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Abstract. In the school choice market, where scarce public school seats are assigned to
students, a key operational issue is how to reassign seats that are vacated after an initial
round of centralized assignment. Practical solutions to the reassignment problem must be
simple to implement, truthful, and efficient while also alleviating costly student movement
between schools. We propose and axiomatically justify a class of reassignment mecha-
nisms, the permuted lottery deferred acceptance (PLDA) mechanisms. Our mechanisms
generalize the commonly used deferred acceptance (DA) school choice mechanism to a
two-round setting and retain its desirable incentive and efficiency properties. School choice
systems typically run DA with a lottery number assigned to each student to break ties in
school priorities. We show that under natural conditions on demand, the second-round tie-
breaking lottery can be correlated arbitrarily with that of the first round without affecting
allocative welfare and that reversing the lottery order between rounds minimizes reas-
signment among all PLDAmechanisms. Empirical investigations based on data fromNew
York City high school admissions support our theoretical findings.
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1. Introduction
In public school systems throughout the United States,
students submit preferences over the schools forwhich
they are eligible for admission. Because this occurs
fairly early in the school year, students typically do not
know their options outside the public school system
when submitting their preferences. Consequently, a
significant fraction of students who are allotted a seat
in a public school eventually do not use it, leading to
considerable inefficiency. In the New York City (NYC)
public high school system, over 80,000 students are
assigned to a public school each year in March, and
about 10% of these students choose to not attend a
public school in September, possibly opting instead to
attend a private or charter school.1 Schools find out
about many of the vacated seats only after classes be-
gin, when students do not show up to class; such seats
are reassigned in an ad hoc manner by the schools
using decentralized procedures that can run months
into the school year. A well-designed reassignment
process, run after students learn about their outside
options, could lead to significant gains in overallwelfare.

Yet no systematic way of reassigning students to unused
seats has been proposed in the literature. Our goal is to
design an explicit reassignment mechanism run at a late
stage of the matching process that efficiently reassigns
students to vacated seats.
During the past 15 years, insights from matching

theory have informed the design of school choice
programs in cities around the world. The formal study
of this mechanism design approach to school choice
originated in a paper by Abdulkadiroglu and Sönmez
(2003). They formulated a model in which students
have strict preferences over a finite set of schools, each
with a given capacity, and each school partitions the
set of students into priority groups. There is now a
vast and growing literature that explores many as-
pects of school choice systems and informs how they
are designed in practice. However, most models con-
sidered in this literature are essentially static. Incor-
porating dynamic considerations in designing as-
signment mechanisms, such as students learning new
information at an intermediate time, is an important
aspect that has only recently started to be addressed.
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Our work provides some initial theoretical results in
this area and suggests that simple adaptations of one-
shot mechanisms can work well in a more general setting.

We consider a two-round model of school assign-
ment with finitely many schools. Students learn their
outside option after the first-round assignment and
vacate seats that can be reassigned. In the first round,
schools have weak priorities over students, and stu-
dents submit strict ordinal preferences over schools.
Students receive a first-round assignment based on
these preferences via deferred acceptance with sin-
gle tie breaking (DA-STB), a variant of the standard
deferred acceptance (DA) mechanism, where ties in
school preferences are broken via a single lottery or-
dering across all schools. Afterward, students learn
their outside options (such as admission to a private
school) and may no longer be interested in the seat
allotted to them. In the second round, students are
invited to submit new ordinal preferences over schools,
reflecting changes in their preferences induced by learn-
ing their outside options. The goal is to reassign stu-
dents so that the resulting assignment is efficient and the
two-round mechanism is strategy-proof and does not
penalize students for participating in the second round.
Because a significant fraction of seats available for
reassignment are vacated only after the start of the
school year, a key additional goal is to ensure that the
reassignment process minimizes the number of stu-
dents who need to be reassigned.

We introduce a class of reassignment mechanisms
with desirable properties: the permuted lottery deferred
acceptance (PLDA) mechanisms. PLDA mechanisms
compute a first-round assignment by running DA-
STB and then a second-round assignment by run-
ning DA-STB with a permuted lottery. In the second
round, each school first prioritizes students whowere

assigned to it in the first round, which guarantees
each student a second-round assignment that he or
she prefers to his or her first-round assignment, then
prioritizes students according to their initial priori-
ties at the school, and finally breaks ties at all schools
via a permutation of the (first-round) lottery num-
bers. Our proposed PLDA mechanisms are based on
school choice mechanisms currently implemented in
the main round of assignments and can be imple-
mented either as centralized PLDAs, which run a cen-
tralized second round with updated preferences, or
as decentralized PLDAs, which run a decentralized
second round via a waitlist system that closely mir-
rors current reassignment processes.
Our key insight is that the mechanism designer can

design the correlation between tie-breaking lotteries
to achieve operational goals. In particular, revers-
ing the lottery between rounds minimizes reassign-
ment without sacrificing student welfare. Our main
theoretical result is that under an intuitive order condi-
tion, all PLDAs produce the same distribution over
the final assignment, and reversing tie-breaking lot-
teries between rounds implements the centralized re-
verse lottery DA (RLDA), which minimizes the num-
ber of reassigned students. We axiomatically justify
PLDA mechanisms: absent school priorities, PLDAs
are equivalent to the class of mechanisms that are two-
round strategy-proofwhile satisfying natural efficiency
requirements and symmetry properties.
In a setting where all students agree on a ranking of

schools and there are no priorities, our results are very
intuitive. By reversing the lottery, we move a few stu-
dents many schools up their preference list rather than
many students a few schools up, thereby eliminating
unnecessary cascades of reassignment (see Figure 1).
Surprisingly, however, our theoretical result holds in

Figure 1. Running DA with a Reversed Lottery Eliminates the Cascade of Reassignments

Notes. There are six studentswith identical preferences over schools and six schools eachwith a single-priority group. All students prefer schools
in the order s1 � s2 � · · · � s6. The student assigned to school s1 in the first round leaves after the first round; otherwise, all students find all
schools acceptable in both rounds. Running DAwith the same tie-breaking lottery reassigns each student to the school that is one better on his or
her preference list, whereas reversing the tie-breaking lottery reassigns only the student initially assigned to s6.
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a general setting with heterogeneous student pref-
erences and arbitrary priorities at schools. The order
condition can be interpreted as aggregate student
preferences resulting in the same order of popularity
of schools in the two rounds. Our results show that if
student preferences and school priorities produce such
agreement in aggregate demand across the two rounds,
then reversing the lottery between rounds preserves ex
ante allocative efficiency and minimizes reassignment.

We empirically assess the performance of RLDA
using data from the NYC public high school system.
We first investigate a class of centralized PLDAs that
includes RLDA, rerunning DA using the original lot-
tery order (termed forward lottery deferred acceptance
(FLDA)), and rerunning DA using an independent
random lottery. We find that all these mechanisms
provide similar allocative efficiency, but RLDA re-
duces the number of reassigned students significantly.
For instance, in the NYC data set from 2004–2005, we
find that FLDA results in about 7,800 reassignments
and RLDA results in about 3,400 reassignments out
of a total of about 74,000 students who remained in
the public school system—that is, fewer than half the
number of reassignments under FLDA. The gains
become even more marked if we compare with cur-
rent practice: RLDA results in fewer than 40% of the
8,600 reassignments under decentralized FLDA with
waitlists.2

To better evaluate the currently used waitlist sys-
tems, we also empirically explore the performance of
decentralized FLDA and RLDA as a function of the
time available to clear the market. We find that the
timing of information revelation can greatly impact
both allocative efficiency and congestion. If congestion
is caused by students taking time to vacate previously
assigned seats (see Figure 1), then reversing the lottery
increases allocative efficiency during the early stages
of reassignment and decreases congestion. However,
if congestion is caused by students taking time to
decide on waitlist offers, these findings are reversed.
In both cases, for reasonable timescales, the welfare
gains from centralizing the system and reducing con-
gestion can be substantial.

The rest of this paper is organized as follows. We out-
line current practice in school admissions in Section 1.1
and related literature in Section 1.2. In Section 2, we
describe our model, our proposed PLDA mechanisms,
and their properties. Section 3 presents our main re-
sults, and Section 4 provides intuition and a flavor
of our analysis via a special case of our model. We
provide empirical results in Section 5 and conclude
in Section 6.

1.1. Current Practice
School systems in cities across the United States use
similar centralized processes for admissions to public

schools. Students seeking admission to a school
submit their preferences over schools to a central
authority byDecember throughMarch, for admission
starting the subsequent fall. Each school may have
priority classes of students, such as priority for stu-
dents who live in the neighborhood, siblings of stu-
dents already enrolled at that school, or students from
low-income families. An assignment of seats to stu-
dents is produced using the student-proposing DA
algorithm with single tie breaking. Students must
register in their assigned school by April or early May.
In March and April, students are also admitted to

private and charter schools via processes run con-
currently with the public school assignment process.
This results in an attrition rate of about 8%–10% of the
seats assigned in the main round of public school
admissions. Some schools account for this attrition by
accepting more students in the first round than they
have seats for. However, such oversubscription of
students is usually conservative because of hard con-
straints on space and teacher capacity.3 As a result,
most schools have unused seats at the end of the first
round that can be reassigned. In addition, most public
schools find out aboutmany of these vacant seats only
after the start of the school year because they cannot
require deposits or other forms of commitment from
students before the start of the school year.
Reassignments in most school choice systems are

performed using a decentralized waitlist system.4

Students are put on waitlists for all schools that they
ranked above their first-round assignment and or-
dered by first-round priorities (after tie breaking).
Students who do not register by the deadline are
presumed to be uninterested, and their seats are of-
fered to waitlisted students in sequence, with more
seats becoming available over time as students receive
new offers from outside the system or are reassigned
via waitlists to other public school seats. Students
offered seats by the waitlist system usually have just
under a week to make a decision and are only bound
by the final offer they choose to accept.5 Overall, this
typically results in a drawn-out reassignment process
that continues all summer until after classes begin and
in some cities (e.g., NYC kindergarten, Boston, and
Washington, DC) up to several months after the start
of the school year.
Our proposed class of mechanisms generalizes

these waitlist systems as follows. Waitlists are PLDA
mechanisms where (1) the second round is imple-
mented in a decentralized fashion as information
about vacated seats propagates through the system,
and (2) the tie-breaking lotteries used in the two
rounds are the same. We show that permuting the tie-
breaking lottery numbers before creating waitlists
provides a class of reassignment mechanisms that,
given sufficient time, results in similar allocative
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efficiency while providing flexibility for optimizing
other objectives.

