
Online Appendix for “Dynamic Matching in School Choice:

Efficient Seat Reassignment after Late Cancellations”

A List of Notation

A.1 Model

• S = {s1, . . . , sN}: schools

• sN+1: outside option

• qi: capacity of school i

• Λ = Θ× [0, 1]: set (continuum) of students

• η: measure over Λ

• θ = (�θ, �̂θ, pθ): student types

• Θ: space of student types θ

• ζ(θ): measure of students with type θ

• L: student lottery numbers

• ni: the number of priority groups at school si

A.2 Mechanisms

• P : permutation

• µ: first-round assignment

• µ̂: second-round assignment

• µ̂P : second-round assignment from PLDA with permutation P

• C: first-round cutoffs

• Ĉ
P

: second-round cutoffs from PLDA with permutation P

• Cπ: first-round cutoffs restricted to priority class π
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• Ĉ
P
π : second-round cutoffs from PLDA with permutation P restricted to priority class π

A.3 Proof of Theorem 2

• `P = η({λ ∈ Λ : θλ = θ, µ(λ) = si, µ̂P (λ) 6= si}): the measure of students with type θ leaving

school si in the second round under PLDA with permutation P

• eP = η({λ ∈ Λ : θλ = θ, µ(λ) 6= si, µ̂P (λ) = si}): the measure of students with type θ entering

school si in the second round under PLDA with permutation P

A.4 Proofs for Uniform Dropouts (Section 4)

• ρ: probability that a student drops out ac

• C̃: constructed second-round cutoffs

• fPi (x): proportion of students with si in their affordable set with permutation P and first-

and second-round cutoffs (Ci, x)

• γPi : the fraction of students whose affordable set in the second round of PLDA with permu-

tation P is Xi

A.5 Notation in the Appendix

• r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci}: the amended second-round score of student λ

under PLDA

• Xi = {si, . . . , sN+1}: schools (weakly) after si in the cutoff ordering

• γi: the proportion of students whose first-round affordable set is Xi

A.6 Proof of Theorems 1 and 4

• βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}): the measure of students who, when their set of

affordable schools is Xj , will choose si

• Eλ(C): the set of schools affordable for type λ in the first round under PLDA with permu-

tation P
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• Êλ(ĈP ): the set of schools affordable for type λ in the second round under PLDA with

permutation P

• γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}): the fraction of students whose affordable set in the second

round of PLDA with permutation P is Xi

• qπ: restricted capacity vector for priority class π

• Λπ: set of students with priority class π

• ηπ: restriction of η to students with priority class π

• Eπ = (S, qπ,Λπ, ηπ): restricted primitives for priority class π

• sσπ(i): i-th school under second-round overdemand ordering for Eπ

• C̃P : second-round cutoffs defined for PLDA with the amended second-round scores from the

RLDA cutoffs ĈR

• C̃P
π : second-round cutoffs defined for PLDA on Eπ with the amended second-round scores

from the RLDA cutoffs ĈR

• n̂: smallest index of a school affordable to everyone

A.7 Proof of Theorem 3

• sσ(i): i-th school under second-round overdemand ordering in a non-atomic mechanism M

satisfying axioms (1)–(5)

• X̃i = {sσ(i), sσ(i+1), . . . , sσ(N+1)}: schools (weakly) after sσ(i) in the second-round overdemand

ordering

• γi,j : proportion of students under the constructed PLSM whose first-round affordable set was

Xi and whose second-round affordable set was X̃j

• i(S′) = max{j : sj ∈ S′}: the maximum index of a school in S′

• Iji = [Ci, Cj ]: the first-round scores that give students first-round affordable sets

{Xj+1, Xj+2, . . . , Xi}

• ρθ(I, S′): the proportion of students with type θ who, under the mechanism M , have a

first-round score in the interval I and are assigned to a school in S′ in the second round
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B PLDA for a Discrete Set of Students

In this section we formally define and show how to implement PLDA mechanisms in a discrete

setting with a finite number of students, and prove that they retain almost all the desired incentive

and efficiency properties discussed in Section 2.2.

B.1 Discrete Model

A finite set Λ = {1, 2, . . . , n} of students are to be assigned to a set S = {s1, . . . , sN} of schools.

Each student can attend at most one school. As in the continuum model, for every school si ∈ S,

let qi ∈ N+ be the capacity of school si, i.e., the number of students the school can accommodate.

Let sN+1 6∈ S denote the outside option, and assume qN+1 = ∞. For each set of students A ⊆ Λ

we let η(A) = |A| be the number of students in the set. As in the continuum model, each student

λ = (θλ, L(λ)) ∈ Λ has a type θλ = (�λ, �̂λ, pλ) and a first-round lottery number L(λ) ∈ [0, 1],

which encode both student preferences and school priorities. The first-round lottery numbers L(λ)

are i.i.d. random variables drawn uniformly from [0, 1] and do not depend on preferences. These

random lottery numbers L generate a uniformly random permutation of the students based on the

order of their lottery numbers.

An assignment µ : Λ→ S specifies the school that each student is assigned to. For an assignment

µ, we let µ(λ) denote the school to which student λ is assigned, and in a slight abuse of notation,

we let µ(si) denote the set of students assigned to school si. As in the continuum model, we say

that a student λ ∈ Λ is a reassigned student if she is assigned to a school in S in the second round

that is different to her first-round assignment.

B.2 PLDA Mechanisms & Their Properties

We now formally define PLDA mechanisms in a setting with a finite number of students. In order

to do so, we use the algorithmic description of DA and extend it to a two-round setting. This also

provides a clear way to implement PLDA mechanisms in practice.

We first reproduce the celebrated and widely deployed DA algorithm, and then proceed to define

PLDAs.

Definition 1. The Deferred Acceptance algorithm with single tie-breaking is a function DA
(
(�λ

, pλ)λ∈Λ, L
)

mapping the student preferences in the first round, priorities and lottery numbers into
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an assignment µ constructed as follows. In each step, unassigned students apply to their most-

preferred school that has not yet rejected them. A school with a capacity of q tentatively accepts its

q highest-ranked applicants, ranked according to its priority ranking of the students with ties broken

by giving preference to higher lottery numbers L (or tentatively accepts all applicants, if fewer than

q have applied), and rejects any remaining applicants, and the algorithm moves on to the next step.

The algorithm runs until there are no new student applications, at which point it terminates and

assigns each student to her tentatively assigned school seat.

Definition 2 (Permuted Lottery Deferred Acceptance (PLDA) mechanisms). Let P be a permuta-

tion of Λ. Let L be the realization of first-round lottery numbers, and let µ be the first-round assign-

ment obtained by running DA with lottery L. The permuted lottery deferred acceptance mechanism

associated with P (PLDA(P )) is the mechanism that then computes a second-round assignment µ̂P

by running DA on the same set of students Λ but with student preferences �̂, a modified lottery

P ◦ L, and modified priorities p̂ that give each student top priority at the school she was assigned

to in the first round. Specifically, each school si’s priorities �̂i are defined by lexicographically or-

dering the students first by whether they were assigned to si in the first round, and then according

to pi. PLDA(P ) is the two-round mechanism obtained from using the reassignment mechanism

DA
(
(�̂λ, p̂λ)λ∈Λ, P ◦ L

)
.

We now formally define desirable properties from Section 2.2 in our discrete model. We remark

that the definitions of respecting guarantees, strategy-proofness and anonymity do not reference

school capacities and so carry over immediately. Similarly, the definitions for respecting priorities,

non-wastefulness and constrained Pareto efficiency do not require non-atomicity and so our defini-

tion of η ensures that they also carry over. For completeness, we rewrite these properties without

reference to η.

