in inequality 3.3 of Pittel (1989).
Inequality (F.12) uses the fact that the function f (s) �
exp(−ms)semμ−1 is increasing in [0, μ]. Equation (F.13) sim-
plifies the formula and arranges into groups, denoted by
square brackets. Inequality (F.14) comes from bound-
ing each group. We bound the first group by exp(−z)
using the formula for μ. We bound the second group
using the observation that the function f (μ) � exp ·
(−(m + e − 1)μ)μm is maximized when μ � m/(m + e − 1), so
f (μ) exp(m) ≤ (m/(m + e − 1))m � (1 − (e − 1)/(m + e − 1))m ≤
exp(−((e − 1)m)/(m + e − 1))< exp(−1) because m ≥ 8.

Combining inequalities (F.9) and (F.14), we have

P0 � P1 + P2 ≤ e2 + 1
e

( )
exp(−z)< 8 exp(−z),

which completes the proof. □

Remark F.1. The preceding proof can be modified to show
the following statement. Consider a uniformly random
matching market with m men and n � m + d women, in
which 1 ≤ d ≤ (e − 1)m. For any z ≥ 2, with probability at
least 1 − 8 exp(−z), the average rank of men in any stable
matching is no more than

r̄ � e log
n
d

( )
+ logm + z

d
+ 1

( )
.

Appendix G. Proofs of Incentive Properties
(Theorems 4 and 5)

In a matching protocol, we say that the agent complies with
the protocol if the agent truthfully participates according to
what is prescribed, and that the agent deviates from the
protocol otherwise.

Before proving that both protocols in this paper are as in-
centive compatible as DA with high probability (Theorem 4),
we establish two lemmas. This allows us to prove the de-
sired properties for both protocols simultaneously under
one framework.

Define the subgraph of signals in the targeted-signaling
protocol as in Definition E.1. For CEDA, define the sub-
graph of signals as follows.

Definition G.1. In the CEDA protocol, for a given realization
of preferences, define the subgraph of signals as the set of
tuples (i, j) for which worker i applies to j at some point
during the protocol.

Let G be the subgraph of signals in either protocol, as-
suming everyone complies. In either protocol, define the
worker-optimal stable match restricted to subgraph G as the
result of running the worker-proposing DA algorithm us-
ing only preference information within pairs of agents in G.
Similarly define the firm-optimal stable match restricted to
G. Furthermore, we say that a matching is stable with re-
spect to G if it is individually rational44 and there are no
blocking pairs (i, j) ∈ G with respect to true preferences.
A matching is stable with respect to complete preferences if
it is stable with respect to the complete graph I × J.

Lemma G.1. In either CEDA (Protocol 2) or targeted signaling
(Protocol 3), let the subgraph of signals be G. The produced
matching μ is not blocked by any edge (i, j) ∈ G. Then we have, with
high probability,

(1) The worker-optimal stable match restricted to G (defined
assuming everyone complies) is stable with respect to complete
preferences.

(2) The firm-optimal stable match restricted to G is also a stable
with respect to complete preferences.

Proof of Lemma G.1. In CEDA, the outputted matching μ is
simply the result of running the worker-proposing DA on G,
so μ is not blocked by any edge G. In the targeted signaling
protocol, the outputted matching is the result of running the
worker-proposing DA on a graph that contains45G, so μmust
not be blocked by any edge of G.

In CEDA, with high probability, the outputted matching is
stable with respect to complete preferences (Theorem 1).
When this happens, theworker-optimal stablematch restricted
to G, which is μ, is stable. The firm-optimal stable match re-
stricted to G is also μ. (To see this, note that, by definition ofG,
every firm in μ gets their favorite partner in G.)

In the targeted signaling protocol, with high probability, the
subgraph of signals contains a stable matching by Claim D.1.
When this happens, the result of the worker-optimal and
firm-optimal DAmust be full46 and stable with respect to the
subgraph of signals. Therefore, by Lemma E.2, both matchings
are stable with respect to complete preferences. □

We are now ready to prove Theorems 4 and 5.
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Proof of Theorem 4. We prove that both protocols are
as incentive compatible as DAwith high probability. In either
protocol, let G be the subgraph of signals when everyone
complies.

Suppose, to the contrary, that a certain agent can uni-
laterally deviate from the protocol and cause the resultant
matching to be μ′, which gives the deviating agent someone
other than the agent’s best stable partner under complete,
true preferences. By Lemma G.1, we have that, with high
probability, the agent obtains a better partner in μ′ than
what the agent gets in either the worker- or firm-optimal
stable match restricted to G (defined previously with re-
spect to true preferences). Note that regardless of the
agent’s deviation, μ′ must be individual rational for all
agents. We apply the following blocking lemma from Gale
and Sotomayor (1985) (the version here is from Roth and
Sotomayor 1990, lemma 3.5).