1.2. Related Work
Themechanism design approach to school choice was
first formulated by Balinski and Sönmez (1999) and
Abdulkadiroglu and Sönmez (2003). Since then, ac-
ademics have worked closely with school authorities
to redesign school choice systems to increase stu-
dent welfare.6 A significant portion of the literature
has focused on providing solutions for a single round
of centralized school assignment—see, for example,
Pathak (2011) andAbdulkadiroglu and Sönmez (2011)
for recent surveys. Many of these works provide axi-
omatic justifications for two canonical mechanisms—
DA (Gale and Shapley 1962) and top trading cycles
(TTCs)—and their variants, in terms of their desirable
properties. We provide a similar framework for the
reassignment problem by proposing and character-
izing PLDA mechanisms by their incentive and effi-
ciency properties.

There is a growing operations literature on de-
signing the school choice process to optimize quan-
titative objectives. Ashlagi and Shi (2014) consider
how to improve community cohesion in school choice
by correlating the lotteries of students in the same
community, and Ashlagi and Shi (2015) show how
to maximize welfare given busing cost constraints.
Several papers also explore how school districts can
use rules for breaking ties in school priorities as policy
levers. Arnosti (2015), Ashlagi and Nikzad (2016),
and Ashlagi et al. (2015) show that DA-STB assigns
more students to one of their top k schools (for small k)
compared with DA using independent lotteries at
different schools, and Abdulkadiroglu et al. (2009)
empirically compare these tie-breaking rules. Erdil
and Ergin (2008) also exploit indifferences to improve
allocative efficiency. We explore the design of tie-
breaking rules in the reassignment setting and cor-
relate tie breaking across rounds.

There is also a vast literature on dynamic matching
and reassignments. The reassignment of donated or-
gans has been extensively studied in work on kidney
exchange (see, e.g., Roth et al. 2004; Anderson et al.
2015, 2017; Ashlagi et al. 2019). Reassignments re-
sulting from cancellations also arise in online as-
signment settings such as kidney transplantation (see,
e.g., Zenios 1999, Su and Zenios 2006) and public
housing allocation (see, e.g., Kaplan 1987, Arnosti
and Shi 2017). An important difference is that these
are online settings where agents and objects arrive
over time and arematched on an ongoing basis. In such
settings, matches are typically irrevocable, so optimal
assignment policies account for typical cancellation
and arrival statistics and optimize for agents arriving
in the future (see, e.g., Dickerson and Sandholm

2015). In our setting, the matching for the entire sys-
tem is coordinated in time, and we improve welfare
by controlling both the initial assignment and sub-
sequent reassignment of objects among the same set
of agents.
Another relevant strand in the reassignment liter-

ature is the work of Abdulkadiroglu and Sönmez
(1999) on house allocation models with housing en-
dowments. Our second round can be thought of as
school seat allocation where some agents already own
a seat and we wish to reassign seats to reach an effi-
cient assignment. There are also a growing number
of papers that consider a dynamic model for school
admissions (see e.g., Compte and Jehiel 2008, Combe
et al. 2016). A critical distinction between these works
and ours is that in our model, the initial endowment
is determined endogenously by preferences, so we
propose reassignment mechanisms that are imper-
vious to students manipulating their first-round en-
dowment to improve their final assignment.
A number of recent papers, such as those by Dur

(2012), Pereyra (2013), and Kadam and Kotowski
(2014), focus on the strategic issues in dynamic re-
assignment. These works develop solution concepts
in finite markets with specific cross-period con-
straints and propose DA-like mechanisms that im-
plement them. In recent complementary work, Narita
(2016) analyzes preference data from NYC school
choice, observes that a significant fraction of prefer-
ences is permuted after the initial match, and proposes
a modified version of DA with desirable properties
in this setting. We similarly propose PLDA mecha-
nisms for their desirable incentive and efficiency
properties. In addition, our large market and consis-
tency assumptions allow us to uncover considerable
structure in the problem and provide conditions un-
der which we can optimize over the entire class of
PLDA mechanisms.
Our work also has some connections to the queu-

ing literature. The class of mechanisms that emerges
in our setting involves choosing a permutation of the
initial lottery order, and we find that the reverse
lottery minimizes reassignment within this class. This
is similar to choosing a service policy in a queuing
system (e.g., first in first out, last in first out, shortest
remaining time first, etc.) in order to minimize cost
functions (see, e.g., Lee and Srinivasan 1989). “Work-
conserving” service policies can result in identical
throughput but different expected waiting times, and
we similarly find that PLDA mechanisms may have
identical allocative efficiency but different numbers
of reassignments. Our continuum model parallels
fluid limits and deterministic models employed in
queuing (Whitt 2002), revenue management (Talluri
andVanRyzin 2006), and other contexts in operations
management.
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2. Model
2.1. Definitions and Notation
We consider the problem of assigning a set of students
Λ to seats in a finite set of schools S � {s1, . . . , sN}. Each
student can attend at most one school. There is a
continuum7 of students with an associated measure η:
for any (measurable) subset A ⊆ Λ, we use η(A) to
denote themass of students inA. The outside option is
sN+1 /∈ S. The capacities of the schools are q1, . . . , qN ∈
R+ and qN+1 � ∞. A set of students of η-measure at
most qi can be assigned to school si.

Each student submits a strict preference ordering
over his or her acceptable schools, and each school
partitions eligible students into priority groups. Each
student has a type θ � (�θ, �̂θ, pθ) that encapsulates
both his or her preferences and school priorities. The
student’s first- and second-round preferences, re-
spectively, �θ and �̂θ are strict ordinal preferences
over S ∪ {sN+1}, and schools before (after) sN+1 in the
ordering are acceptable (unacceptable). We think of
sN+1 as the best guaranteed outside option available to
the student, with the understanding that it can “im-
prove” from the first to the second round—for ex-
ample, because a new private school offer comes in.
The student’s priority class pθ encodes his or her pri-
ority pθi at each school si. Each school si has ni priority
groups. We assume that schools prefer higher pri-
ority groups, that students ineligible for school si
have priority pi � −1, and that pi ∈ {−1, 0, 1, . . . ,
ni − 1}. Eligibility and priority groups are exoge-
nously determined and publicly known. Each student
λ � (θλ,L(λ)) ∈ Λ also has afirst-round lottery number
L(λ) ∈ [0, 1]. We sometimes use the notation (�λ, �̂λ,
pλ) as a less cumbersome alternative to (�θλ

, �̂θλ
, pθ

λ).
Let Θ be the set of all student types so that Λ � Θ ×
[0, 1] denotes the set of students. For each θ ∈ Θ, let
ζ(θ) � η({θ} × [0, 1]) be the measure of all students
with type θ.

We assume that all students have consistent pref-
erences, defined as follows.

Definition 1. Preferences (�, �̂) are consistent if the
second-round preferences �̂ are obtained from � via
truncation—that is, (a) schools do not become ac-
ceptable only in the second round, ∀si ∈ S si�̂sN+1
implies si � sN+1, and (b) the relative ranking of schools
is unchanged across rounds, ∀si, sj ∈ S if si�̂sN+1 and
si�̂sj, then si � sj. Type θ is consistent if (�θ, �̂θ) are
consistent.

Assumption 1 (Consistent Preferences). If ζ(θ) > 0, then
the type θ is consistent.

In otherwords,we assume that the only change that
a student makes to his or her preferences between the
two rounds is truncating his or her preference list. The
consistency assumption allows us to study the effects

of students leaving the public school system but pre-
cludes the possibility of students revising their relative
ranking of schools between rounds—for example, as
a result of making mistakes in the first round—or
obtaining more information about the schools. It also
allows us to propose strategy-proofmechanisms8 and
to optimize for allocative efficiency and reassign-
ment. In settings where the consistency assumption
does not hold, we note that the mechanisms we will
propose are still well defined, and we will show that
they retain many of their desirable properties.
We also assume that consistent types have full

support. We use this only to characterize our proposed
mechanisms (Theorem 3) and do not need it for our
positive results (Theorems 1 and 2).

Assumption 2 (Full Support). For all consistent types
θ ∈ Θ, it holds that ζ(θ) > 0.

Finally, we assume that the first-round lottery num-
bers are drawn independently and uniformly from
[0, 1] and do not depend on preferences: η {θ} ×(
(a, b)) � (b − a)ζ(θ) ∀θ ∈ Θ, 0 ≤ a ≤ b ≤ 1.9

An assignment μ : Λ → S specifies the school to
which each student is assigned. For any assignmentμ,
we let μ(λ) denote the school to which student λ is
assigned, and in a slight abuse of notation, we let μ(si)
denote the set of students assigned to school si. We
assume that μ(si) is η-measurable and that the as-
signment is feasible—that is, η(μ(si)) ≤ qi for all si ∈ S,
and if μ(λ) � si, then pλi ≥ 0. We let μ and μ̂ denote the
first- and second-round assignments, respectively.

2.1.1. Timeline. Students report first-round prefer-
ences�. Themechanismdesigner obtains a first-round
assignment μ by running DA-STB with lottery L and
announces μ and L. Students then observe their out-
side options and update their preferences to �̂. Finally,
students report their second-round preference �̂,
and the mechanism designer obtains a second-round
assignment μ̂ by running a reassignment mecha-
nism M and announces μ̂. We illustrate the timeline
in Figure 2.

2.1.2. Informational Assumptions. Eligibility and pri-
orities are exogenously determined and publicly
known. The mechanism is publicly announced before
preferences are submitted. Before first-round report-
ing, each student knows his or her first-round pref-
erences and that his or her second-round preferences
will be obtained from these preferences via truncation.
Each student has imperfect information regarding his
or her own second-round preferences (i.e., the point of
truncation) at that stage and believes with positive
probability that his or her preferences in both rounds
will be identical.10 We assume that students know the
distribution η over student types and lotteries (an
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assumption we need only for our characterization
result, Theorem 3). Each student is assumed to learn
his or her lottery number after the first round because,
in practice, students are often permitted to inquire
about their position on each school’s waitlist; our
results hold even if students do not learn their lottery
numbers.

Definition 2. A student λ ∈ Λ is a reassigned student if he
or she is assigned to a different school in S in the second
round than in the first round. That is, λ is a reassigned
student under reassignment μ̂ if μ(λ) �� μ̂(λ) and11

μ(λ) �� sN+1, μ̂(λ) �� sN+1.
Most reassignments happen around the start of the

school year, a time when they are costly for schools and
students alike. Hence, in addition to providing an efficient
final assignment, we also want to reduce congestion by
minimizing the number of reassigned students.