Definition 3. A two-round mechanism M respects priorities (subject to guarantees) if (i)

for every school si ∈ S and student λ ∈ Λ who prefers si to her assigned school si �̂λ µ̂(λ), we

have |µ̂(si)| = qi, and (ii) for all students λ′ such that µ̂(λ′) = si 6= µ(λ′), we have pλ
′
i ≥ pλi .

Definition 4. A two-round mechanism is non-wasteful if no student is denied a seat at a school

that has vacant seats; that is, for each student λ ∈ Λ and school si, if si�̂λµ̂(λ), then |µ̂(si)| = qi.

Let µ̂ be a second-round assignment. A Pareto-improving cycle is an ordered set of students

(λ1, λ2, . . . , λm) ∈ Λm and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm such that s̃i+1�̂is̃i (where �̂i denotes the

second-round preferences of student λi, and we define s̃m+1 = s̃1), and µ̂(λi) = s̃i for all i.
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Let p̂ be the second-round priorities obtained by giving each student λ a top second-round

priority p̂λi = ni at their first-round assignment µ(λ) = si (if si ∈ S) and unchanged priority

p̂λj = pλj at all other schools sj 6= si. We say that a Pareto-improving cycle (in a second-round

assignment) respects (second-round) priorities if p̂λis̃i+1
≥ p̂λi+1

s̃i+1
for all i (where we define λm+1 = λ1).

Definition 5. A two-round mechanism is constrained Pareto efficient if the second-round

assignment has no Pareto-improving cycles that respect second-round priorities.

In a setting with a finite number of students, PLDA mechanisms exactly satisfy all these prop-

erties except for strategy-proofness.

Proposition 1. PLDA mechanisms respect guarantees and priorities, and are non-wasteful, con-

strained Pareto efficient, and anonymous.

Proof. The proofs of all these properties are almost identical to those in the continuum setting.

As an illustration, we prove that PLDA is constrained Pareto efficient in the discrete setting by

using the fact that both rounds use single tie-breaking and the output is stable with respect to the

second-round priorities p̂.

Fix a Pareto-improving cycle C. Since λi is assigned a seat at a school si when she prefers

(according to her second-round preferences) si+1 = µ(λi+1), by the stability of DA she must either

be in a strictly worse (second-round) priority group than λi+1 at school si+1, or in the same priority

group but have a worse lottery number. If C respects (second-round) priorities, then it must hold

that for all i that students λi and λi+1 are in the same priority group at school si+1 and λi has a

worse lottery number than λi+1. But since this holds for all i, single tie-breaking implies that we

obtain a cycle of lottery numbers, which provides the necessary contradiction.

Proposition 2 states that in a setting with a finite number of students, PLDA mechanisms

satisfy all our desired properties except for strategy-proofness. The following example illustrates

that in a setting with a finite number of students, PLDA mechanisms may not satisfy two-round

strategy-proofness. The intuition is that without non-atomicity, students are able to manipulate the

first-round assignments of other students to change the guarantees, and hence change the second-

round stability structure. In some cases in small markets, students are able to change the set of

stable outcomes to benefit themselves.
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Example 1 (PLDA with finite number of students is not strategy-proof.). Consider a setting with

N = 2 schools and n = 4 students. Each school has capacity 1 and a single priority class. For

readability, we let ∅ denote the outside option, ∅ = sN+1 = s3. The students have the following

preferences:

1. s1 �1 ∅ �1 s2 and ∅ �̂1 s1 �̂1s2,

2. s1 �2 s2 �2 ∅, second-round preferences identical,

3. s2 �3 s1 �3 ∅, second-round preferences identical,

4. s2 �4 ∅ �4 s1, second-round preferences identical.

We show that the two-round mechanism where the second round is the reverse lottery deferred

acceptance mechanism is not strategy-proof.

Consider the lottery that yields L(1) > L(2) > L(3) > L(4). If the students report truthfully,

the first-round assignment and second-round reassignment are

µ(Λ) = (µ(1), µ(2), µ(3), µ(4)) = (s1, s2, ∅, ∅), and

µ̂(Λ) = (µ̂(1), µ̂(2), µ̂(3), µ̂(4)) = (∅, s2, s1, ∅)

respectively. However, consider what happens if student 2 says that only school 1 is acceptable to

her by reporting preferences �r, �̂r
given by s1�r∅�rs2 and s1�̂r∅�̂r

s2. Then

µ(Λ) = (s1, ∅, s2, ∅), µ̂(A) = (∅, s1, s2, ∅),

which is a strictly beneficial change for student 2 in the second round (and, in fact, weakly beneficial

for all students).

Note that this reassignment was not stable in the second round when students reported truthfully,

since, in that case, school s2 had second-round priorities p2
2 > p4

2 > p3
2 > p1

2 and so school s2 and

student 4 formed a blocking pair. In other words, for this particular realization of lottery numbers,

student 2 is able to select a beneficial second-round assignment µ̂ that was previously unstable by

changing student 3’s first-round assignment so that student 4 cannot block µ̂.

In addition, the second-round outcome for student 2 under misreporting stochastically dominates

her outcome from truthful reporting, when all other students report truthfully and the randomness

is due the first-round lottery order. For if the lottery order is L(1) > L(2) > L(3) > L(4) then
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student 2 can change her second-round assignment from s2 to s1 by reporting s2 as unacceptable,

and this is the only lottery order for which student 2 receives a second-round assignment of s2

under truthful reporting.1 Moreover, for any lottery order where student 2 received s1 in the first

or second round under truthful reporting, she also received s1 in the same round by misreporting.2

Hence the second-round assignment student 2 receives by misreporting stochastically dominates the

assignment she would have received under truthful reporting. This violates strategy-proofness.

This example shows that, as noted in Section 6, PLDA mechanisms are not two-round strategy-

proof in the finite setting. However, there are convergence results in the literature that suggest

that PLDA mechanisms are almost two-round strategy-proof in large markets. We conjecture that

the proportion of students who are able to successfully manipulate PLDA mechanisms decreases

polynomially in the size of the market; a formal proof of such a result is beyond the scope of this

paper.

Moreover, we believe that students will be unlikely to try to misreport under the PLDA mech-

anisms.3 This is because, as Example 2 illustrates, successful manipulations require that students

strategically change their first-round assignment and correctly anticipate that this changes the set

of second-round stable assignments to their benefit. Such deviations are very difficult to plan and

require sophisticated strategizing and detailed information about other students’ preferences.

C Proofs

We begin with some general notation and definitions. Let µ be the initial assignment under DA-

STB, and let P be a permutation. We say that a school si reaches capacity under a mechanism

with output assignment µ if η(µ(si)) = qi.

We re-index the schools in S ∪ {sN+1} so that Ci ≥ Ci+1. Moreover, we assume that this

indexing is done such that if the order condition is satisfied, then ĈPi ≥ ĈPi+1 (where the cutoffs

ĈP are as defined by PLDA(P )) holds simultaneously for all permutations P .

Recall that in DA each student is given a score rλi = pλi + L(λ), and in PLDA(P ) this leads to

1This is because if L(λ) > L(2) for λ = 3, 4 then student λ is assigned to school s2 and stays there in both
rounds, if L(2) > L(1), L(3), L(4) then student 2 is assigned to school s1 and stays there in both rounds, and finally
if L(1) > L(2) > L(4) > L(3) then student 2 is assigned to s1 in the second round.

2This is because any stable matching in which student 2 is assigned s1 remains stable after student 2 truncates.
Indeed, student 2 is not part of any unstable pair, as she got her first choice, and any unstable pair not involving
student 2 remains unstable under the true preferences, as only student 2 changes her preferences.