Lemma G.2 (Blocking Lemma, Gale and Sotomayor 1985).
Let μW be the worker-optimal stable match. Let μ be any in-
dividually rational matching with respect to strict preferences R
and let I′ be all workers who prefer μ to μW . If I′ is nonempty, there
is a worker–firm pair (i, j) that blocks μ such that i /∈ I′ and
μ(j) ∈ I′.

The strict preferencesRwe use for this lemma are the true
preferences restricted to G, treating everything else as
unacceptable. In other words, worker i’s preference is in-
duced by her true preferences over {j : (i, j) ∈ G}, and if
(i, j) /∈ G, then she treats firm j as unacceptable. Similarly
define preferences of firms. The matching we use is the μ′.

An implication of the lemma is that there exists (i, j) ∈ G
such that

(1) neither ior j is the same as the deviating agent, so they
are assumed to be complying to the protocol;

(2) (i, j) blocks μ′ (under the true preferences of i and j).
Let G′ be the subgraph of signals under the deviating

action by the agent. (Regardless of the deviation, this is well
defined at the end of both protocols). Because (i, j) blocks μ′,
(i, j) /∈ G′ by LemmaG.1. However, (i, j) ∈ G by construction.
We show that this discrepancy can happen with vanishing
probability in either protocol, thus proving the desired
result. The common idea is that the deviating agent has
limited control over the edges of the subgraph of signals
involving complying agents only.

In the targeted signaling protocol, (i, j) ∈ G implies that
(i, j) ∈ G′ because both i and j send the same set of signals in
the signaling round regardless of what the deviating agent
does. This proves that targeted signaling is as incentive
compatible as DA with high probability.

In the CEDA protocol, (i, j) ∈ G implies that (i, j) ∈ G′ with
high probability. This is because, by construction, both i and j
prefer each other to their partners in μ′. Suppose, on the
contrary, that (i, j) /∈ G′, then i skippedfirm j in her application
decision, which implies that the firm must not have sent her a
preference signal and that she must not have systematically
qualified for the firm, aji < zj, where zj is the qualification
requirement of firm j at the end of the protocol. Let xj be the
matched utility of firm j at the end of the protocol. The fact
that j prefers i to its matched partner in μ′ implies

xj <uji � aji + εji.

This means that either εji >γj or zj > aji > xj − γj. In other
words, either it’s the case that εji >γj but firm j does not
send a preference signal to i, or it’s the case that zj > max 0,(
xj − γj) for some firm j at the end CEDA. But because firm j
(by construction) complies to the protocol, the first case
happens with vanishing probability by Lemma A.1. The
second also happens with vanishing probability by the
proof Lemma A.2. The key is to note that, for a compliant
firm, the invariant proved in Lemma A.2 that zj ≤ max(0,
xj − γj)holdswith high probability by a statistical argument
based on the randomness of idiosyncratic scores and is
independent of the application decisions of agents and also
independent of whatever strategic actions that influence
applications. This proves that CEDA is as incentive com-
patible as DA with high probability. □

Proof of Theorem 5. By Theorem 4, it suffices to show that,
under general imbalance and when the number of agents of
every tier is large, the probability that any given agent has
multiple stable partners is vanishing. By the decomposition
result in Theorem D.1, the desired result follows from the
following lemma, which is based on techniques from Ashlagi
et al. (2017). □

Lemma G.3. There exists a nonincreasing function δ : N → R

such that δ(y) → 0 as y → ∞ with the following property. In a
matching market with a single tier of m workers and a single tier of
n ≥ m + 1 firms, the probability that any given agent, conditional on
being matched, has multiple stable partners is upper bounded by δ(n).

Proof of Lemma G.3. Consider two cases. Suppose that
m ≥ n/2, then by lemma B.1.(ii) in the online appendix of
Ashlagi et al. (2017), there exists m0 such that, for all m>m0,
with probability at least 1 − exp(− log0.4 n), the number of
workers with multiple stable partners is no more than
m/(log0.5 m), and the same statement holds for firms. This
implies that, for n ≥ 2m0, the probability that any given
worker has multiple stable partners is at most

exp(− log0.4 n) + log−0.5
n
2

( )
.

Similarly, the probability that a firm, conditional on being
matched, has multiple stable partners is also upper boun-
ded by this. Define function δ1 : N → R that has δ(n) � 1 for
n< 2m0 and as the previous quantity when n ≥ 2m0. Then
function δ1 satisfies the desired result in the region when
m ≥ n/2.