2.2. Mechanisms
A mechanism is a function that maps the realization of
first-round lotteries L, school priorities p, and students’
first-round preference reports � into an assignment μ.
A reassignment mechanism is a function that maps the
realization of first-round lotteries L, first-round as-
signment μ, school priorities p, and students’ second-
round reports �̂ into a second-round assignment12 μ̂.
A two-round mechanism obtained from a reassignment
mechanism M is a two-round mechanism where the
first-round mechanism is DA-STB (see Definition 3)
and the second-round mechanism is M.

In the first round, seats are assigned according to
the student-optimal DA algorithm with single tie
breaking (STB) as follows. A single lottery ordering of
the students L is used to resolve ties in the priority
groups at all schools, resulting in an instance of the
two-sided matching problem with strict preferences
and priorities. In each step of DA, unassigned stu-
dents apply to their most-preferred school that has
not yet rejected them. A school with a capacity of q
tentatively accepts the q highest-ranked eligible ap-
plicants (according to its priority ranking of stu-
dents after breaking all ties) and rejects any remaining
applicants. The algorithm runs until there are no new

student applications, at which point it terminates and
assigns each student to his or her tentatively assigned
school seat. The strict student preferences,weak school
priorities, anduse ofDA-STBmirror current practice in
many school choice systems, such as those in NYC,
Chicago, and Denver (see, e.g., Abdulkadiroglu and
Sönmez 2003).
DA can also be formally defined in terms of ad-

missions scores and cutoffs.

Definition 3 (Deferred Acceptance; Azevedo and Leshno
2016). The DA mechanism with single tie breaking
(DA-STB) is a function DAη((�λ, pλ)λ∈Λ,L) mapping
student preferences, priorities, and lottery numbers
into an assignment μ, defined by a vector of cutoffs
C ∈ RN+ as follows. Each student λ is given a score rλi �
pλi + L(λ) at school si and is assigned to his or hermost-
preferred school as per his or her preferences, among
those where his or her score exceeds the cutoff:

μ(λ) � max
�λ

si ∈ S : rλi ≥ Ci

{ }
∪ sN+1{ }

( )
. (1)

Moreover, C is market clearing—namely,

η μ si( )( ) ≤ qi, for all si ∈ S,with equality if Ci > 0.

(2)
Azevedo and Leshno (2016) showed that the set of

assignments satisfying Equations (1) and (2) forms a
nonempty complete lattice and typically consists of a
single uniquely determined assignment.13 This unique
assignment in the continuum further corresponds to
the scaling limit of the set of stable matches obtained
in finite markets as the number of students grows
(with school capacities growing proportionally).
Throughout this paper, in the (knife-edge) case where
there are multiple assignments satisfying Definition 3,
we pick the student-optimal matching.
Given cutoffs {Ci}Ni�1, we will also find it helpful to

define for each priority class π the cutoffs within the
priority class at each school Cπ,i ∈ [0, 1] by Cπ,i � 0 if
Ci ≤ πi, Cπ,i � 1 if Ci ≥ πi + 1, and Cπ,i � Ci − πi oth-
erwise. Thus, Cπ,i is the lowest lottery number a
student θ with priority pθ � π can have and still be
able to attend school si.

Figure 2. Timeline of the Two-Round Mechanism Design Problem
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We now turn to the mechanism design problem.
We emphasize that we consider only two-round mech-
anisms whose first-round mechanism is the currently
used DA-STB—that is, the only freedom afforded the
planner is the design of the reassignment mechanism.
We propose the following class of two-round mech-
anisms. Intuitively, these mechanisms run DA-STB
twice, once in each round. They explicitly correlate
the lotteries used in the two rounds via a permutation
P and in the second round give each student top
priority in the school to which he or she was assigned
in the first round to guarantee that each student re-
ceives a (weakly) better assignment.

Definition 4 (Permuted Lottery Deferred Acceptance
(PLDA)Mechanisms). LetP : [0, 1] → [0, 1] be ameasure-
preserving bijection, let L be the realization of first-
round lottery numbers, and let μ be the first-round
assignment obtained by running DA with lottery L.
Define a new economy η̂, where to each student λ ∈ Λ
with priority vector pλ and first-round lottery and
assignment L(λ) � l, μ(λ) � si, we (a) assign a lottery
number P(l) and (b) give top second-round priority p̂λi �
ni at their first-round assignment si and unchanged
priority p̂λj � pλj at all other schools sj �� si. PLDA(P) is
the two-round mechanism obtained using the reassign-
ment mechanism DAη̂((�̂λ, p̂λ)λ∈Λ,P ◦ L).

We use ĈP
π,i to denote the second-round cutoff for

priority class π in school i under PLDA(P).
We highlight two particular PLDA mechanisms.

The RLDA (reverse lottery) mechanism uses the re-
verse permutation R(x) � 1 − x, and the FLDA (for-
ward lottery)mechanism,which preserves the original
lottery order, uses the identity permutation F(x) � x.
By default, school districts often use a decentralized
version of the FLDA mechanism, implemented via
waitlists. In this paper, we provide evidence that sup-
ports using the centralized RLDA mechanism in a school
system such as that in NYC, where a large proportion
of vacated seats is revealed close to or after the start
of the school year and where reassignments are costly
for both students and the school administration.

The PLDA mechanisms are an attractive class of
two-round assignment mechanisms for a number of
reasons. They are intuitive to understand and simple to
implement in systems already using DA. (A decen-
tralized implementation would be even simpler to in-
tegrate with current practice; the currently usedwaitlist
mechanism for reassignments can be retained with the
simple modification of permuting the lottery num-
bers just before waitlists are constructed.) In addition,
we will show that the PLDA mechanisms have desir-
able incentive and efficiency properties, which we now
describe.

Any reassignment mechanism that takes away a
student’s initial assignment against his or her will is

impractical. Thus, we require our mechanism to re-
spect first-round guarantees:

Definition 5. A two-round mechanism (or a second-
round assignment μ̂) respects guarantees if every student
(weakly) prefers his or her second-round assignment to
his or her first-round assignment—that is, μ̂(λ)�̂λμ(λ)
for every λ ∈ Λ.

One of the reasons for the success of DA in practice
is that it respects priorities: if a student is not assigned
to a school he or she wants, it is because that school
is filled with students with higher priority at that
school. This leads to the following natural require-
ment in our two-round context.

Definition 6. A two-round mechanism (or a second-
round assignment μ̂) respects priorities (subject to guar-
antees) if ∀si ∈ S, every eligible student λ ∈ Λ such that
si �̂λ μ̂(λ), and every student λ′ such that μ̂(λ′) � si ��
μ(λ′) it holds that λ′ is eligible for si and pλ

′
i ≥ pλi .

Thus, our definition of respecting priorities (subject
to guarantees) requires that every student who was
upgraded to a school s in the second-roundmust have
a (weakly) higher priority at that school than every
eligible student λ who prefers s to his or her second-
round assignment.
We now turn to incentive properties. In the school

choice problem, it is reasonable to assume that stu-
dents will be strategic in how they interact with the
mechanism at each stage. Hence, it is desirable that
whenever a student (with consistent preferences) re-
ports preferences, conditional on everything that has
happened up to that point, it is a dominant strategy
for him or her to report truthfully. To describe the
properties formally, we start by fixing an arbitrary
profile offirst- and second-round preferences (�−λ, �̂−λ)
for all the students other than student λ. For any
preference report of student λ in the first round, he
or she will receive an assignment that is probabilistic
because of the tie-breaking lottery; then, after ob-
serving his or her first-round assignment and lottery
number and his or her updated outside option, he
or she can submit a second-round preference report,
based onwhich his or herfinal assignment is computed.
This leads to two natural notions of strategy-proofness.

Definition 7. A two-round mechanism is strongly strat-
egy-proof if for each student λ (with consistent prefer-
ences) truthful reporting is a dominant strategy—that is,
for each realization of lottery numbers (including his or
her own lottery number) and profile of first- and second-
round reported preferences of the students other than λ,
reporting his or her preferences truthfully in each of the
two rounds is a best response for student λ.

Our definition of strong strategy-proofness is rather
demanding: it requires that no student be able to
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manipulate the mechanism even if he or she has full
knowledge of the first- and second-round preferences
of all other students and the lottery numbers.We shall
also consider a weaker version of strategy-proofness
that applies when a manipulating student does not
know the lottery number realizations when he or she
submits his or her first-round preference report and
learns all lottery numbers only after the end of the first
round. In that case, each student views his or her first-
round assignment as a probability vector; his or her
second-round assignment is also random but is a de-
terministic function of the first-round outcome, the
second-round reports, and the first-round lottery
numbers. We make precise the notion of a successful
manipulation in this setting as follows.

Definition 8. A two-roundmechanism isweakly strategy-
proof if the following conditions hold:

• Knowing the specific realization of first-round as-
signments (and lottery numbers) and the second-round
preferences of the students other thanλ, it is optimal for
student λ to submit his or her second-round prefer-
ence truthfully, given what the other students do.

• For each student λ (with consistent preferences),
and for each profile of first- and second-round pref-
erences of the students other than λ, the probability
that student λ is assigned to one of his or her top k
schools in the second round is maximized when he or
she reports truthfully in the first round (assuming
truthful reporting in the second round), for each k �
1, 2, . . . ,N.

In other words, in each stage of the dynamic game,
the outcome from truthful reporting stochastically
dominates the outcomes of all other strategies. We
emphasize that the uncertainty in the first-round as-
signment is solely due to the lottery numbers, which
students initially do not know.

Note that a two-round mechanism that uses the
first-round assignment as the initial endowment for a
mechanism such as top trading cycles in the second
round will not be two-round strategy-proof because
students can benefit from manipulating their first-
round reports to obtain a more popular initial as-
signment that they could use to their advantage in the
second round.

Finally, we discuss some efficiency properties. To
be efficient, clearly a mechanism should not leave
unused any seats that are desired by students.

Definition 9. A two-round mechanism is nonwasteful if
no student is assigned to a school for which he or she is
eligible that he or she prefers less than a school not at
capacity; that is, for each student λ ∈ Λ and schools
si, sj, if μ̂(λ) � si and sj�̂λsi and pλj ≥ 0, then η(μ̂(sj)) � qj.