3as compared to the currently used DA mechanism.
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a second-round score r̂λi = p̂λi + P (L(λ)) = P (L(λ)) + ni1{µ(λ)=si} + pλi 1{µ(λ) 6=si}. Throughout the

Appendix, for convenience, we slightly change the second-round score of a student λ under PLDA

with permutation P to be r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci}, meaning that we give each

student a guarantee at any school for which she met the cutoff in the first round. By consistency

of preferences, it is easily seen that this has no effect on the resulting assignment or cutoffs.

We say that a student can afford a school in a round if her score in that round is at least as

large as the school’s cutoff in that round. We say that the set of schools a student can afford in

the second round (with her amended second-round score) is her affordable set.

Throughout the Appendix, we let Xi = {si, . . . , sN+1} be the set of schools at least as affordable

as school si, and we let γi be the proportion of students whose first-round affordable set is Xi.

C.1 Proof of Proposition 1

Fix a permutation P and some PLDA with permutation P . We show that this particular PLDA

satisfies all the desired properties. Let η be a distribution of students, and let ĈP be the second-

round cutoffs corresponding to the assignment given by the PLDA for this distribution of student

types. For now we relax the assumptions that all students have consistent preferences and that

consistent types have full support.

PLDA respects guarantees because fewer students are guaranteed at each school than the ca-

pacity of the school. PLDA is non-wasteful because the second round terminates with a stable

matching where all schools find all students acceptable, which is non-wasteful.

PLDA is constrained Pareto efficient, since we use single tie-breaking and the output is the

student-optimal stable matching with respect to the updated second-round priorities p̂.

This is easily seen via the cutoff characterization. Let the second-round cutoffs be P̂ , where

overloading notation we let P̂i denote the cutoff for school s̃i. Fix a Pareto-improving cycle

(Θm,Λm, Sm). Without loss of generality we may assume that p̂λs̃i + L(λ) ≥ P̂i for all λ ∈ Λi,

since the set of students for whom this is not true has measure 0. Moreover, since all students

λ ∈ Λi prefer (according to their second-round preferences) school s̃i+1 to their assigned school

µ̂ (λ) = s̃i, without loss of generality we may also assume that p̂λs̃i+1
+ L(λ) < P̂i+1 for all λ ∈ Λi,

since the set of students for whom this is not true has measure 0. This means that for all λi ∈ Λi

and λi+1 ∈ Λi+1 it holds that p̂λis̃i+1
+ L(λi) < P̂i+1 ≤ p̂λi+1

s̃i+1
+ L(λi+1), and so p̂λis̃i+1

≤ p̂λi+1

s̃i+1
.

Suppose for the sake of contradiction that the cycle (Θm,Λm, Sm) respects second-round priori-
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ties. Then for each λi ∈ Λi and λi+1 ∈ Λi+1 it holds that p̂λis̃i+1
≥ p̂λi+1

s̃i+1
, and so L (λi) > L (λi+1). But

since this holds for all i we obtain a cycle of lottery numbers L (λ1) > L (λ2) > · · · > L (λm) > L (λ1)

for all λi ∈ Λi, which provides the necessary contradiction.

Suppose now that student preferences are consistent. We show that the PLDA mechanism

is strongly two-round strategy-proof. Since students are non-atomic, no student can change the

cutoffs ĈP by changing her first- or second-round reports. Hence it is a dominant strategy for all

students to report truthfully in the second round. Moreover, for any student of type λ, the only

difference between having a first-round guarantee at a school si and having no first-round guarantee

is that in the former case, r̂λi increases by ni−pλi . This means that having a guarantee at a school si

changes the student’s second-round assignment in the following way. She receives a seat in school si

whereas without the guarantee she would have received a seat in some school sj that she reported

preferring less to si, and her second-round assignment is unchanged otherwise. Therefore, students

want their first-round guarantee to be the best under their second-round preferences, and so it is a

dominant strategy for students with consistent preferences to report truthfully in the first round.

C.2 Proofs for Uniform Dropouts (Section 4)

In this section, we furnish proofs for the special case of uniform dropouts. The proofs techniques

in this section mirror those used in the general setting and can give the interested reader a taste of

the general proof techniques in a more transparent setting.

We show first that the global order condition (Definition 16) holds in the setting with uniform

dropouts. The high level steps and algebraic tools used in this proof are similar to those used to

show that the order condition is equivalent to the global order condition in our general framework

(Theorem 4), although the analysis in each step is greatly simplified. Here we prove Theorem 5

and briefly outline the additional steps necessary to prove Theorem 4.

Proof of Theorem 5. The main steps in the proof are as follows: (1) Assuming that every student’s

affordable set is Xi for some i, for every school sj , guess the proportion of students who should

receive an affordable set that contains sj . (2) Calculate the corresponding second-round cutoffs C̃j

for school sj . (3) Show that these cutoffs are in the same order as the first-round cutoffs. (4) Use

the fact that the cutoffs are in the same order to verify that the cutoffs are market-clearing, and

deduce that the constructed cutoffs are precisely the PLDA(P ) cutoffs.

Throughout this proof, we amend the second-round score of a student λ under PLDA(P ) to be
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r̂λi = P (L(λ)) +1{L(λ)≥Ci}, meaning that we give each student a guarantee at any school for which

she met the cutoff in the first round. By consistency of preferences, it is easily seen that this has no

effect on the resulting assignment or cutoffs. Let the first-round cutoffs be C1, C2, . . . , CN , where

without loss of generality we index the schools such that C1 ≥ C2 ≥ · · · ≥ CN .

(1) In the setting with uniform dropouts, since the second-round problem is a rescaled version of

the first-round problem (with a (1− ρ) fraction of the original students remaining), we guess that

we want the proportion of students with an affordable set containing sj to be 1
1−ρ times the original

proportion. (In the general setting, we no longer have a rescaled problem and so we instead guess

that the proportion of students with each affordable set is the same as that under RLDA.)

(2) We translate this into cutoffs. Let fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}| be the proportion of

students who receive school si in their (second-round) affordable set with the amended second-

round scores under permutation P if the first- and second-round cutoffs are Ci and x respectively.

Notice that fi(x) is non-increasing for all i, fi(0) = 1, fi(1) = 1 − Ci, and if i < j then fi(x) ≤

fj(x) for all x ∈ [0, 1]. Let the cutoff C̃Pi ∈ [0, 1] be the minimal cutoff satisfying the equation

fi(C̃
P
i ) = 1

1−ρ(1 − Ci), and let C̃Pi = 0 if Ci < ρ. (In the general setting the cutoffs are defined

using the same functions fPi (·) with the proportions being equal to those that arise under RLDA,

as mentioned in step (1) above.)

(3) We now show that the cutoffs C̃ are in the right order. Suppose that i < j. If C̃Pi = 0

then Cj ≤ Ci ≤ ρ and so C̃Pj = 0 ≤ C̃Pi as required. Hence we may assume that C̃Pi , C̃
P
j > 0.

In this case, since fj(·) is non-increasing and C̃Pj is minimal, we can deduce that C̃Pj ≤ C̃Pi if

fj

(
C̃Pj

)
≥ fj

(
C̃Pi

)
. It remains to establish the latter. Using the definition of fj and fi, we have

fj

(
C̃Pi

)
= fi

(
C̃Pi

)
+
∣∣∣{l : l ∈ [Cj , Ci), P (l) < C̃Pi

}∣∣∣
≤ 1

1− ρ
(1− Ci) + (Ci − Cj) ≤

1

1− ρ
(1− Cj) = fj

(
C̃Pj

)
,

where both inequalities hold since Cj ≤ Ci. It follows that C̃Pi ≥ C̃Pj , as required. (In the general

setting, since we cannot give closed form expressions for the proportions fi

(
C̃Pi

)
in terms of the

cutoffs Ci, this step requires using the intermediate value theorem and an inductive argument.)