Suppose now that m<n/2. Then we show that the proba-
bility that a given matched agent has multiple stable
partners is still small. Consider the outcome of the worker-
proposing DA algorithm. Consider any firm that is
matched in this worker-optimal stable match (WOSM).
Let u � n −m ≥ n/2. As in Ashlagi et al. (2017), suppose that
the firm has multiple stable partners; then the chain of
proposals triggered by the firm rejecting its current partner
must come back to this firm before going to the u un-
matched firms. The chance that this happens is at most 1/u.
Moreover, if the firm has more than two stable partners,
then when the firm rejects the second stable partner, the
chain of proposals triggered also needs to come back to
the firm rather than go to the u unmatched firms. So the
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number of stable partners of this firm is stochastically
dominated by Geometric(2/n). For n ≥ 11, the expectation
of this is less than 3/n. Thus, the expected total number of
worker–firm pairs that can be in a stable match and that is
not already in the WOSM is at most 3m/n for any n ≥ 11. By
symmetry, for any agent, conditional on being matched,
the chance the agent has multiple stable partners is no more
than 3/n when n ≥ 11. Define δ2 : N → R to be δ(n) � 1 for
n< 11 and δ(n) � 3/n, and we have that δ2 satisfies the
desired result in the region when m< n/2.

Finally, we note that δ � max(δ1, δ2) satisfies the desired
property for any n ≥ m + 1. □

Appendix H. Impossibility of Two-Round Protocol
for General Separable Markets

In this section, we show a simple example of a separable
market for which no two-round protocol that uses o(n) bits
of communication per agent computes a stable matching
with high probability.

For clarity of exposition, the example is described with
certain agents preferring any partner of a specific type over
any partner of another type. This can be approximated with
high probability with idiosyncratic scores distributed as
Exp(1) by having a systematic score difference of 3 log n for
the type that one prefers.

Example H.1. Consider an academic job market with two
types of departments and two types of applicants. The types are
teaching-focused departments and applicants, and research-
focused departments and applicants. An agent prefers to
be matched with a partner of the agent’s own focus, and
otherwise, preferences are drawn uniformly at random.
Research-focused departments and teaching-focused candidates
are in short supply: there are n research-focused depart-
ments, n + 2 teaching-focused departments, n + 2 research-
focused applicants, and n teaching-focused applicants.

In this example, in any stable matching, there are two
research-focused applicants and two teaching-focused de-
partments who are matched with each other. However, a
priori, the chance that any two agents of different focus are
matched in a stable matching is 2/n. So, in a two-round
protocol, it’s never worthwhile for agents to signal across
their own focus. The communication-efficient method is
to first let research-focused departments and teaching-
focused applicants pick their partners in a two-round pro-
tocol and then run an additional aftermarket to match the
remaining agents.

Appendix I. Optimal Communication Cost in Tiered
Random Markets

The targeted signaling protocol in Section 4.4 usesΘ(log4 n)
bits of communication per agent. In this section, we show
that the best possible is Θ(log2 n).

Consider the protocol based on the generic algorithm
for tiered markets in Theorem D.1, in which, in step 1, if
|I1| ≤ |J1|, we simulate the worker-proposing DA algorithm,
and if |I1|> |J1|, thenwe simulate thefirmproposing. Because
we only allow private messages, each time an agent pro-
poses to a partner, the agent does not know whether the
partner is taken by agents from better tiers. This results
in wasted proposals. Nevertheless, one can show that the

number of wasted proposals is not too high. In fact, one can
show that, with high probability, this protocol terminates
with a stable matching using Θ(n log n) proposals. This
shows that there exists a stable matching protocol that only
uses private messages and that succeeds with high prob-
ability, using communication cost Θ(log2 n) per agent and
preference learning cost of Θ(log n) per agent.

The following shows that this bound on average com-
munication cost is the best possible.

Theorem I.1 (Lower Bound on Communication Cost with
Private Messages). Consider a uniformly random market with
n − 1workers and n firms. In such a market, any matching protocol
that is stable with high probability and only uses private messages
must incur a communication cost of Ω(log2 n) bits per agent.

The following theorem says that, in certain tiered ran-
dom markets, some agents must experience up to

��
n

√
bits

of communication even though the average is only poly-
logarithmic in n.

Theorem I.2 (Lower Bound on Agent-Specific Communication).
Consider a market consisting of n − 1 workers, each worker in a tier of
her own, and n firms all in a single tier. Consider the worker in the��
n

√
th worst tier. In any matching protocol that is stable with high

probability and only uses private messages, this worker must incur a
communication cost of at least Ω( ��

n
√ ) bits.