It is also desirable for a two-roundmechanism to be
Pareto efficient. We do not want any students to be

able to improve their utility by swapping probability
shares in second-round assignments. However, we
also require that our reassignmentmechanism respect
guarantees and priorities (see Definitions 5 and 6),
which is incompatible with Pareto efficiency even in a
static, one-round setting.14 This motivates the follow-
ing definitions. Consider a second-round assignment
μ̂. A Pareto-improving cycle is an ordered set of types
(θ1, θ2, . . . , θm) ∈ Θm, sets of students (Λ1,Λ2, . . . ,
Λm) ∈ Λm, and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm such that
η(Λi) > 0 and s̃i+1�̂θi s̃i (where we define s̃m+1 � s̃1), for
all i, and such that for each i, θλ � θi, μ̂(λ) � s̃i for all
λ ∈ Λi.
Let p̂ be the second-round priorities obtained by

giving each student λ a top second-round priority
p̂λi � ni at their first-round assignment μ(λ) � si (if
si ∈ S) and unchanged priority p̂λj � pλj at all other
schools sj �� si. We say that a Pareto-improving cycle
(in a second-round assignment) respects (second-round)
priorities if p̂θi

s̃i+1 ≥ p̂θi+1
s̃i+1 for all i (where we define

θm+1 � θ1).

Definition 10. A two-round mechanism is constrained
Pareto efficient if the second-round assignment has no
Pareto-improving cycles that respect second-round
priorities.

We remark that this is the same notion of effi-
ciency that is satisfied by static, single-round DA-STB
(Definition 3)—the resulting assignment has no Pareto-
improving cycles that respect priorities. In other words,
the constrained Pareto-efficiency requirement is in-
formally to be “as efficient as static DA.”We also note
here that as a result of the requirement to respect
second-round priorities, Pareto-improving cycles con-
sidered must include only reassigned students.
Finally, for equity purposes, it is desirable that a

mechanism be anonymous.

Definition 11. A two-round mechanism is anonymous if
students with the same first-round assignment and the
same first- and second-round preference reports have
the same distribution over second-round assignments.

We show that PLDA mechanisms satisfy all the
aforementioned properties.

Proposition 1. PLDA mechanisms respect guarantees and
priorities and are nonwasteful, constrained Pareto efficient, and
anonymous. Moreover, if student preferences are consistent,
PLDA mechanisms are strongly two-round strategy-proof.

Wewill show in Section 3.1 that in a settingwithout
priorities, the PLDA mechanisms are the only mech-
anisms that satisfy all these properties (and some ad-
ditional technical requirements), even ifwe only require
weak strategy-proofness (Theorem 3).
Finally, it is simple to show that the natural coun-

terparts to PLDA mechanisms in a discrete setting
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(with a finite number of students) respect guarantees
and priorities and are nonwasteful, constrained Pareto
efficient, and anonymous. We make these claims for-
mal in the online appendix and also provide an in-
formal argument that the discrete PLDA mechanisms
are also approximately strategy-proof when the num-
ber of students is large.

3. Main Results
In this section, we show that the defining character-
istic of a PLDA mechanism—the permutation of lot-
teries between the two rounds—can be chosen to
achieve desired operational goals.We first provide an
intuitive order condition and show that, under this
condition, all PLDA mechanisms give the same ex
ante allocative efficiency. Thus, when the primitives
of the market satisfy the order condition, it is possible
to pursue secondary operational goals without sac-
rificing allocative efficiency. Next, in the context of
reassigning school seats at the start of the school year,
we consider the specific problem of minimizing reas-
signment and show that when the order condition
is satisfied, reversing the lottery minimizes reas-
signment among all centralized PLDA mechanisms.
In Section 5, we empirically demonstrate using data
from NYC public high schools that reversing the
lottery minimizes reassignment (among a subclass of
centralized PLDA mechanisms) and does not signif-
icantly affect allocative efficiency, even when the
order condition does not hold exactly. Our results
suggest that centralized RLDA is a good choice of
mechanism when the primary goal is to minimize
reassignments while providing a second-round as-
signment with high allocative efficiency. In Section 3.1,
we provide an axiomatic justification for PLDA mech-
anisms, and later in Section 6, we discuss how the
choice of lottery permutation can be used to achieve
other operational goals, such as maximizing the num-
ber of students with improved assignments.

We begin by defining the order condition, which
we will need to state our main results.

Definition 12. The order condition holds on a set of prim-
itives (S, q,Λ, η) if for every priority class π, the first- and
second-round school cutoffs under RLDA within that
priority class are in the same order—that is, for all
si, sj ∈ S,

Cπ,i > Cπ,j ⇒ ĈR
π,i ≥ ĈR

π,j.

Weemphasize that the order condition is a condition
on the market primitives—namely, school capacities
and priorities and student preferences (though check-
ing whether it holds involves investigating the output
of RLDA). We may interpret the order condition as
an indication that the relative demand for the schools
is consistent between the two rounds. Informally

speaking, this means that the revelation of the out-
side options does not change the order in which
schools are overdemanded. One important setting
where the order condition holds is the case of uniform
dropouts and a single priority type. In this setting, each
student independently with probability ρ either re-
mains in the system and retains his or her first-round
preferences in the second round or drops out of the
system entirely; student first-round preferences and
school capacities are arbitrary. In Section 4, we use the
uniform dropouts setting to provide some intuition
for our general results.
To compare the allocative efficiency of different

mechanisms, we define type equivalence of assign-
ments. In words, two second-round assignments are
type equivalent if the masses of different student
typesθ assigned to each school are the same across the
two assignments.

Definition 13. Two second-round assignments μ̂ and μ̂′
are said to be type equivalent if

η λ ∈ Λ : θλ � θ, μ̂(λ) � si
{ }( )

� η λ ∈ Λ : θλ � θ, μ̂′(λ) � si
{ }( )

∀θ ∈ Θ and si ∈ S.

In our continuum model, if two two-round mech-
anisms produce type-equivalent second-round as-
signments, we may equivalently interpret them as
providing each individual student of type θ with the
same ex ante distribution (before lottery numbers are
assigned) over assignments.
Our first main result is the surprising finding that

all PLDAs are allocatively equivalent.

Theorem 1 (Order Condition Implies Type Equivalence). If
the order condition (Definition 12) holds, all PLDA mech-
anisms produce type-equivalent second-round assignments.

Thus, if the order condition holds, the measure of
students of type θ ∈ Θ assigned to each school in the
second round is independent of the permutation P.
We remark that type equivalence does not imply an
equal (or similar) amount of reassignment (e.g., see
Figure 1) because type equivalence depends only on
the second-round assignment, whereas reassignment
(Definition 2) measures the difference between the
first- and second-round assignments. This brings us
to our second result.

Theorem 2 (Reverse Lottery Minimizes Reassignment). If
all PLDAmechanisms produce type-equivalent second-round
assignments, then RLDA minimizes the measure of reas-
signed students among PLDA mechanisms.

The intuition for this result is that reversing the
lottery shortcuts improvement chains and moves a
few students many schools up their preference list
instead of a large number of students a few schools
up their preference list. In particular, we show that
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RLDA never reassigns both a student of type θ into a
school si and another student of type θ out of the same
school si.

Proof of Theorem 2. Fix θ � (�θ, �̂θ, pθ) ∈ Θ and si ∈ S.
We show that among all type-equivalent mechanisms,
RLDA minimizes the measure of students with type θ
who were reassigned to si because it never reassigns
both a student of type θ into a school si and another
student of type θ out of si.

For every permutation P, let the measures of stu-
dents with type θ leaving and entering school si
in the second round under PLDA(P) be denoted by
�P � η({λ ∈ Λ : θλ � θ, μ(λ) � si, μ̂P(λ) �� si}) and eP �
η({λ ∈ Λ : θλ � θ, μ(λ) �� si, μ̂P(λ) � si}), respectively.
As a result of type equivalence, there is a constant c,
independent of P, such that �P � eP − c. We will show
that eR ≤ eP for all permutations P, specifically by
showing that either �R � 0 and eR � c or eR � 0.

If both eR > 0 and �R > 0, then students of type θ
who entered si in the second round of RLDA had
worse first- and second-round lottery numbers than
students of type θ who left si in the second round of
RLDA, which contradicts the reversal of the lottery.
Because eP � �P + c ≥ c and eP ≥ 0, this completes the
proof. □

Our results present a compelling case for using the
centralized RLDA mechanism when the main goals
are to achieve allocative efficiency and minimize the
number of reassigned students. Theorems 1 and 2
show that when the order condition holds, central-
ized RLDA is unequivocally optimal in the class
of PLDA mechanisms because all PLDA mecha-
nisms give type-equivalent assignments and centralized
RLDAminimizes the number of reassigned students. In
addition, we remark that the order condition can be
checked easily by running RLDA (e.g., on historical
data).15 Finally, even if the order condition does not
hold, RLDAmoves as few students as possible to reach
the RLDA assignment.

Next, we give examples of when the order condition
holds and does not hold and illustrate the resulting
implications for type equivalence. We illustrate these
in Figure 3.

Example 1. There are N � 2 schools, each with a single
priority group. School s1 has lower capacity and is
initially more overdemanded. Student preferences are
such that when all students who want only s2 drop out,
the order condition holds, and when all students who
want only s1 drop out, then s2 becomes more over-
demanded under RLDA, and the order condition does
not hold.

School capacities are given by q1 � 2, q2 � 5. There is
measure 4 of each of the four types of first-round
student preferences. Let θi denote the student type

that finds only school si acceptable, and let θi,j denote
the type thatfinds both schools acceptable and prefers
si to sj. (We will define the second-round preferences
of each student type below; each typewill either leave
the system completely or keep the same preferences.)
If we run DA-STB, the first-round cutoffs are (C1,
C2) � (34 , 12).
Suppose that all type θ2 students leave the system

and all students of other types stay in the system and
keep the same preferences as in the first round. This
frees up 2 units at s2. Under RLDA, the second-round
cutoffs are (ĈR

1 , Ĉ
R
2 ) � (1, 34). In this case, the order con-

dition holds, and FLDA and RLDA are type equiva-
lent. It is simple to verify that both FLDA and RLDA
assign measure μ̂(s) of students of type (θ1, θ1,2, θ2,1)
to school s, where

μ̂F � μ̂R � μ̂(s1), μ̂(s2)( ) � (1, 1, 0), (0, 2, 3)( ).
Suppose that all typeθ1 students leave the system and
all students of other types stay in the system and keep
the same preferences as in the first round. This frees
up 1 unit at s1. Under RLDA, no new students are
assigned to s2, and the previously bottom-ranked (but
now top-ranked) measure 1 of students who find s1
acceptable are assigned to s1. Hence, the second-round
cutoffs are (ĈR

1 , Ĉ
R
2 ) � (78 , 1). In this case, the order con-

dition does not hold. Type equivalence also does not
hold because the FLDA and RLDA assignments are

μ̂F � (2, 0, 0), 1/3, 7/3, 7/3( )( ),
μ̂R � (1.5, 0.5, 0), (1, 2, 2)( ).