(4) We now show that C̃P is the set of market-clearing DA cutoffs for the second round of PLDA(P ).

Note that γi = Ci−1−Ci is the proportion of students whose first-round affordable set is Xi (where

C0 = 1). Since dropouts are uniform at random, this is the proportion of such students out of the

total number of remaining students both before and after dropouts.
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Consider first the case C̃Pi > 0. Now fi

(
C̃Pi

)
is the proportion of students whose second-round

affordable set contains si, and since C1 ≥ C2 ≥ · · · ≥ CN and C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN , it follows that

the affordable sets are nested. Hence the proportion of students (of those remaining after students

drop out) whose second-round affordable set is Xi is given by (where f0(·) ≡ 1)

γPi = fi

(
C̃Pi

)
− fi−1

(
C̃Pi−1

)
=
Ci−1 − Ci

1− ρ
=

γi
1− ρ

.

For each θ = (�,�) and set of schools S, let Dθ(S) be the maximal school in S under �, and let

θ′ = (�, �̂) be the student type consistent with θ that finds all schools unacceptable in the second

round. Then a set of students of measure∑
j≤i

∑
θ∈Θ:Dθ(Xj)=i

γPj ζ(θ) =
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ)

1− ρ
=
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ) + ζ(θ′)

choose to go to school si in the second round under the second-round cutoffs C̃P . We observe

that the expression on the right gives the measure of the set of students who choose to go to school

si in the first round under first-round cutoffs C.

In the case where C̃Pi = 0 the above expressions give upper bounds on the measure of the set

of students who choose to go to school si in the second round under the second-round cutoffs C̃P .

Since C are market-clearing cutoffs, and C̃Pi > 0⇒ CPi > 0, it follows that C̃P are market-clearing

cutoffs too. We have shown that in PLDA(P ), the second-round cutoffs are exactly the constructed

cutoffs C̃P and they satisfy C̃P1 ≥ · · · ≥ C̃PN , and so the global order condition holds.

The general proof of Theorem 4 uses the cutoffs for RLDA in steps (1) and (2) above to guess

the proportion of students who receive an affordable set that contains sj , and requires that each

student priority type be carefully accounted for. However, the general structure of the proof is

similar, and the tools used are straightforward generalizations of those used in the proof above.

We now show that in the uniform dropouts case all PLDA mechanisms give type-equivalent

assignments. We include the formal theorem statement and proof for this special case to illustrate

the steps of the proof for the general case in a simpler setting.

The proof formalizes the intuition from Section 4 that the global order condition implies type

equivalence, as it implies that the proportion of students of a given type who have a given affordable

set does not depend on the permutation P , and the same insight is used in the proof of Theorem

1.
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Lemma 1. In any market with uniform dropouts (Definition 17), all PLDA mechanisms produce

type-equivalent assignments.

Proof. The proposition follows immedately from the fact that the proportion γPi of students whose

second-round affordable set is Xi does not depend on P . Specifically, consider first the case when

all schools reach capacity in the second round of PLDA. We showed in the proof of Theorem 5 that

for all i and all student types θ, the proportion of students of type θ with affordable set Xi in the

second round under PLDA(P ) is given by γPi = γi
1−ρ , where γi is the proportion of students of type

θ with affordable set Xi in the first round. It follows that all PLDAs are “type-equivalent” to each

other because they are type-equivalent to the first-round assignment in the following sense. For

each preference order �, let �̃ be the preferences obtained from � by making the outside option

the most desirable, i.e., sN+1�̃ · · · . Then

η({λ ∈ Λ : θλ = (�,�), µ̂P (λ) = si}) =
1

1− ρ
η({λ ∈ Λ : θλ = (�,�), µ(λ) = si})

= η({λ ∈ Λ : θλ ∈ {(�,�), (�, �̃)}, µ(λ) = si}),

where the second equality holds since students stay in the system uniformly-at-random with

probability 1 − ρ. Under uniform dropouts this holds for all student types that remain in the

system, and so it follows that µ̂P is type-equivalent to µ̂P
′

for all permutations P, P ′.

When some school does not reach capacity in the second round, we can show by induction on

the number of such schools that all PLDAs are type-equivalent to RLDA.

C.3 Proof of Theorem 1

We first prove Theorem 1 in the case where all schools have one priority group. We then invoke

Theorem 4 so that we may assume that the global order condition holds. We then show that this

implies all PLDA mechanisms assign the same number of seats at a given school si to students of

a given priority class π. Hence, by restricting to the set of students with priority class π, we can

reduce the general problem to the case where all schools have one priority group. This shows that

all PLDA mechanisms produce type-equivalent assignments.

Lemma 2. Assume that each school has a single priority group, p = 1. If the order condition

holds, all PLDA mechanisms produce type-equivalent assignments.

Proof. Let P be a permutation. Since the order condition holds, we can assume that the schools in
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S ∪{sN+1} are indexed so that Ci ≥ Ci+1 and ĈPi ≥ ĈPi+1 for all permutations P (simultaneously).

We first present the relevant notation that will be used in this proof. We are interested in sets

of schools of the form Xi = {si, . . . , sN+1}. Let

βi,j = η({λ ∈ Λ : si is the most desirable school in Xj with respect to �̂λ})

be the measure of the students who, when their set of affordable schools is Xj , will choose si (when

following their second-round preferences). Note that βi,j = 0 for all j > i.

Let Eλ(C) and ÊλP (ĈP ) be the sets of schools affordable for type λ in the first and second round,

respectively, when running PLDA with lottery P . Note that for each student λ ∈ Λ, there exists

some i such that Eλ(C) = Xi, and since the order condition is satisfied, there exists some j ≤ i

such that ÊλP (ĈP ) = Xj . The fact that ÊλP (ĈP ) = Xj for some j is a result of the order condition:

students’ amended second-round scores guarantee that Eλ(C) ⊆ ÊλP (ĈP ) (every school affordable

in the first round is guaranteed in the second) and hence that j ≤ i. Let γPi = η({λ ∈ Λ : ÊλP (ĈP ) =

Xi}) be the fraction of students whose affordable set in the second round of PLDA with permutation

P is4 Xi. We note that by definition of PLDA, η({λ ∈ Λ : θλ = θ, ÊλP (ĈP ) = Xi}) = ζ({θ})γPi ;

that is, the students whose affordable sets are Xi “break proportionally” into types. For a school

i, this means that the measure of students assigned to si is therefore
∑

j≤i βi,jγ
P
j .

Let P ′ be another permutation, and define γP
′

i similarly. We will prove by induction that

there exist PLDA(P ′) cutoffs ĈP ′ such that γP
′

i = γPi for all si ∈ S ∪ {sN+1}. Note that by the

proportional breaking into types of γPi and γP
′

i , this will imply type-equivalence.

Assume that the PLDA(P ′) cutoffs ĈP ′ are chosen such that γP
′

j = γPj for all j < i, and i

is maximal such that this is true. Then we have that
∑

j≤i−1 βi,jγ
P
j =

∑
j≤i−1 βi,jγ

P ′
j . Assume

w.l.o.g. that γPi > γP
′

i . It follows that qi ≥
∑

j≤i βi,jγ
P
j ≥

∑
j≤i βi,jγ

P ′
j , where the first inequality

follows since si cannot be filled beyond capacity. If the second inequality is strict, then under

P ′, si is not full, and therefore ĈP
′

i = 0. However, this means that all students can afford si

under P ′, and therefore γP
′

i = 1 −
∑

j<i γ
P ′
j = 1 −

∑
j<i γ

P
j ≥ γPi , a contradiction. If the second

inequality is an equality, then βi,i = 0 and no students demand school i under the given affordable

set structure. It follows that we can define the cutoff ĈP
′

i such that γP
′

i = γPi . This provides the

required contradiction, completing the proof.