We now prove the theorems in turn.

Proof of Theorem I.1. The market in question is the same as
that in Ashlagi et al. (2017). It suffices to prove the lower
bound for any one worker because all workers are ex ante the
same. Some features of this market that we know from
Ashlagi et al. (2017) are

• In all stable matchings, the average rank of workers for
their matched firms is very close to log n, and a vanishing
fraction of workers (firms) havemultiple stable partners. (The
average rank of workers for their matched firms is at least
0.99n/ log n.)

• Fix a worker i. With high probability (whp), the worker
has a unique stable partner. Conditioned on the stable partner
being unique, the distribution of worker i’s rank of her stable
partner is asympototically close to Geometric(1/ log n). In
particular, the conditional probability that the unique stable
partner is one of worker i’s top logn most preferred firms is
p ∈ (1 − 1/e − 0.01, 1 − 1/e + 0.01) for large enough n.

• Run the worker-proposing deferred acceptance algo-
rithm with worker i excluded. Whp, all but n0.99 firms receive
between 0.9 log n and 1.1 log n proposals from workers.

Our proof approach is as follows: we consider some
worker i and an oracle who knows the preferences of all
other agents and seek to find, whp, a stable partner of i. A
slight complication here is that workers may have multiple
stable partners in these markets. We work around this by
defining a communication problem P1 as follows: the cor-
rect answer is “yes” if the unique stable partner of ioccurs in
her top log nmost preferred firms, and the correct answer is
“no” if the unique stable partner of i does not occur in her
top logn most preferred firms. In the case that i does not
have a unique stable partner, either a “yes” or a “no” is
considered correct. Note that, given a candidate stable partner
of i, one can output “yes” if the stable partner is among i’s

Ashlagi et al.: Clearing Matching Markets Efficiently
26 Management Science, Articles in Advance, pp. 1–31, © 2019 INFORMS



top log n most preferred firms and a “no” if not. If the
candidate stable partner is truly a stable partner, the output
is a correct answer. Hence, the problem of producing an
output that is correct whp for problem P1 is no harder than
the problem of finding an agent j who, whp, is a stable
partner of i.

Call a firm j “accessible” if it satisfies the following: fix
preferences of all agents except worker i. Suppose worker i
moves agent j to the top of her preference list, keeping the
rest of her preferences unchanged. Then worker i will be
matched to agent j under theworker-optimal stablematching.
Denote by Ja the set of firms accessible to worker i. Note that
whether j ∈ Ja or not does not depend on the preferences of
worker i. This follows immediately from the fact that the
worker-optimal stable matching can be computed using the
worker-proposing deferred acceptance algorithm, and this
algorithmmakes no use of worker i’s preferences unless she
is rejected by firm j, in which case we already know that
j /∈ Ja. Finally, note that when i has a unique stable partner,
this is her most preferred firm in Ja.

We now control the size of set Ja, showing that its size is
close to n/ logn. Wemake use of an analysis resembling that
in Ashlagi et al. (2017) (with revelation of preferences as
needed) and using the third bullet stated. Consider the
worker-optimal stablematchingwithworker i excluded. Let J′
be the set of firms that have each received between 0.9 log n
and 1.1 logn proposals. Using the third bullet, we have

|J − J′| ≤ n0.99

For each of these firms, independently, the probability that
they prefer i over their currently matched worker is at least
1/(1 + 1.1 logn) ≥ 0.8/ log n and at most 1/(1 + 0.9 log n) ≤
1.2/ logn. Let J′′ be the set of firms in J′ who prefer i over
their currently matched worker. It follows using a standard
concentration bound that, whp, we have

0.7n/ log n ≤ |J′′| ≤ 1.3n/ log n .

The probability that a rejection chain starting at a firm in J′′,
compare with Ashlagi et al. (2017), will return to the firm
with a proposal that the firm prefers over worker i before it
terminates by going to the unmatched firm is at most
1/(2 + 0.9 logn) ≤ 1.2/ log n. Call the set of firms for which
the rejection chain returns Ĵ. These firms may or may not be
in J′′. With high probability, using Markov’s inequality, we
have |Ĵ| ≤ fn|J′′|1.2/ logn for any fn � ω(1). Using fn � �������

logn
√

,
we obtain a bound of

|Ĵ| ≤ ��
n

√
1.3n/ log n · 1.2/ log n ≤ 2n/(logn)3/2 .

All firms in J′′\Ĵ (here the rejection chain terminates without
returning to the firm) are, for sure, a part of Ja. Thus, we
have, whp,

|Ja| ≥ |J′′\Ĵ| � |J′′| − |Ĵ| ≥ 0.7n/ log n − 2n/(logn)3/2
≥ 0.5n/ logn.