3.1. Axiomatic Justification of PLDA Mechanisms
We have shown that PLDA mechanisms satisfy a
number of desirable properties. Namely, PLDA mech-
anisms respect guarantees and priorities and are
two-round strategy-proof (in a strong sense), non-
wasteful, constrained Pareto efficient, and anony-
mous. In this section, we show that in a setting with a
single priority class, the PLDA mechanisms are the
only mechanisms that satisfy all these properties as
well as two mild technical conditions on the sym-
metry of the mechanism, even when we require only
the weaker version of two-round strategy-proofness.

Definition 14. A two-round mechanism satisfies the
averaging axiom if for every type θ and pair of schools
(s, s′), the randomization of the mechanism does not
affect the measure of students with type θ assigned to
(s, s′) in the first and second rounds, respectively. That
is, for all θ, s, s′, there exists a constant cθ,s,s′ such that
η({λ ∈ Λ : θλ � θ, μ(λ) � s, μ̂(λ) � s′}) � cθ,s,s′ w.p. 1.

In other words, the averaging axiom requires that
despite potential randomness in how the mechanism
produces both first- and second-round assignments
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for individual students, the distribution over (first-
round assignment, second-round assignment) for stu-
dents of a given type is deterministic. The averaging
axiom serves the purpose of excluding mechanisms
with aggregate randomness, which adds unnecessary
complexity to the assignment process. For example, a
mechanism that with probability 1/2 runs FLDA and
with probability 1/2 runs RLDA satisfies all our other
axioms besides averaging and violates averaging by
adding unnecessary uncertainty. (Instead of relying
on a coin-flip decision between FLDA and RLDA,
the designer could choose the better option between
the two based on their goals.) The averaging axiom
precludes such mechanisms, and its particular tech-
nical form facilitates a sharp characterization of PLDA
mechanisms.

Definition 15. A two-round mechanism is nonatomic
if any single student changing his or her preferences

has no effect on the assignment probabilities of other
students.
Our characterization result is the following.

Theorem3. Suppose that student preferences are consistent
and student types have full support (Assumptions 1 and 2).
A nonatomic two-round assignment mechanism with first
round DA-STB respects guarantees and is nonwasteful,
(weakly) two-round strategy-proof, constrained Pareto effi-
cient, anonymous, and averaging if and only if the second-
round assignment is given by PLDA.

We remark that we require two-round strategy-
proofness only for students whose true preference
type is consistent. This is because preference incon-
sistencies across rounds can lead to conflicts between
the desired first-round assignment with respect to
first-round preferences and the desired first-round
guarantee with respect to second-round preferences,
making it unclear how to even define a best response.

Figure 3. (Color online) In Example 1, FLDA and RLDA Are Type Equivalent When the Order Condition Holds and Give
Different Assignments to Students of Every Type When the Order Condition Does Not Hold

Notes. The initial economy and first-round assignment are depicted on the top left. On the right, we show the second-round assignments under
FLDA and RLDAwhen type θ2 students (who want only s2) drop out and when type θ1 students (who want only s1) drop out. Students toward
the left have larger first-round lottery numbers. The patterned boxes above each column of students indicate the affordable sets for students in
that column. When students who want only s2 drop out, the order condition holds, and FLDA and RLDA are type equivalent. When students
who want only s1 drop out, s2 becomes more overdemanded in RLDA, and FLDA and RLDA give different ex ante assignments to students of
every remaining type.
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Moreover, it is reasonable to assume that students
who are sophisticated enough to strategize about
misreporting in the first round in order to affect the
guarantee structure in the second round will also
know their second-round preferences over schools in
S (i.e., everything except where they rank their out-
side option) at the beginning of the first round and
hence will have consistent preferences.16 We remark
also that the “only if” direction of this result is the only
place where we require the full support assumption
(Assumption 2).

The main focus of our result is the effect of cross-
round constraints. By assumption, the first-round
mechanism is DA-STB. It is relatively straightfor-
ward to deduce that the second-round mechanism
also has to be DA-STB. Strategy-proofness in the sec-
ond round, together with nonwastefulness, respecting
priorities and guarantees, and anonymity, constrains
the second round to be DA, with each student given
a guarantee at the school to which he or she was
assigned in the first round, and constrained Pareto
efficiency forces the tie breaking to be in the same
order at all schools. The cross-round constraints are
more complicated but can be understood using af-
fordable sets. A student’s affordable set is the set of
schools that he or she can choose to attend—that is,
the first-round affordable set is the set of schools for
which he or she meets the first-round cutoff, and the
affordable set is the set of schools for which he or she
meets the first- or second-round cutoff. The set of
possible affordable sets is uniquely determined by
the order of cutoffs. By carefully using two-round
strategy-proofness and anonymity, we show that a
student’s preference type does not affect the joint
distribution over his or her first-round affordable
set and affordable set, and hence his or her second-
round lottery is a permutation of his or her first-round
lottery that does not depend on his or her prefer-
ence type.

Our result mirrors similar large market cutoff
characterizations for single-round mechanisms by
Liu and Pycia (2016) and Ashlagi and Shi (2014),
which show, in settings with single and multiple pri-
ority types, respectively, that a mechanism is non-
atomic, strategy-proof, symmetric, and efficient (in each
priority class) if and only if it can be implemented by
lottery-plus-cutoff mechanisms, which provide ran-
dom lottery numbers to each student and admit them to
their favorite school for which they meet the admission
cutoff. We obtain such a characterization in a two-
round setting using the fact that the mechanism re-
spects guarantees and introducing an affordable set
argument to isolate the second round from the first.
This simplification allows us to employ arguments
similar to those used in Liu and Pycia 2016 and
Ashlagi and Shi 2014 to show that the first- and

second-round mechanisms can be individually charac-
terized using lottery-plus-cutoff mechanisms.

4. Intuition for Main Results
In this section,we provide some intuition for ourmain
results. This section may be skipped at a first reading
without loss of continuity.
A key insight is thatwe simplify analysis by shifting

away from assignments, which depend on prefer-
ences, to considering the schools that a student can
attend, which are independent of his or her prefer-
ences. Specifically, if we define the affordable set for
each student as the set of schools for which he or she
meets either the first- or second-round cutoffs, then
each student is assigned to his or her favorite school in
his or her affordable set at the end of the second
round, and changing the student’s preferences does
not change his or her affordable set in our contin-
uum model. Moreover, affordable sets and prefer-
ences uniquely determine demand.
The main technical idea that we use in establishing

our main results is that the order condition is equiva-
lent to the following seemingly much more powerful
“global” order condition.

Definition 16. We say that PLDA(P) satisfies the local
order condition on a set of primitives (S, q,Λ, η) if, for
every priority classπ, the first- and second-round school
cutoffs within that priority class are in the same order
under PLDA(P). That is, for all si, sj ∈ S,

Cπ,i > Cπ,j ⇒ ĈP
π,i ≥ ĈP

π,j.

We say that the global order condition holds on a set of
primitives (S, q,Λ, η) if
a. (Consistency across rounds) PLDA(P) satisfies

the local order condition on (S, q,Λ, η) ∀P.
b. (Consistency across permutations) For every

priority class π, for all pairs of permutations P,P′ and
schools si, sj ∈ S ∪ {sN+1}, it holds that ĈP

π,i > ĈP
π,j ⇒

ĈP′
π,i ≥ ĈP′

π,j.

In other words, the global order condition requires
that all PLDAmechanisms result in the same order of
school cutoffs in both rounds. Surprisingly, if the
cutoffs are in the same order in both rounds under
RLDA, then they are in the same order in both rounds
under any PLDA.

Theorem 4. The order condition (Definition 12) holds for a
set of primitives (S, q,Λ, η) if and only if the global order
condition holds for (S, q,Λ, η).
The affordable set framework can provide some

intuition as to why Theorem 4 holds. Under the re-
verse permutation, the sets of schools that enter a
student’s affordable set in thefirst and second rounds,
respectively, are maximally misaligned. Hence, if
as required by the local order condition the cutoff
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order is consistent across both rounds under the re-
verse permutation, then the cutoff order should also
be consistent across both rounds under any other
permutation.

4.1. Global Order Condition Implies
Type Equivalence

The affordable set framework can also be used to
show that when the global order condition holds, all
PLDA mechanisms produce type-equivalent assign-
ments. Fix a mechanism and suppose that the first-
and second-round cutoffs are in the same order. Then
each student λ’s affordable set is of the form Xi �
{si, si+1, . . . , sN} for some i � i(λ), where schools are
indexed in decreasing order of their cutoffs for the
relevant priority group pθ

λ
, and the probability that a

student receives some affordable set is independent of
his or her preferences. Moreover, because affordable
sets are nested, X1 ⊇ X2 ⊇ · · · ⊇ XN , and because the
lottery order is independent of student types, the
demand for schools is uniquely identified by the pro-
portion of students whose affordable set contains si
for each i. When the global order condition holds, this
is true for every PLDAmechanism individually, which
provides enough structure to induce type equiva-
lence. We formalize this argument in the online ap-
pendix (Lemmas 1 and 2).

4.2. Uniform Dropouts
Wenow introduce a special case of ourmodel. For this
special case, we prove that the order condition holds.
It follows that all PLDA mechanisms give type-
equivalent assignments.

Definition 17 (Informal). A market satisfies uniform
dropouts if there is exactly one priority group at each
school, students leave the system independently
with some fixed probability ρ, and the students who
remain in the system retain their preferences.

Intuitively, in the uniform dropouts model, each
student drops out of the system with probability
ρ—for example, because he or she leaves the city after
the first round for reasons that are independent of the
school choice system. The second-round problem can
thus be viewed as a rescaled version of the first-round
problem. This suggests that schools should fill in the
same order regardless of the choice of permutation
because the measure of remaining students whowere
assigned to each school si in the first round is (1 − ρ)qi,
the measure of students of each type θ assigned to
each school is scaled down by 1 − ρ, the capacity
of each school is still qi, and the measure of students
of each type θ who are still in the system is scaled
down by 1 − ρ.