4Note that η(Λ) = 1, as η is a probability distribution over Λ.
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Now consider when schools have possibly more than one priority group. We show that if the

global order condition holds, then all PLDA mechanisms assign the same measure of students of a

given priority type to a given school. It is not at all obvious that such a result should hold, since

priority types and student preferences may be correlated, and the relative proportions of students

of each priority type assigned to each school can vary widely. Nonetheless, global order condition

imposes enough structure so that any given priority type is treated symmetrically across different

PLDA mechanisms.

Theorem 1. If the global order condition holds, then for all priority classes π and schools si all

PLDA mechanisms assign the same measure of students of priority class π to school si.

Proof. Fix a permutation P . We then show that PLDA(P ) assigns the same measure of students

of each priority type to each school si as RLDA. The idea will be to define cutoffs on priority-type-

specific economies, and show that these cutoffs are the same as the PLDA cutoffs. However, since

cutoffs are not necessarily unique in the two-round setting, care needs to be taken to make sure

that the individual choices for priority-type-specific cutoffs are consistent across priority types.

The proof runs as follows. We first define an economy Eπ for each priority class π that gives only

as many seats as are assigned to students of priority class π under RLDA. We then invoke the global

order condition and Theorems 4 and 1 to show that all PLDA mechanisms are type-equivalent on

each Eπ. We also use the global order condition to argue that it is sufficient to consider affordable

sets, and also to select “minimal” cutoffs. Then we construct cutoffs CPπ,i using the economies Eπ

and show that they are (almost) independent of priority type. Finally, we show that this means

that CPπ,i also define PLDA cutoffs for the large economy E and conclude that PLDA(P ) assigns

the same measure of students of each priority type to each school si as RLDA.

(1) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of students

of priority class π assigned to school si under RLDA. Let Λπ be the set of students λ such that

pλ = π, and let ηπ be the restriction of the distribution η to Λπ. Let Eπ denote the primitives

(S, qπ,Λπ, ηπ). Recall that ĈR are the second-round cutoffs for RLDA on E . It follows from the

definition of Eπ that ĈR
π are also the second-round cutoffs for RLDA on Eπ.

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. We show that the cutoffs C̃P

π defined

for the little economy are the same as the consistent second-round cutoffs ĈP
π for PLDA with

permutation P for the large economy E , that is, C̃P
π = ĈP

π .
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(2) Implications of the global order condition.

We have assumed that the global order condition holds.

This has a number of implications for PLDA mechanisms run on the little economies Eπ. For

all p, the local order condition holds for RLDA on Eπ. Hence, by Theorem 4, the little economies

Eπ each satisfy the order condition. Moreover, by Theorem 1, all PLDA mechanisms produce type-

equivalent assignments when run on Eπ. Finally, if we can show that for every permutation P ,

PLDA(P ) assigns the same measure of students of each priority type π to each school si (namely

(qπ)i) as RLDA, then E satisfies the global order condition if and only if for all p the little economy

Eπ satisfies the global order condition.

The global order condition also allows us to determine aggregate student demand from the

proportions of students who have each school in their affordable set. In general, if affordable sets

break proportionally across types, and if for each subset of schools S′ ⊆ S we know the proportion

of students whose affordable set is S′, then we can determine aggregate student demand. The

global order condition implies that for any pair of permutations P, P ′, the affordable sets from both

rounds are nested in the same order under both permutations. In other words, for each priority

class π there exists a permutation σπ such that the affordable set of any student in any round of any

PLDA mechanism is of the form {sσπ(i), sσπ(i+1), . . . , sσπ(N), sN+1}. Hence when the global order

condition holds, to determine the proportion of students whose affordable set is S′, it is sufficient

to know the proportion of students who have each school in their affordable set.

Another more subtle implication of the global order condition is the following. In the second

round of PLDA, for each permutation P and school si there will generically be an interval that

ĈPi can lie in and still be market-clearing. The intuition is that there will be large empty intervals

corresponding to students who had school si in their first-round affordable set, and whose second-

round lottery changed accordingly. When the global order condition holds, we can without loss of

generality assume that as many as possible of the cutoffs for a given priority type are 0 or 1, and

the global order condition will still hold.

Formally, for cutoffs C we can equivalently define priority-type-specific cutoffs Cπ,i = (bCi −

πic)+. Note the cutoffs Cπ are consistent across priority types, namely: (1) Cutoffs match for two

priority types with the same priority group at a school, πi = π′i ⇒ Cπ,i = Cπ′,i and Ĉπ,i = Ĉπ′,i;

and (2) There is at most one marginal priority group at each school, Cπ,i, Cπ′,i ∈ (0, 1) ⇒ πi = π′i.

Moreover, if cutoffs Cπ are consistent across priority types, then there exist cutoffs C from which
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they arise.

Suppose that we set as many as possible of the priority-type-specific cutoffs ĈPπ to be extremal;

i.e., we let ĈPπ,i be 1 if no students have si in their affordable set, and let ĈPπ,i be minimal otherwise.

We show that under this new definition, Cπ, Ĉ
P
π satisfies the local order condition consistently with

all other PLDAs.

Specifically, let

fPπ,i(x) = |{l : l ≥ Cπ,i or P (l) ≥ x}|

be the proportion of students of priority class π who have school si in their affordable set if the

first- and second-round cutoffs are Cπ,i and x respectively. Notice that f is decreasing in x. Define

cutoffs C̃Pπ as follows. If fPπ,i

(
ĈPπ,i

)
= 0 we set C̃Pπ,i = 1, and otherwise we let C̃Pπ,i be the minimal

cutoff satisfying fPπ,i

(
C̃Pπ,i

)
= fPπ,i

(
ĈPπ,i

)
.

Since E satisfies the global order condition, for all π there exists an ordering σπ such that

Cσπ(1) ≥ Cσπ(2) ≥ · · · ≥ Cσπ(N) and ĈP
′

σπ(1) ≥ ĈP
′

σπ(2) ≥ · · · ≥ ĈP
′

σπ(N) for all permutations P ′. We

show that the global order condition implies that the newly defined cutoffs ĈP satisfy C̃Pπ,σπ(1) ≥

C̃Pπ,σπ(2) ≥ · · · ≥ C̃Pπ,σπ(n). This is because the global order condition implies that fPπ is increasing

in i; i.e., for each π, i < j, and x it holds that fPπ,σπ(i)(x) ≤ fPπ,σπ(j)(x). Hence for all j > i,

fPπ,σπ(j)

(
C̃Pπ,σπ(j)

)
= fPπ,σπ(j)

(
ĈPπ,σπ(j)

)
≥ fPπ,σπ(j)

(
ĈPπ,σπ(i)

)
(since f is decreasing)

≥ fPπ,σπ(i)

(
ĈPπ,σπ(i)

)
(since f is increasing in i)

= fPπ,σπ(i)

(
C̃Pπ,σπ(i)

)
and so since we set C̃Pπ,σπ(j) to be minimal and fPπ,σπ(j) (·) is decreasing it follows that C̃Pπ,σπ(j) ≤

C̃Pπ,σπ(i).

(3) Cutoffs C̃Pπ,i are (almost) independent of priority type.