On the other hand, we have Ja ⊆ J′′ ∪ (J − J′), leading to, whp,

|Ja| ≤ |J′′| + |J − J′| ≤ 1.3n/ log n + n0.99 ≤ 1.5n/ logn .

Let the set of the worker’s most preferred logn firms be Jp.
Now again consider the communication problem P1 and

take any protocol that solves it. In cases in which worker i
has a unique stable partner and the protocol finds a correct
answer, the answer is exactly I(Ja ∩ Jp �� φ). Recalling that,
whp, worker i has a unique stable partner, and because the
output of the protocol matches I(Ja ∩ Jp �� φ) correctly whp
in these cases, the protocol finds I(Ja ∩ Jp �� φ) correctly with
high probability overall.

We are now close to obtaining a lower bound on the
expected number of bits needed for the protocol using the
second part of Proposition I.1. Suppose we gave the worker
i access to |Ja|. Recall that Ja is a uniformly random subset of J
and independent of Jp, conditioned on |Ja|. Let the lower
bound in Proposition I.1 be C(log n)2 (i.e., we just named the
constant factor C). We prove our result by contradiction.
Suppose the protocol requires less than (C/2)(logn)2 bits in
expectation. We found that, whp, we have

|Ja| ∈ (0.5n/ log n, 1.5n/ log n) .
(Notice that these are the same bounds that are needed in
Proposition I.1.) Combining this fact and Markov’s in-
equality on the expected number of bits used by the pro-
tocol conditioned on |Ja|, we deduce that, with probability
at least 1/3,47 the protocol is faced with |Ja| bounded as
required and such that the expected number of bits the
protocol uses for that “bad” |Ja| is at most 2(C/2)(logn)2 �
C(log n)2 bits. For each such bad |Ja|, the protocol must
output something different from I(Ja ∩ Jp �� φ) with proba-
bility at least ε, using Proposition I.1. Because such bad |Ja|s
occur with probability at least 1/3, the overall probability of
outputting something different than I(Ja ∩ Jp �� φ) is at least
ε/3. This contradicts that the protocol finds I(Ja ∩ Jp �� φ)
correctly whp. Thus, we have a contradiction. We conclude
that any protocol solving problem P1 must use at least
(C/2)(log n)2 bits in expectation. Returning to the fact that
problem P1 is at least as hard as finding j who is a stable
partner of i with high probability, we conclude that the
agent-specific communication complexity for worker i has the
same lower bound. Finally, using symmetry over workers (all
are in the same tier), we obtain the bound ofΩ((log n)2) on the
average agent-specific communication complexity. □

Proof of Theorem I.2. This market always has a unique
stable matching, which can be constructed by serial dicta-
torship: workers choose their most preferred unmatched firm
in the order of worker tiers. Let i be the worker in question,
whose tier is the (n − ��

n
√ + 1)th from the top. When it is i’s

turn to choose under serial dictatorship, there is a uniformly
random subset of

��
n

√
unmatched firms remaining. Call this

subset of firms J′. Worker i’s unique stable partner is the firm
in subset J′ that appears highest in her preference list. Let j be
i’s unique stable partner. We prove our lower bound by
showing that an even easier problem requires Ω( ��

n
√ ) bits of

communication: the problem is that of determining, with high
probability, if i’s unique stable partner is one of the top

��
n

√
entries in her preference list. Now this occurs if and only if the
set I′ consisting of the

��
n

√
firms that worker i most prefers,

intersects with set J′. Note that I′ and J′ are independent,
uniformly random subsets of the set of n firms, each of size��
n

√
, and I′ is known only to agent i, whereas J′ is known only

to the oracle. The lower bound of Ω( ��
n

√ ) follows from first
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part of Proposition I.1, which is implied by theorem 8.3 of
Babai et al. (1986). Note that, for the tier structure described,
the same lower bound (up to constant factors) can be obtained
for each worker who has rank n −Θ( ��

n
√ ). □

Appendix I.1. Communication Complexity of Set Disjointness
In this section, we prove the technical result that is used in
the proof of Theorem I.1.