Formally, let student types bedefinedbyθ � (�θ, �̂θ, 1)
(which we will write as θ � (�θ, �̂θ) because there

are no priorities). We define uniform dropouts with
probability ρ by

ζ θ � �θ, �̂θ
( )

∈ Θ :�θ��, �̂θ � sN+1 � . . .
{ }( )

� ρζ θ � �θ, �̂θ
( )

∈ Θ :�θ��
{ }( )

,

ζ θ � �θ, �̂θ
( )

∈ Θ :�θ��, �̂θ ��
{ }( )

� 1 − ρ
( )

ζ θ � �θ, �̂θ
( )

∈ Θ :�θ��
{ }( )

. (3)
That is, all students with probability ρ find the out-
side option sN+1 the most attractive in the second
round and otherwise retain the same preferences in
the second round.17

Theorem 5. In any market with uniform dropouts
(Definition 17), the global order condition (Definition 16)
holds.

We prove Theorem 5 in the online appendix. The
main steps of the proof mirror those used to prove
Theorem 4, albeit in a simpler and more transparent
setting, and can provide the interested reader with a
taste of our more general proof techniques.

Remark. We can also use the uniform dropouts setting
to explore what happens when students’ assignments
affect their preferences. We say that a market satisfies
uniform dropouts with inertia if there is exactly one
priority group at each school, students leave the system
independently with some fixed probability ρ, students
remain and wish to stay at their first round assignment
with some fixed probability ρ′ (have “inertia”), and
students otherwise remain and retain their first-round
preferences.18 It can be shown that in such amarket, the
global order condition always holds, and RLDA min-
imizes reassignment among all type-equivalent alloca-
tions. Moreover, if all students are assigned in the first
round, it can also be shown that PLDA mechanisms
produce type-equivalent allocations.

5. Empirical Analysis of
PLDA Mechanisms

In this section, we use data from the NYC high school
choice system to simulate and evaluate the perfor-
mance of centralized PLDAmechanisms under different
permutations P. The simulations indicate that although
our theoretical results are for markets satisfying the order
condition, they are real-world relevant. Different choices
of P yield similar allocative efficiency: the number of
students assigned to their kth choice for each rank k
and the number of students remaining unassigned are
similar for different permutations P. At the same time,
the difference in the number of reassigned students is
significant and is minimized under RLDA.
Motivated by current practice, we also simulate de-

centralized versions of FLDA and RLDA. In a version
where students take time to vacate previously assigned
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seats, reversing the lottery increases allocative efficiency
during the early stages of reassignment and decreases
the number of reassignments at every stage. However,
in a versionwhere students take time to decide on offers
from the waitlist, the efficiency comparisons are re-
versed.19 In both versions, both FLDA andRLDA took
tens of stages to converge. Our simulations suggest
that decentralized waitlist mechanisms can achieve
some of the efficiency gains of a centralized mecha-
nism but incur significant congestion costs, and the ef-
fects of reversing the tie-breaking order before con-
structingwaitlists will depend on the specific time and
informational constraints of the market.

5.1. Data
We use data from the high school admissions process
in NYC for the academic year 2004–2005 as follows.

5.1.1. First-Round Preferences. In our simulation, we
take the first-round preferences � of every student to
be the preferences they submitted in the main round
of admissions. The algorithm used in practice is es-
sentially strategy-proof (see Abdulkadiroglu et al.
2005a), justifying our assumption that reported prefer-
ences are true preferences.20

5.1.2. Second-Round Preferences. In our simulation,
students either drop out of the system entirely in the
second round or maintain the same preferences. Stu-
dents are considered to drop out if the data do not
record them as attending any public high school in
NYC the following year (this was the case for about 9%
of the students each year).21

5.1.3. School Capacities and Priorities. Each school’s
capacity is set to the number of students assigned to
it in the first-round assignment in the data. This is a
lower bound on the true capacity but lets us compute
the final assignment under PLDA with the true ca-
pacities because the occupancy of each school with
vacant seats decreases across rounds in our setting.
School priorities over students are obtained directly
from the data. (We obtain similar results in simula-
tions with no school priorities.)

5.2. Simulations
In a setting with a finite number of students, DA-STB
uses an iterative process of student application and
school tentative acceptance to assign students accord-
ing to student preferences and school preference
rankings after tie breaking, as described in Section 2.2.
PLDA mechanisms are reassignment mechanisms
that run DA-STB with modified school preferences p̂
in the second round: for each school si, students λ ∈ Λ
for whom μ(λ) � si are given additional priority ni at
school si to produce updated priorities p̂, and ties

within the updated priority groups p̂ are broken
according to the permuted lottery P ◦ L (in favor of the
student with the larger permuted lottery number).

5.2.1. Centralized PLDA. We first consider the fol-
lowing family of centralized PLDA mechanisms, pa-
rameterized by a single parameter α that smoothly
interpolates between RLDA and FLDA. Each student
λ receives a uniform independent and identically dis-
tributed (i.i.d.) first-round lottery number L(λ) (a
normal variable with mean 0 and variance 1) that
generates a uniformly random lottery order.22 The
second-round “permuted lottery” of λ is given by
αL(λ) + L̃(λ), where L̃(λ) is a new i.i.d. normal variable
with mean 0 and variance 1, and α is identical for all
students. RLDA corresponds to α � −∞, and FLDA
corresponds to α � ∞. For a fixed real α, every re-
alization of second-round scores corresponds to some
permutation of first-round lottery numbers, with α
roughly capturing the correlation of the second-round
order with that of the first round. We quote averages
across simulations.

5.2.2. Decentralized PLDA. In order to evaluate the
performance of waitlist systems, we experiment with
two different versions of managing the waitlists in
a decentralized fashion. The starting point for both
versions is the first-round assignment of students to
schools. Each school maintains an ordered waitlist of
students constructed as follows: any student who is not
assigned to his or her most-preferred school is auto-
matically included in the waitlist at every school he or
she strictly prefers to his or her first-round assignment,
and each school orders its waitlist in priority order,
breaking ties using the chosen permutation of the first-
round lottery numbers. We emphasize that students
could appear on multiple waitlists and that individual
schools do not know the preferences of the students,
the priority of a student at another school, or the
number of available seats at other schools.

Version 1. The algorithm proceeds iteratively in stages.
The residual capacity of a school at the beginning of a
stage is its original capacity minus the number of stu-
dents in the system who are assigned to that school at
that time. (Thus, if a school was filled to capacity in the
first round, its residual capacity at the beginning of the
first stage of the second round would simply be
the number of its assigned students who dropped out
of the system.) At the beginning of any stage �, each
school si makes an offer of admission to the top q̃�i
students on itswaitlist (or to all students on itswaitlist
if there are fewer students), where q̃�i is the residual
capacity of school i at the beginning of stage �. Note
that these include offers to students who have dropped
out of the system because the school is not aware of this
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fact. A student who drops out of the system rejects all
offers; students still in the system accept their most-
preferred school among their first-round assignment
and all offers received at this stage of the second
round and reject every other offer. The schools update
their waitlists and residual capacity, and the algo-
rithm proceeds to the next stage.

There can be two types of “wasted” offers at each
stage of version 1: a school may make an offer to a
student who has already dropped out of the system
because the school does not know that the student has
dropped out (recall that when a student drops out,
only his or her assigned school in the first round is
notified), and multiple schools may make offers to a
student at the same stage of the second round, and the
“losing” schools come to know only at the end of the
stage. Such wasted offers are avoided by version 2 of
the algorithm described next.

Version 2. The algorithm proceeds iteratively in stages.
The residual capacity of a school at the beginning of a
stage is its original capacity minus the number of stu-
dents in the system who are assigned to that school at
that time. At each stage �, the school-proposing DA
algorithm (Definition 18) is run, with the school ca-
pacities being the residual capacities at that stage,
student preferences restricted to schools that the student
strictly prefers to his or her current assignment, and
ties broken using the chosen permutation of first-round
lottery numbers.

In contrast to version 1, here the underlying prem-
ise is that students who have dropped out or those
who receive multiple offers immediately reject all but
their most-preferred offer, thus allowing schools to
make more offers within the stage than their residual

capacity permits if some offers are rejected. However,
as in version 1, schools adjust their residual capacity
only at the end of the stage. That is, a student who
accepts an offer from a school at some stage � in the
second round does not notify his or her previously
assigned school until the end of the stage (equiva-
lently, that school is allowed to fill this student’s spot
only in stage � + 1).
Version 1 of the decentralized PLDA mechanisms

mirrors a decentralized process where students take
time tomake decisions. However, it does so in a rather
naive fashion by assuming that students take the
same unit of time (one stage) both to directly respond
to offers (i.e., accept or reject an offer) and to indirectly
respond (i.e., notify a school that they were previ-
ously assigned to that they have been assigned to a
different school). Version 2 captures a decentralized
process where direct responses to offers are instan-
taneous, so rejected offersmay result inmany offers in
a single stage, whereas updates to schools that are
indirectly affected happen only at the end of each
stage. Accordingly, the efficiency outcomes at a given
stage of version 2 dominate those of version 1 at the
same stage because more information is communi-
cated during each stage.
In practice, we expect that the dynamics of waitlist

systems would lie somewhere on the spectrum between
these two extreme versions of decentralized PLDA.

5.3. Results
The results of our centralized PLDA computational
experiments based on 2004–2005 NYC high school
admissions data appear in Table 1 and Figure 4.
Figure 4 shows that the mean number of reassign-
ments is minimized at α � −∞ (RLDA) and increases

Table 1. Centralized PLDA Simulation Results: 2004–2005 NYC High School Admissions

α
Reassignments

N
Unassigned

%
k � 1
%

k ≤ 2
%

k ≤ 3
%

Round 1 (no
reassignment)

0 9.31 50.14 64.14 72.44

Round 2
FLDA: ∞ 7,797 5.89 55.41 69.85 78.03
8.00 7,606 5.90 55.40 69.85 78.02
6.00 7,512 5.90 55.40 69.85 78.03
4.00 7,325 5.89 55.38 69.84 78.02
2.00 6,863 5.89 55.33 69.81 78.02
0.00 5,220 5.87 54.96 69.65 77.97
−2.00 3,686 5.81 54.52 69.37 77.82
−4.00 3,480 5.79 54.47 69.33 77.78
−6.00 3,433 5.79 54.46 69.32 77.77
−8.00 3,416 5.79 54.45 69.31 77.77
RLDA: −∞ 3,391 5.79 54.45 69.30 77.75

Notes. We show the mean percentage of students remaining unassigned or getting at least their kth
choice averaged across 100 realizations for each value of α. All percentages are out of the total number of
students remaining in the second round. The data contained 81,884 students, 74,366 students remaining
in the second round, and 652 schools. The percentage of students who dropped out was 9.18%. The
variation in the number of reassignments across realizations was ∼ 100 students.
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with α, which is consistent with our theoretical result
in Theorem 2. The mean number of reassignments is
as large as 7,800 under FLDA compared with just
3,400 under RLDA.