We now show that C̃Pπ,i depends on π only via πi, and for all j 6= i does not depend on πj . Since Eπ

satisfies the order condition, all PLDA mechanisms on Eπ are type-equivalent, and the proportion

of students who have each school in their affordable set is the same across all PLDA mecha-

nisms. Hence for all permutations P , priority classes π, and schools i it holds that fPπ,i

(
C̃Pπ,i

)
=

fPπ,i

(
ĈPπ,i

)
= fRπ,i

(
ĈRπ,i

)
. This means that C̃Pπ,i satisfies the following equation in terms of ĈRπ,i, Cπ,i
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and P :

fPπ,i

(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
= 2− ĈRπ,i − Cπ,i. (1)

(We note that an application of the intermediate value theorem shows that this equation always

has a solution in [0, 1], since fPπ,i(0) = 1 − Cπ,i, fπ,i(1) = 1, fπ,i is continuous and decreasing on

[0, 1], and we are in the case where 1− Cπ,i ≤ ĈRπ,i ≤ 1. Hence C̃Pπ,i is defined by fPπ,i and fRπ,i.) In

other words, the value of C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which in turn are defined by

Cπ,i and the permutations P and R. Since Cπ,i depends on π only through πi, it follows that C̃Pπ,i

depends on π only through πi. In other words the C̃Pπ,i define cutoffs C̃Pi that are independent of

priority type.

(4) C̃Pi are the PLDA cutoffs.

Finally, we remark that C̃Pi are market-clearing cutoffs. This is because we have shown that for

each priority class π, the number of students assigned to each school si is the same under RLDA

and under the demand induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-

clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for

each priority class π on Eπ, it follows that PLDA(P ) assigns the same measure of students of each

priority type to each school si as RLDA.

We are now ready to prove Theorem 1

Proof of Theorem 1. Fix a priority class π. By Theorems 4 and 6, for every school si, all PLDA

mechanisms assign the same measure qπ,i of students of priority class π to school si.

Consider the subproblem with primitives Eπ = (S, qπ,Λπ, ηπ). By Lemma 2, for all θ ∈ Θ and

si,

ηπ({λ ∈ Λπ : θλ = θ, µ̂P (λ) = si}) = ηπ({λ ∈ Λπ : θλ = θ, µ̂P ′(λ) = si}).

Since ηπ is the restriction of η to λπ, it follows that all PLDA mechanisms are type-equivalent.
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C.4 Proof of Theorem 4

Note. The proof of Theorem 4 uses many of the same techniques as the proof for Theorem 5 the

case of uniform dropouts. The interested reader looking to understand our proof techniques in a

simpler setting can refer to Appendix C.2 for full proofs for this special case.

Proof of Theorem 4. Suppose that the order condition holds. In what follows, we will fix a per-

mutation P and show that the PLDA mechanism with permutation P satisfies the local order

condition and is type-equivalent to the reverse lottery RLDA mechanism. As this holds for every

P , it follows that the global order condition holds.

(1) Every school has a single priority group.

We first consider the case where ni = 1 for all i; that is, every school has a single priority

group. Recall that the schools are indexed according to the first-round overdemand ordering, so

that C1 ≥ C2 ≥ · · · ≥ CN ≥ CN+1. Since the local order condition holds for RLDA, let us assume

that they are also indexed according to the second-round overdemand ordering under RLDA, so

that ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRN ≥ ĈRN+1.

The idea will be to construct a set of cutoffs C̃P directly from the permutation P and the cutoffs

ĈR, show that the cutoffs are in the correct order C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN ≥ C̃PN+1, and show that

the cutoffs C̃P and resulting assignment are market-clearing when school preferences are given by

the amended scoring function with permutation P .

(1a) Definitions.

As in the proof of Theorem 1, let βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}) be the measure of

students who, when their set of affordable schools is Xj , will choose si. Let Eλ(C) be the set of

schools affordable for type λ in the first round under PLDA with any permutation, let Êλ(ĈR) be

the set of schools affordable for type λ in the second round under RLDA, and let Êλ(ĈP ) be the

set of schools affordable for type λ in the second round under PLDA with permutation P .

Let γRi = η({λ ∈ Λ : Êλ(ĈR) = Xi}) be the fraction of students whose affordable set in the

second round of RLDA is Xi, and let γPi = η({λ ∈ Λ : Êλ(ĈP ) = Xi}) be the fraction of students

whose affordable set in the second round of PLDA with permutation P is Xi.

Let n̂ be the smallest index such that sn̂ does not reach capacity when it is not offered to all

the students. In other words, n̂ is the smallest index such that every student has school sn̂ in her

affordable set under RLDA, i.e., sn̂ ∈ Êλ(ĈR). Since the local order condition holds for RLDA, we
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may equivalently express n̂ in terms of cutoffs as the smallest index such that (1−Cn̂)+(1−ĈRn̂ ) ≥ 1.

Such an n̂ always exists, since every student has the outside option sN+1 in her total affordable set.

(1b) Defining cutoffs for PLDA.

Let us define cutoffs C̃P as follows. For i ≥ n̂ let C̃Pi = 0. For each permutation P , define a

function

fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}|

representing the proportion of students who have si in their (second-round) affordable set with first-

and second-round cutoffs Ci, x under the amended scoring function with permutation P . Since P

is measure-preserving, fPi (x) is continuous and monotonically decreasing in x.

For i < n̂, we inductively define C̃Pi to be the largest real smaller than C̃Pi−1 satisfying

fPi (C̃Pi ) = fRi

(
ĈRi

)
(2)

(where we define C̃P0 = 1). Now fPi (0) = 1 ≥ fRi
(
ĈRi

)
, and

fPi

(
C̃Pi−1

)
= fPi−1

(
C̃Pi−1

)
+ |{l | l ∈ [Ci, Ci−1) and P (l) ≥ C̃Pi−1}|

≤ fRi−1

(
ĈRi−1

)
+ (Ci−1 − Ci)

= (1− Ci) + (1− ĈRi−1)

≤ fRi

(
ĈRi

)
= fPi

(
C̃Pi

)
where in the first equality we are using that Ci−1 ≥ Ci, the first inequality follows from the definition

of C̃Pi=1, and the last inequality holds since ĈRi−1 ≥ ĈRi .

It follows from the intermediate value theorem that the cutoffs C̃P are well defined and satisfy

C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN ≥ C̃PN+1.

(1c) The constructed cutoffs clear the market.

We show that the cutoffs C̃P and resulting assignment (from letting students choose their

favorite school out of those for which they meet the cutoff) are market-clearing when the second-

round scores are given by r̂λi = P (L(λ))+ni1{L(λ)≥Ci}+pλi 1{L(λ)≥Ci}. We call the mechanism with

this second-round assignment MP .

The idea is that since the cutoffs C̃Pi are decreasing in the same order as Ci and ĈRi , the

(second-round) affordable sets are nested in the same order under both sets of second-round cutoffs.
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It follows that aggregate student demand is uniquely specified by the proportion of students with

each school in their affordable set, and we have defined these to be equal, fPi

(
C̃Pi

)
= fRi

(
ĈRi

)
.

It follows that C̃P are market-clearing and give the PLDA(P ) cutoffs, and so PLDA(P ) satisfies

the local order condition (with the indices indexed in the same order as with RLDA). We make the

affordable set argument explicit below.

Consider the proportion of lottery numbers giving a second-round affordable set Xi. Since

ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRN , under RLDA this is given by

γRi = fRi+1

(
ĈRi+1

)
− fRi

(
ĈRi

)
,

if i < n̂ and by 0 if i > n̂, where we define fP0 (x) = 1 for all P and x. Similarly, since C̃P1 ≥ C̃P2 ≥

· · · ≥ C̃PN , under MP this is given by

fPi+1

(
C̃Pi+1

)
− fPi

(
C̃Pi

)
if i < n̂, which is precisely γRi , and by 0 if i > n̂.