Consider a set N such that |N| � n.48 Suppose there is a
uniformly random subset A ⊂ N with |A| � la known to
agent a and an independent uniformly random subset B ⊂
N with |B| � lb known to agent b. Agents a and b are able to
interactively communicate with each other, and the goal is
to determine whetherA and B have a nontrivial intersection
or not. We are interested in lower bounds for the com-
munication complexity of determining the correct answer
with a probability of error that vanishes as ngrows although
the bounds below hold even for a constant positive error in-
dependent of n. Note that the prior probability of inter-
section between the sets is bounded away fromzero and one
for any la and lb such that la, lb � o(n) and la · lb/ n ∈ [0.1, 10].
Proposition I.1. There exists ε> 0 such that the following holds:

• With la � lb � ��
n

√
, the communication complexity of finding

I(A ∩ B �� φ) correctly with probability 1 − ε is Ω( ��
n

√ ) bits.
• With la � logn and lb � cn/ log n for some c ∈ [1/2, 2], the

communication complexity of finding I(A ∩ B �� φ) correctly
with probability 1 − ε is Ω((log n)2) bits, uniformly over c in the
specified range.

Proof of Proposition I.1. The first part of the proposition is
just the lower bound part of theorem 8.3 of Babai et al. (1986).

The second part can be deduced with some work using
general results about the communication complexity of
disjointness (Braverman et al. 2013). We include a simpler
direct proof, inspired by the proof of Babai et al. (1986) for
the first part of the proposition. Because the communication
setting in the proposition is distributional (i.e., the inputs
come from a specified distribution of inputs), it suffices to
consider deterministic protocols (because a randomized
protocol over a distribution of inputs can be converted into
a deterministic one by fixing the random seed that gives the
lowest error over the input distribution).

Let ! and @ denote the sets of inputs to Alice and Bob.

Thus, |!| � n
la

( )
and |@| � n

lb

( )
. Assume that there is a pro-

tocol π of communication cost d. The randomized protocol
π induces a partition of! ×@ into at most 2d combinatorial
rectangles on each of which the output is either zero or one.
For all values of c, the probability that the output is zero
(i.e., that the sets are disjoint) is a constant, and therefore,
for a sufficiently small ε, a constant fraction of the mass is
covered by zero rectangles on each of which the error rate is
< c1ε for an absolute constant c1 > 0. We show that the
maximum possible mass of each such rectangle is at most
2−Ω(log2 n), and therefore, there must be at least 2Ω(log2 n) such
rectangles, and thus, d � Ω(log2 n).

Let R1 � !1 ×@1 be a combinatorial rectangle in ! ×@
such that at most a (c1ε) fraction of the elements of R are not
disjoint (and, thus, the zero output is wrong). We need to

show that the size of R is relatively small. Let!2 denote the
elements in !1 that intersect at most a (2c1ε) fraction of the
elements in @1. Note that we must have |!2| ≥ |!1|/2. Let
@2 :�@1, and R2 :�!2 ×@2. It suffices to show that R2 has
mass at most 2−Ω(log2 n).

Construct a sequence of elements S1, . . . , Sk of!2 with the
following property: for each i, |Si \ ∪i−1

j�1Sj| ≥ la/2. We con-
tinue constructing this sequence incrementally until one of
two things happens: (1) we cannot add another element to
the sequence, or (2) we have | ∪k

j�1 Sj| ≥
��
n

√
. We consider

each of these cases separately:
Case 1. There are sets S1, . . . , Sk of !2 such that | ∪k

j�1 Sj|<��
n

√
, and each element S ∈ !2 satisfies |S \ ∪k

j�1Sj| ≤ la/2.
Then this gives the following upper bound on the size of !2:

|!2| ≤
��
n

√
la/2

( )
· n
la/2

( )
< n−Ω(la) · n

la

( )
� 2−Ω(log2 n) · n

la

( )
,

and thus, !2 is small in this case, and we are done.
Case 2. There are sets S1, . . . ,Sk of !2, such that

��
n

√ ≤
| ∪k

j�1 Sj| ≤
��
n

√ + la, and for each i, |Si \ ∪i−1
j�1Sj| ≥ la/2. Each of

the Sis intersects at most a (2c1ε) fraction of the elements in
@2, and thus, at least half the elements in @2 intersect at
most 4c2εk of these sets. Denote these elements in@2 by@3.
We have |@3| ≥ |@2|/2. Each element T in @3 can now be
described as follows: first, specify the Sis that T intersects;
there are at most k · ( k

4c2εk
)
ways of doing this. Notice that

the union of the Sis that T does not intersect is at least (k −
4c2εk)la/2> kla/3 because each set contributes at least la/2
new elements to the union. Therefore, there are, at most,( n−kla/3

lb

)
ways to select the elements of T from the remaining

elements. Putting these together we get

|@2|
n
lb

( ) ≤ 2|@3|
n
lb

( ) ≤
2k · k

4c2εk

( )
· n−kla/3

lb

( )
n
lb

( ) ≤ 2k · e
4c2ε

( )
4c2εk · 1 − kla

3n

( )
lb

≤1 2k · ek/12 · e−klalb/3n≤22k · ek/12 · e−k/6 � 2k · e−k/12
�32−Ω(log2 n).