Allocative efficiency appears not to vary much
across values of α: the number of students receiving at
least their kth choice for each 1 ≤ k ≤ 12 and the
number of unassigned students vary by less than 1%
of the total number of students. There is a slight trade-
off between allocative efficiency resulting from reas-
signment and allocative efficiency from assigning
previously unassigned students, with the percentage
of unassigned students and percentage of students
obtaining their top choice both decreasing inα by about
0.1%and 1%of students, respectively.23We further find
that for most students, the likelihoods of getting one
of their top k choices under FLDA and under RLDA
are very close to each other. (For instance, for 87% of
students, these likelihoods differ by less than 3% for
all k.) This is consistent with what we would expect
based on our theoretical finding of type equivalence
(Theorem 1) of the final assignment under different
PLDA mechanisms.

The results of our decentralized PLDA computa-
tional experiments appear in Table 2. When imple-
menting PLDAs in a decentralized fashion, our mea-
sures of congestion can be more nuanced. We let a
reassignment be amovement of a student from a school
in S to a different school in S, possibly during an
interim stage of the second round, and let a temporary
reassignment be amovement of a student from a school
in S ∪ {sN+1} to a different school in S that is not his or
her final assignment. We will also be interested in the
number of stages it takes to clear the market.

In the first version of decentralized PLDAs, FLDA
reassigns more students than RLDA but far out-
performs RLDA in terms of minimizing congestion
and maximizing efficiency. FLDA takes, on average,
17 stages to converges, whereas RLDA requires 33
stages. FLDA performs 780 temporary transfers,
whereas RLDA performs 2,420, creating much more
unnecessary congestion. FLDA takes two and five
stages to achieve 50% and 90%, respectively, of the total
increase in the number of students assigned to their top
school, whereas RLDA takes three and nine stages,
respectively. FLDA also dominates RLDA in terms of
the number of students assigned to one of their top k
choices in the first � stages, for all k and all �, and the
percentage of unassigned students in the first � stages
for almost all small �.24

In the second version of decentralized PLDAs,
FLDA still reassigns more students and now achieves
less allocative efficiency than RLDA during the initial
stages of reassignment. RLDA has fewer unassigned
students by stage � than FLDA for all �. RLDA also
dominates FLDA in terms of the number of students
assigned to one of their top k choices in the first two
stages and achievesmost of its allocative efficiency by
the second stage, improving the allocative efficiency
by fewer than 100 students from that point onward. In
the limit, FLDA is still slightly more efficient than
RLDA, so for large �, FLDA achieves higher allocative
welfare than RLDA after � stages. However, FLDA
also requires more stages to converge, taking, on av-
erage, 12 stages compared with 9 stages for RLDA.
Our empirical findings havemixed implications for

implementing decentralized waitlists. Our clearest
finding is the benefit of centralization in reducing

Figure 4. Number of Reassigned Students vs. α

Note. The number of reassigned students under the extreme values of α—namely, α � ∞ (FLDA) and α � −∞ (RLDA)—are shown by dotted lines.
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congestion. In most school districts, students are
given up to a week to make decisions. If students take
this long both to reject undesirable offers and to vacate
previously assigned seats, our simulations on NYC
data suggest that in the best case the market could
take at least 4 months to clear. Even if students make
quick decisions, if it takes them a week to vacate their
previously assigned seats, our simulations suggest
that the market would take at least 2 months to clear.
In both cases, the congestion costs are prohibitive. If,
despite these congestion costs, a school districtwishes
to implement decentralized waitlists, our results sug-
gest that the optimal permutation for the second-round
lottery for constructing waitlists will depend on the
informational constraints in the market.

5.4. Strategy-Proofness of PLDA
One of the aspects of the DA mechanism that makes
it successful in school choice in practice is that it is
strategy-proof. While we have shown that PLDA
mechanisms are two-round strategy-proof in a con-
tinuum setting, it is natural to ask to what extent

PLDA mechanisms are two-round strategy-proof in
practice. We provide a numerical upper bound on the
incentives to deviate from truthful reporting using
computational experiments based on 2004–2005 NYC
high school data and find that, on average, a negli-
gible proportion of students (< 0.01%) could benefit
from misreporting within their consideration set of
programs. Specifically, 0.8% of sampled students could
misreport in a potentially beneficial manner in at least 1
of 100 sampled lotteries, and no students could bene-
fit in more than 3 of 100 sampled lotteries from mis-
reporting. Moreover, for 99.8% of lotteries, the pro-
portion of students who could successfully manipulate
their report is at most 1%.25

6. Proposals and Discussion
6.1. Summary of Findings
We have proposed the PLDA mechanisms as a class
of reassignment mechanismswith desirable incentive
and efficiency properties. These mechanisms can be
implemented with a centralized second round at the
start of the school year or with a decentralized second

Table 2. Decentralized PLDA Simulation Results: 2004–2005 NYC High
School Admissions

α
Reassignments Unassigned k � 1 k ≤ 2 k ≤ 3

Total (temporary) % % % %

Round 1 (no reassignments) 0 9.31 50.14 64.17 72.45
Round 2 FLDA, version 1
Stage 1 3,461 (447) 7.89 52.68 66.62 74.47
Stage 2 2,126 (206) 7.04 53.93 68.03 76.14
Stage 3 1,258 (80) 6.55 54.60 68.83 76.96
Stage 4 727 (30) 6.27 54.97 69.28 77.42
Stage 5 425 (11) 6.11 55.18 69.53 77.68
Total (stage ≈ 17) 8,590 (780) 5.87 55.46 69.87 78.05
Round 2 RLDA, version 1
Stage 1 1,004 (835) 7.85 51.38 65.70 74.09
Stage 2 1,077 (577) 7.18 52.24 66.72 75.15
Stage 3 838 (369) 6.78 52.82 67.39 75.83
Stage 4 640 (234) 6.52 53.23 67.86 76.30
Stage 9 180 (24) 5.97 54.22 69.02 77.45
Total (stage ≈ 33) 5,818(2419) 5.79 54.51 69.37 77.80
Round 2 FLDA, version 2
Stage 1 4,139 (457) 7.62 53.21 67.14 75.21
Stage 2 2,333 (166) 6.69 54.50 68.66 76.75
Stage 3 1137 (42) 6.24 55.06 69.35 77.48
Stage 4 511 (9) 6.03 55.30 69.65 77.80
Total (stage ≈ 12) 8,503 (677) 5.89 55.47 69.87 78.04
Round 2 RLDA, version 2
Stage 1 2,863 (199) 6.15 54.14 68.85 77.24
Stage 2 489 (17) 5.88 54.38 69.16 77.58
Stage 3 165 (2) 5.82 54.46 69.26 77.69
Stage 4 63 (0) 5.79 54.49 69.30 77.73
Total (stage ≈ 9) 3,624 (220) 5.79 54.51 69.33 77.76

Notes. We show themean number of reassignments (number ofmovements of a student from a school in
S to a different school in S) and themean number of temporary reassignments (number of movements of
a student from a school in S ∪ {sN+1} to a different school in S that is not their final assignment) in
parentheses. We also show mean percentage of students remaining unassigned or getting at least their
kth choice. All figures are averaged across 100 realizations for each value of α, and all percentages are out
of the total number of students remaining in the second round. The data contained 81,884 students,
74,366 students remaining in the second round, and 652 schools.
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round via waitlists, and a suitable implementation
can be chosen depending on the timing of informa-
tion arrival and subsequent congestion in the mar-
ket. Moreover, the key defining characteristic of the
mechanisms in this class, the permutation used to
correlate the tie-breaking lotteries between rounds,
can be used to optimize various objectives. We pro-
pose implementing centralized RLDA at the start of
the school year because both in our theory and in
simulations on data this allows us to maintain effi-
ciency while eliminating the congestion caused by
sequentially reassigning students and minimizes the
number of reassignments required to reach an effi-
cient assignment.

6.2. RLDA Is Practical
Reversing the lottery between rounds is simple to
understand and implement. It also has the nice property
of being equitable in an intuitive manner because stu-
dents who receive a poor draw of the lottery in the first
round are prioritized in the second round. This may
make RLDA more palatable to students than other
PLDA mechanisms. Indeed, Random Hall, a Massa-
chusetts Institute of Technology (MIT) dorm, uses a
mechanism for assigning rooms that resembles the
reverse-lottery mechanism we have proposed. Fresh-
men rooms are assignedusing serial dictatorship.At the
end of the year (after seniors leave), students can claim
the rooms vacated by the seniors using serial dicta-
torship, where the initial lottery numbers (from their
first match) are reversed.26

6.3. Optimizing Other Objectives
Our results suggest that PLDA mechanisms are an
attractive class of mechanisms in more general set-
tings, and the choice of PLDA mechanism will vary
with the policy goal. If, for instance, it were viewed
as more equitable to allow more students to receive
(possibly small) improvements to their first-round
assignment, implementing FLDA optimizes this. Our
type-equivalence result (Theorem 1) shows that when
students have consistent preferences and the order
condition holds, this choice can be made without
sacrificing allocative efficiency.

6.4. Discussion of Axiomatic Characterization
Our characterization for PLDA mechanisms (Theo-
rem 3) does not incorporate priorities. In amodel with
priorities, we find that natural extensions of our ax-
ioms continue to describe PLDAmechanisms but also
include undesirable generalizations of PLDA mech-
anisms. Specifically, suppose that we add an axiom
requiring that for each school s, the probability that a
studentwho reports a top choice of s then receives it in
the first or second round is independent of that stu-
dent’s priority at other schools. This new set of axioms

describes a class of mechanisms that strictly includes
the PLDAmechanisms, as well as mechanisms where
the permutation of the lottery can depend on students’
priorities. Characterizing the class of mechanisms
satisfying these axioms in the richer setting with
school priorities remains an open question. It may also
be possible to characterize PLDA mechanisms in a
settingwithpriorities using adifferent set of axioms.We
leave both questions for future research.