Hence, for all i < n̂, the measure of students assigned to school si under both RLDA and

MP is
∑

j≤i βi,jγ
R
j = qi, and for all i ≥ n̂, the measure of students assigned to school si is∑

j≤n̂ βi,jγ
R
j < qi. It follows that the cutoffs C̃P are market-clearing when the second-round scores

are given by r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)≥Ci}, and so PLDA(P) = MP satisfies the

local order condition.

(2) Some school has more than one priority group.

Now consider when schools have possibly more than one priority group. We show that if RLDA

satisfies the local order condition, then PLDA with permutation P assigns the same number of

students of each priority type to each school si as RLDA, and within each priority type assigns

the same number of students of each preference type to each school as RLDA. We do this by first

assuming that PLDA with permutation P assigns the same number of students of each priority

type to each school si as RLDA, and showing that this gives consistent cutoffs.

We note that this proof uses very similar arguments to the proof of Theorem 6.

(2a) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of students

of priority class π assigned to school si under RLDA. Let Λπ be the set of students λ such that
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pλ = π, and let ηπ be the restriction of the distribution η to Λπ. Let Eπ denote the primitives

(S, qπ,Λπ, ηπ).

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. By definition, ĈR

π are the second-

round cutoffs of RLDA on Eπ. We show that the cutoffs C̃P
π defined for the little economy are the

same as the consistent second-round cutoffs ĈP
π for PLDA(P ) run on the large economy E , that is,

C̃P
π = ĈP

π .

(2b) Implications of RLDA satisfying the local order condition.

Since RLDA satisfies the local order condition for E , RLDA also satisfies the local order condition

for Eπ for all π. It follows from (1) that the global order condition holds on each of the little

economies Eπ. Hence by Theorem 1 all PLDA mechanisms produce type-equivalent assignments

when run on Eπ. Moreover, as in the proof of Theorem 6, the global order condition on Eπ also

allows us to determine aggregate student demand in Eπ from the proportions of students who have

each school in their affordable set.

Finally, as in the proof of Theorem 6, we may assume that for each π and school si the cutoff

C̃Pπ,i is the minimal real satisfying

fPπ,i

(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
where for each permutation P ,

fPπ,i(x) = |{l : l ≥ Cπ,i or P (l) ≥ x}|

is the proportion of students of priority class π who have school si in their affordable set if the first-

and second-round cutoffs are Cπ,i and x respectively.

It follows that C̃Pπ,i depends on π only via πi, and does not depend on πj for all j 6= i.

This is because C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which are in turn defined by Cπ,i and

the permutations P and R. Moreover, Cπ,i depends on π only through πi. Hence, if π, π′ are two

priority vectors such that πi = π′i, then C̃Pπ,i = C̃Pπ′,i, and so the C̃Pπ,i are consistent across priority

types and define cutoffs C̃Pi that are independent of priority type.

(3) C̃Pi are the PLDA cutoffs.

Finally, we show that C̃Pi are market-clearing cutoffs. By (1), for each priority class π, the number

of students assigned to each school si is the same under RLDA as under the demand induced by
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the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for each

priority class π for Eπ it follows that PLDA(P ) assigns the same measure of students of each priority

type to each school si as RLDA.

C.5 Proof of Theorem 3

Proof of Theorem 3. We first note that with a single priority class, the first round corresponds to

the random serial dictatorship (RSD) mechanism of Abdulkadiroglu and Sönmez (1998), where the

(random) order of students is the single order of tie-breaking. Hence instead of referring to the

first-round mechanism as DA-STB, we will sometimes refer to it as RSD.

Recall the cutoff characterization of the set of stable matchings for given student preferences

and responsive school preferences (encoded by student scores rλi = pλi +L(λ)) Azevedo and Leshno

(2016). Namely, if C ∈ RN
+ is a vector of cutoffs, let the assignment µ defined by C be given by

assigning each student of type λ to her favorite school among those where her score weakly exceeds

the cutoff, µ(λ) = max�λ({si ∈ S : rλi ≥ Ci} ∪ {sN+1}). The cutoffs C are market-clearing if

under the assignment µ defined by C, every school with a positive cutoff is exactly at capacity,

η(µ(si)) ≤ qi for all si ∈ S, with equality if Ci > 0. The set of all stable matchings is precisely

given by the set of assignments defined by market-clearing vectors (Azevedo and Leshno, 2016).

Under PLDA(P ), a student of type λ has a second-round score r̂λi = P (L(λ)) + 1{L(λ)≥Ci} at

school si for each school si ∈ S ∪ {sN+1} (assuming that scores are modified to give guarantees

to students who had a school in their first-round affordable set, instead of just students assigned

to the school in the first round). In a slight abuse of notation, we will sometimes let ĈP refer to

the second-round cutoffs from some fixed PLDA(P ) (not necessarily corresponding to the student-

optimal stable matching given by PLDA).

The proof that any PLDA satisfies the axioms essentially follows from Proposition 1. We

note that averaging follows from the continuum model, which preserves the relative proportion of

students with different reported types under random lotteries and permutations of random lotteries.

Hence it suffices to show that any mechanism M satisfying the axioms is a PLDA.

We will show that the reassignment produced by M is type-equivalent to the reassignment

produced by some PLDA. If we assume that, conditional on their reports, students’ assignments
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under M are uncorrelated, we are able to explicitly construct a PLDA that provides the same joint

distribution over assignments and reassignments as M . We provide a sketch of the proof before

fleshing out the details.

Fix a distribution of student types ζ. Since the first round of our mechanism M is DA-STB

and M is anonymous, this gives a distribution η of students that is the same (up to relabeling of

students) at the end of the first round. For a fixed labeling of students, it also gives a distribution

over first-round assignments µ and a distribution over second round assignments µ̃.

We first invoke averaging to assume that all ensuing constructions of aggregate cutoffs and

measures of students assigned to pairs of schools in the two rounds are deterministic. Specifically,

since the first-round assignment µ is given by STB, and the mechanism satisfies the averaging

axiom, we may assume that each pathwise realization of the mechanism gives type-equivalent (two-

round) assignments. Hence, for the majority of the proof we perform our constructions of aggregate

cutoffs and measures of students pathwise, and assume that any realization of the lottery numbers

produces the same cutoffs and measures of students. (In particular, the quantities Ĉi, ρi,j , γi,j that

we will later define will be the same across all realizations.)

Outline of Proof. We use constrained Pareto efficiency to construct a first-round overdemand

ordering s1, s2, . . . , sN , sN+1 and a permutation σ giving the second-round overdemand ordering

sσ(1), sσ(2), . . . , sσ(N+1), as in (Ashlagi and Shi, 2014), where school s comes before s′ in an ordering

for the first (second) round if there exists a non-zero measure of students who prefer school s to

s′ in the first (second) round but who are assigned to s′ in the first (second) round. (In the case

of the second-round ordering, we require that these students’ second-round assignments s′ not be

the same as their first-round guarantees.) The existence of these orderings follows from the facts

that the first-round mechanism, DA with a single priority class and uniform-at-random single tie-

breaking, is Pareto efficient, that the two-round mechanism is constrained Pareto efficient. We let

Xi = {si, si+1, . . . , sN+1} denote the set of schools after si in the first-round overdemand ordering,

and let X̃i = {sσ(i), sσ(i+1), . . . , sσ(N+1)} denote the set of schools after sσ(i) in the second-round

overdemand ordering.