Here≤1 holds for a sufficiently small ε because, when 4c2ε<

e−5, e/(4c2ε)( )4c2ε < e1/12; ≤2 holds because lalb ≥ n/2, and �3

holds because k>
��
n

√
/la � log2 n. Thus, @2 is very small in

this case, and so is R2, concluding the proof. □

Endnotes
1Congestion in matching markets has been studied in laboratory
experiments and in the field. See Roth and Xing (1994, 1997), Roth
(2008), and Avery et al. (2001) for empirical studies of unravelling in
labor markets because of congestion, and Kagel and Roth (2000)
for related laboratory experiments. More recently, Fradkin (2017)
documented large reductions on the number of eventual bookings on
Airbnb because the initial contact made by searchers went to hosts
who rejected the offer.
2Roth finds stability to be an important requirement in the success of
centralized matching markets (Roth 2002, Kagel and Roth 2000).
3 See Kushilevitz and Nisan (2006) for a review of the communication
complexity literature. The importance of studying communication in
economic models is highlighted in the seminal essay Hayek (1945).
This research direction was first formalized in Hurwicz (1973) and
Mount and Reiter (1974).
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4An agent can specify the agent’s preference list over all n agents on
the other side using n log n bits. Segal (2007) proves that the com-
munication needed per agent may grow linearly in the number of
agents, assuming deterministic preferences, deterministic commu-
nication protocols, and exact stability. Chou and Lu (2010) extend
this result to approximate stability. Gonczarowski et al. (2015) ex-
tend it to protocols that succeed with probability at least 2/3 on
the worst-case distribution of preferences. We give a precise re-
statement in Section 2.3.1.
5 In 2017, the number of applicants in the NRMP was about 43, 000,
and the number of positions was 31, 000 (National Residency
Matching Program 2017).
6This structure of preferences is analogous to many discrete choice
models, such as the multinomial logit or probit.
7The square root comes from the communication complexity of set
disjointness under independent inputs (Babai et al. 1986).
8 Such preferences are called “block correlated” in Coles et al. (2013).
9 If the market is stable across years, then publishing historical
thresholds would suffice.
10 See Coles et al. (2010), Chade et al. (2017), Lee and Niederle (2015),
Abdulkadiroğlu et al. (2015), Lee and Schwarz (2017), and Jagadessan
and Wei (2018).
11 See Eeckhout (1999), Adachi (2003), Das and Kamenica (2005),
Lauermann and Nöldeke (2014), Arnosti et al. (2014), and Kanoria
and Saban (2017). For a review of the use of search theory in
matching, see Chade et al. (2017).
12 In particular, this is the sequential version of the worker-proposing
DA algorithm developed by McVitie and Wilson (1971).
13The earlier result of Segal (2007) implies that, for any matching
protocol that always produces a stable matching, there exists a
preference realization R such that the protocol requires a commu-
nication cost of Ω(n) per agent.
14The original results in Gonczarowski et al. (2015) concern com-
munication cost only. However, any lower bound on communication
cost automatically implies a bound on preference learning because
any protocol that uses Q choice function queries can be made into a
communication protocol with Q logn bits of communication because
the only information relevant to computing a stable matching is the
result of choice function queries.
15The construction of Gonczarowski et al. (2015) is based on em-
bedding a worst-case input distribution of the unique-disjointness
problem (Razborov 1992) into the preference distribution of a sub-
market of m � Ω(n)workers and firms. The preferences are such that
(1) every agent within the submarket values a uniformly random
subset ofm/4 partners within the submarket highly; (2) with constant
probability, no pair of agents within this submarket value each other
highly reciprocally; (3) with remaining probability, exactly one uni-
formly random pair of agents value each other highly; and (4) the
structure of the unique stable matching hinges on the existence of
such a pair of agents. Any matching protocol that is stable with high
probability can be used to determine the existence of such a pair of
agents who value each other highly, and so the protocol requiresΩ(n)
bits of communication per agent as implied by the hardness result of
Razborov (1992) on the unique-disjointness problem.
16 Simple translation of aji’s and uj0 yields this property for each j
given that uj0 is unrestricted.
17 See, for example, Choo and Siow (2006), Agarwal (2015), Dagsvik
(2000), Peski (2017), Menzel (2015), and Galichon et al. (2016) as well
as the review article Chiappori and Salanié (2016).
18However, if the correlations in preferences are allowed to be large
and complex, then the negative result of Gonczarowski et al. (2015)
applies, and no communication efficient protocol exists.