6.5. Finite Markets
It is natural to ask what implications our results have
for finite markets. Azevedo and Leshno (2016) have
shown that if a sequence of (large) discrete economies
converges to some limiting continuum economy with
a unique stable matching (defined via cutoffs), then
the stable matchings of the discrete economies con-
verge to the stable matching of the continuum. This
suggests that our theoretical results should approx-
imately hold for large, discrete economies. As an
example, we provide a heuristic argument for why
PLDA mechanisms satisfy the strategy-proofness in
the large condition defined by Azevedo and Budish
(2013). By definition, PLDA mechanisms satisfy
the efficiency and anonymity requirements in finite
markets as well. In the second round, it is clearly a
dominant strategy to be truthful, and intuitively, for
a student to benefit from a first-round manipulation,
his or her report should affect the second-round
cutoffs in a manner that gives him or her a second-
round assignment that he or she would not have re-
ceived otherwise. If the market is large enough, the
cutoffs will converge to their limiting values, and the
probability that the student could benefit from such a
manipulation would be negligible. (Indeed, in simu-
lations on NYC high school data, we find that the av-
erage proportion of students who can successfully
manipulate their report is < 0.01%; see Section 5.4.)
A similar argument suggests that an approximate
version of our characterization result (Theorem 3)
should hold for finite markets with no priorities.
Our type-equivalence result (Theorem 1) and result
showing that RLDA minimizes transfers (Theorem 2)
should also be approximately valid in the large
market limit.27

6.6. Inconsistent Preferences
Another natural question is how to deal with incon-
sistent student preferences. Narita (2016) observed
that in the current reapplication process in the NYC
public school system, about 5% of students reapplied
with second-round preferences thatwere inconsistent
with their first-round reported preferences.28 PLDAs
retain most of their desirable properties even when
students report inconsistent preferences in the sec-
ond round. We believe that some of our insights on
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optimizing allocative efficiency and reassignment re-
main valid if a small fraction of students has an idio-
syncratic change in preferences or if a small number of
new students enter in the second round. We also be-
lieve that our qualitative insights that reversing the
lottery reduces reassignment and that the choice of
PLDA has smaller effects on allocative efficiency in
settings where aggregate demand in the two rounds
are well aligned and will continue to hold quite gen-
erally. However, new effects may emerge if stu-
dents have arbitrarily different preferences in the two
rounds. In such settings, strategy-proofness is no lon-
ger well defined. It can also be shown that the order
condition is no longer sufficient to guarantee type
equivalence and optimality of RLDA, and the relative
efficiency of the PLDAmechanisms will depend on the
details of school supply and student demand. Our
simulations further suggest that in such settings there
may be a more significant trade-off between decreas-
ing the number of unassigned and reassigned students
and increasing the efficiency of the final assignment.
Mechanisms such asRLDA that prioritize studentswith
poor first-round assignments are likely to perform better
on the former, whereas mechanisms such as FLDA that
minimize the constraints imposed by first-round guar-
antees will likely perform better on the latter. We leave a
theoretical study of this trade-off for future research.

6.7. More Than Two Rounds
Finally, what insights do our results provide for when
assignment is done in three or more rounds? For in-
stance, one could consider mechanisms under which
the lottery is reversed (or permuted) after a certain
number of rounds and thereafter remains fixed. At
what stage should the lottery be reversed? Clearly,
there are many other mechanisms that are reasonable
for this problem, and we leave a more comprehensive
study of this question for future work.
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Endnotes
1 In the 2004–2005 school year, 9.22% of a total of 81,884 students
dropped out of the public school system after the first round. Numbers
for 2005–2006 and 2006–2007 are similar.
2A decentralized version of FLDA is used in most cities and in NYC
kindergarten admissions.

3Capacity constraints are binding inmost schools.Most states impose
maximum class sizes and fund schools based on enrollment after the
first 2–3weeks of classes, which incentivizes schools to enroll asmany
students as permissible.
4We describe the decentralized reassignment processes currently
used in NYC kindergarten; Boston; Washington, DC; Denver;
Seattle; New Orleans; and Chicago. A similar process was also used
in NYC high school admissions until a few years ago, when the
system abandoned reassignments entirely, anecdotally because of
the excessive logistical difficulties created by market congestion.
5 Studentswho have accepted an offer off thewaitlist of one school are
allowed to accept offers off the waitlists of other schools. Because
registration for one school automatically cancels the student’s previous
registrations, this would automatically release the seat the student
accepted from the first school to other students on the waitlist.
6 See, for example, Abdulkadiroglu et al. (2005a, b) for an overview
of the redesigns in New York City (2003) and Boston (2005), respec-
tively. These were followed by NewOrleans (2012), Denver (2012), and
Washington, DC (2013)—among others. See Abdulkadiroglu et al.
(2017) for welfare analysis of the changes in NYC.
7Our continuum model can be viewed as a two-round version of
the model introduced by Azevedo and Leshno (2016). Continuum
models have been used in a number of papers on school choice; see
Agarwal and Somaini (2018), Ashlagi and Shi (2014), and Azevedo
and Leshno (2016). Intuitively, one can think of the continuummodel
as a reasonable approximation of the discrete model in Online Ap-
pendix B when the number of students is large, although establishing
a formal relationship between the discrete and continuum models is
beyond the scope of our paper.
8Consistency is required tomeaningfully define strategy-proofness in
our two-round setting because we require truthful reporting in the
first round to be optimal for both the student’s first- and second-
round assignments.
9This can be justified via an axiomatization of the kind obtained by
Al-Najjar (2004).
10This ensures that students will report their full first-round pref-
erences in the first round instead of truncating in the first round based
on their beliefs about their second-round preferences.
11 Several alternative definitions of reassigned students—such as
counting students who are initially unassigned and end up at a school
in S and/or counting initially assigned students who end up
unassigned—could also be considered. We note that our results
continue to hold for all these alternative definitions.
12Here we make the restriction that the second-round assignment
depends on the first-round reports only indirectly, through the first-
round assignment μ. We believe that this is a reasonable restriction,
given that the second round occurs a significant period of time after
the first round, and the mechanism should come across as fair to the
students.
13 If the demand function is continuously differentiable in the cutoffs,
the assignment is unique. For an arbitrary demand function, the
resulting assignment is unique for all but a measure zero set of ca-
pacity vectors.
14When schools have strict preferences, an assignment respects pri-
orities if and only if it is stable, and it is well known that in two-sided
matching markets with strict preferences, there exist preference
structures for which every stable assignment can be Pareto improved
(Erdil and Ergin 2008).
15We are not suggesting that the mechanism should involve checking
the order condition and then using centralized RLDA only if this
condition is satisfied (based on the guarantee in Theorems 1 and 2).
However, one could check whether the order condition holds on
historical data and accordingly decide whether to use the centralized
RLDA mechanism or not.
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16One obvious objection is that students may also obtain extra utility
from staying at a school between rounds, or equivalently, they may
have a disutility for moving, creating inconsistent preferences where
the school they are assigned to in the first round becomes preferred to
previously more desirable schools. We remark that Theorem 3 ex-
tends to the case of students whose preferences incorporate addi-
tional utility if they stay put, provided that the utility is the same at
every school for a given student or satisfies a similar noncrossing
property.
17We remark that there is a well-known technical measurability issue
with regard to a continuum of random variables and that this issue
can be handled; see, for example, Al-Najjar (2004).
18This market is slightly beyond the scope of our general model
because the type of the student now also has to encode second-round
preferences that depend on the first-round assignment—namely,
whether they have inertia.
19This is due to a phenomenon that occurs when the second round is
decentralized (not captured by our theoretical model), where under
the reverse lottery the students with the worst lottery in the first
round increase the waiting time for other students in the second
round by increase the waiting time for other students in the second
round by considering multiple offers off the waitlist that they
eventually decline.
20The algorithm is not completely strategy-proof because students
may rank no more than 12 schools. However, only a very small
percentage of students rank 12 schools. Another issue is that there is
some empirical evidence that students do not report their true pref-
erences even in school choice systemswith strategy-proofmechanisms;
see, for example, Hassidim et al. (2015) and Narita (2016).
21 For a minority of the students (9.2%−10.45%), attendance in the
following year could not be determined by our data, and hence we
assume that they drop out randomly at a rate equal to the dropout
rate for the rest of the students (9.2%).
22 School preferences are then generated by considering students in
the lexicographic ordering first in terms of priority and then by lottery
number. We may equivalently renormalize the set of realized lottery
numbers to lie in the interval [0, 1] before computing scores.
23 Intuitively, prioritizing students with lower lotteries has the de-
sirable effect of decreasing the number of unassigned students be-
cause it prioritizes more students who were not assigned in the first
round. However, it also decreases allocative efficiency by artificially
increasing the constraints imposed by first-round guarantees.
24The mechanism driving the inefficiency of decentralized RLDA is
that all offers in the first few stages of round 2 are made to a small
number of students: thosewith theworst first-round lottery numbers.
This inefficiency should be mitigated when students respond quickly
tomost of their offers, aswe see in the second version of decentralized
PLDA.
25These upper bounds were computed as follows: approximately
2,700 students were sampled, and RLDA was run for each of these
students using 100 different sampled lotteries. For a given student, let
S be the set of schools that were a part of the student’s first-round
preferences in the data. We allowed the student to unilaterally
misreport in the first round, reporting atmost one school from S in the
first round instead of his or her true preferences. We then counted the
number of such students who by doing so could either (a) change
their first-round assignment (for the worse) but second-round as-
signment for the better or (b) create a rejection cycle. This provides a
provable upper bound on the number of students who can benefit
from misreporting (and possibly reordering) a subset of S in the first
round. We omit the formal details in the interest of space.
26The MIT Random Hall matching is more complicated because
sophomores and juniors can also claim the vacated rooms, but the
lottery only gets reversed at the end of freshman year. Afterward, if a

sophomore switches rooms, his or her priority drops to the last place
of the queue.
27 Specifically, consider a sequence of markets of increasing size. If the
global order condition holds in the continuum limit, this should lead
to approximate type-equivalence under all PLDAs and to RLDA
approximately minimizing transfers among PLDAs in the finite
markets as market size grows.Moreover, if the order condition holds,
then in large, finite economies and for every permutation P, the set of
students who violate a local order condition on PLDA(P) will be small
relative to the size of the market.
28About 7% of students reapplied, and about 70% of these reap-
plicants reported second-round preferences that were inconsistent
with their first-round reported preferences.
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