19Without the idiosyncratic component of firm preferences, worker i
can infer nothing from her systematic score for a firm because she
cannot meaningfully compare systematic scores across firms as any
increasing nonlinear transformation of systematic scores for a firm
would perfectly preserve preference orderings.
20 In comparison, the preference distributions in Kojima and Pathak
(2009) correspond to a O(1) bound on the range of systematic scores
and cannot incorporate enough systematic variation to have multiple
tiers.
21The incentive properties for CEDA are as follows: with high prob-
ability, no worker can unilaterally deviate and improve her
matching, and no firm can unilaterally deviate and obtain someone
better than its best stable partner. Previous results have found that,
in a variety of large-market models, the difference between the worker-
optimal and firm-optimal stable matches is small for the vast majority
of agents (Immorlica and Mahdian 2005, Kojima and Pathak 2009,
Ashlagi et al. 2017, Lee 2017, Lee andYariv 2017). In such cases, CEDA
is approximately incentive compatible for everyone.
22The qualification requirement is an integer throughout the protocol,
ensuring that it can be communicated with O(log n) bits.
23 If there are fewer than 2e

��
n

√
workers in the bin, then the firm sends a

preference signal to all of them.
24 In addition, we require that the identity of the worker selected to
make the next application in step 1 of Protocol 1 cannot depend on
any information outside the history of application and acceptance
decisions of DA, such as the preference signals received by workers
from firms to which they have not applied yet.
25Our lower bound allows the communication protocol to be adaptive,
to be randomized, and to broadcast messages to every agent. Moreover,
the bound holds even if all workers can communicate among themselves
for free, and all firms can communicate among themselves for free.
26We need at least two rounds for agents to be able to respond to
signals from others.
27One can interpret this as the existence of an additional “operator”
through which all messages are routed, so the operator sees all
messages and can choose who should send the next message.
28This preference structure is called “block-correlated” in Coles et al.
(2013).
29The reason is that the worker ranked number k needs to send only
O(n/(n − k + 1)) signals.
30A factor of logn is necessary because, evenwhen there is one tier on
each side, agents on the short side of the market obtain an expected
rank of Ω(logn) (Pittel 1989). (Obtaining a rank of one means being
matched with one’s favorite partner; a rank of two means one’s
second favorite, and so on.) The extra logarithmic factor in 24 log2 n is
an artifact of the analysis (see Remark 3 after Theorem 3.)
31The bound, stated in Proposition F.1, is analogous to theorem 2 of
Ashlagi et al. (2017) except that the constant is worse but the notion of
“high probability” is stronger as per our requirement.
32This is because communicating the identity of each particular agent
requires logn bits.
33This follows because the total amount of communication is
O(n log3 n) � O∗(n).
34 See chapter 4 of Roth and Sotomayor (1990) for a thorough ex-
position of the incentive properties of DA. See Coles and Shorrer
(2014) for a discussion of the manipulability of DA in a balanced
uniformly random market.
35 See Roth (1982) and Dubins and Freedman (1981).
36The best stable partner of an agent is the agent’s most preferred
partner in all stable matchings.
37 See pp. 92–93 of Roth and Sotomayor (1990).
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38Here, “with high probability” is defined as in Definition 9: the
probability space is 3(ω), and the probability of not being strategy-
proof is no more than δ(n) � o(1).
39 It is impossible to show a convergence rate faster than O(1/(logn))
because, in a uniformly random market with n workers and n − 1
firms in which every partner is acceptable to every agent, the prob-
ability that an agent has multiple stable partners is approximately
1/(logn), following the analysis of Ashlagi et al. (2017).
40One paper that studies the number of rounds of communication
needed in a matchingmodel is Dobzinski et al. (2014). However, they
do not consider the stability of the match.
41An analogous aftermarket is implemented in the NRMP after the
main match takes place.
42The Θ notation represents that two functions grow to infinity at
similar rates: f (x) � Θ(g(x)) if f (x) � O(g(x)) and f (x) � Ω(g(x)).
43 For any power series f (ξ)with positive coefficients,

∑∞
a [ξa]{ f (ξ)} ≤

ξ−a infξ≥1{ f (ξ)}.
44A matching is individually rational if agents are only matched to
partners they find acceptable.
45 Specifically, the graph is the collection of tuples (i, j) in which
at least one signaled to the other during the signaling round. By
Definition E.1, this is G

⋃{(i, j) : j signaled to i, sk(i) � tl(j)}.
46A matching is full if it matches min(nI ,nJ) pairs of agents.
47We use 1/3 instead of 1/2 to accommodate that, with small prob-
ability, |Ja | may not fall in the desired range.
48We redefine n here. For the purposes of this section, there are no
workers or firms.
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