We next note that instead of assignments µ and µ̂, we can think of giving students first- and

second-round affordable sets E(λ), Ê(λ) so that µ and µ̂ are given by letting each student choose her

favorite school in her affordable set for that round. We use weak two-round strategy-proofness and

anonymity to show that two students of different types face the same joint distribution over first-
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and second-round affordable sets. This allows us to construct the permutation P by constructing

proportions γi,j of students whose first-round affordable set was Xi and whose (second-round)

affordable set was X̃j . This is the most technical step in the proof, and so we separate it into

several steps. The crux of the analysis is the fact that for any school s and set S′ 63 s of schools,

two students with top choices S′ who are assigned to a school they weakly prefer to s the first round

have the same conditional probability of being assigned to a school in S′ in the second round.5 We

term this the “prefix property” and prove it in Lemma 3.

Finally, we construct the lottery L and verify that if second-round scores are given by first

prioritizing all guaranteed students over non-guaranteed students and subsequently breaking ties

according to the permuted lottery P ◦L, then PLDA(P ) gives every student the same pair of first-

and second- round assignments as M .

Formal Proof. We now present the formal proof. Since we are assuming that the considered

mechanism M is weakly strategy-proof, we assume that students report truthfully and so we con-

sider preferences instead of reported preferences. We will explicitly specify when we are considering

the possible outcomes from a single student misreporting.

(2a) Definitions

Let the schools be numbered s1, s2, . . . , sN such that Ci ≥ Ci+1 for all i. The intuition is that

this is the order in which they reach capacity in the first round. We observe that all reassignments

are index-decreasing. That is, for all s, s′, if there exists a non-zero measure of students who are

assigned to s in the first round and to s′ in the second round, and s′ 6= sN+1, then s = si and

s′ = sj for some i ≥ j. This follows since the mechanism respects guarantees, student preferences are

consistent, and the schools are indexed in order of increasing first-round affordability. Throughout

this section we will denote the outside option sN+1 either by s0 or ∅, to make it more evident that

indices are decreasing.

Next, we define a permutation σ on the schools. We think of this as giving a second-round

overdemand (or inverse affordability) ordering, where in the second round the schools fill in the

order sσ(1), sσ(2), . . . , sσ(N). We will eventually show that M gives the same outcome as a PLDA

with cutoffs that are ordered Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(N). We require that σ satisfies the following

property. For all s, s′, if there exists a non-zero measure of students with consistent preferences

who have second-round preference reports � such that s � s′, and who are not assigned to s′ in

5The formal statement also takes into account how demanded the schools they weakly prefer to s are, and is given
in terms of student types who were assigned to s, and lottery numbers.
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the first round, but are assigned to s′ in the second round, then s = sσ(i) and s′ = sσ(j) for some

i < j. We assume that σ is the unique permutation satisfying this property that is maximally

order-preserving. That is, for all pairs of schools si, sj for which no non-zero measure of students of

the above type exists, σ(i) < σ(j) iff i < j. We also define σ(N + 1) = N + 1. An ordering σ with

the required properties exists since the mechanism is constrained Pareto efficient. In particular, if

there is a cycle of schools si1 , si2 , . . . , sim where for each j there is a set of students Λj with non-zero

measure who prefer sij+1 to their second-round assignment sij and who are not assigned to sij in

the first round, then p̂
λj
sij

= p
λj
sij

for each λj ∈ Λj , and so there is a Pareto-improving cycle that

respects second-round priorities.

Let S′ be a set of schools, and let � be a preference ordering over all schools. We say that S′ is a

prefix of � if s′ � s for all s′ ∈ S′, s 6∈ S′. For a set of schools S′, let i(S′) = max{j : sj ∈ S′} be the

maximum index of a school in S′. We may think of i(S′) as the index of the most affordable school

in S′ in the first round. For a student type θ = (�, �̂), an interval I ⊆ [0, 1], and a set of schools

S′, let ρθ(I, S′) be the proportion of students with type θ who, under the mechanism M , have a

first-round lottery in the interval I and are assigned to a school in S′ in the second round. When

S′ = {s′} we will sometimes write ρθ(I, s′) instead of6 ρθ(I, {s′}). In this section, for brevity, when

defining preferences � we will sometimes write �: [si1 , si2 , . . . , sik ] instead of si1 � si2 � · · · � sik .

(2b) Constructing the permutation P .

We now construct the permutation P as follows. For all pairs of indices i, j, we define a scalar

γi,j , which we will show can be thought of as the proportion of students (of any type) whose

first-round affordable set is Xi and whose second-round affordable set is X̃j .

Now, for all pairs of indices i, j such that σ(j) < i, we define student preferences θi,j = (�i,j , �̂i,j)

such that

�i,j : [sσ(j), si−1, si, sN+1] and �̂i,j : [sσ(j), sN+1],

with all other schools unacceptable. (We remark that in the case where σ(j) = i− 1, the first two

schools in this preference ordering coincide.) We note that the full-support assumption implies that

there is a positive measure of such students. Let ρi,j be the proportion of students of type θi,j whose

first-round assignment is si and whose second-round assignment is school sσ(j). Intuitively, ρi,j is

the proportion of students who can deduce that their lottery number is in the interval [Ci, Ci−1],

6Here we are assuming that this proportion is the same for every realization of the first round of M . This requires
non-atomicity and anonymity.
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and whose second-round affordable set contains X̃j .

For a fixed index i, we define γi,j for j = 1, 2, . . . , N to be the unique solutions to the following

n equations:

γi,j = 0 for all j such that σ(j) ≥ i

γi,1 + · · ·+ γi,j = ρi,j for all j such that σ(j) < i.

Note that by this definition it holds that γ1,j = 0 for all j. We may intuitively think of γi,j as the

proportion of students of type θi,j whose first-round lottery is in [Ci, Ci−1] and whose second-round

affordable set contains sσ(j) but not sσ(j−1). (This is not quite the case, as we let γi,j = 0 for all j

such that σ (j) ≥ i. More precisely, if σ (j) < i then γi,j is the proportion of students of type θi,j

whose first-round lottery is in [Ci, Ci−1] and whose second-round affordable set contains sσ(j), but

not sσ(j′), where j′ = max {j′′ : σ (j′′) < i}.) Note that if σ(j) ≥ i then school sσ(j) will be in the

first-round affordable set for all students whose first-round lottery is in [Ci, Ci−1], and we define

γi,j = 0 and keep track of these students separately.

We also define γi,N+1 to be

γi,N+1 = Ci−1 − Ci −
n∑
j=1

γi,j .

Since transfers are index-decreasing, we may intuitively think of γi,N+1 as the proportion of students

of type θi,j assigned to school si in the first round whose only available school in the second round

comes from their first-round guarantee.

We define the lottery P from γi,j as follows. We break the interval [0, 1] into (N + 1)2 intervals,

Ĩi,j , where the interval Ĩi,j has length γi,j , and the intervals are ordered in decreasing order of the

first index7 i,

ĨN+1,N+1, ĨN+1,N , . . . , Ĩ1,2, Ĩ1,1.

The permutation P maps the intervals back into [0, 1] in decreasing order of the second index8

j,

P (ĨN+1,N+1), P (ĨN,N+1), . . . P (Ĩ2,1), P (Ĩ1,1).

In Figure 5, we show an example with two schools.

7Specifically, let Ĩi,j = [Ci−1 −
∑
j′≤j γi,j′ , Ci−1 −

∑
j′<j γi,j′ ].

8Specifically, let Ĉσ(j) = 1 −
∑
i′,j′:j′≤j γi′,j′ , and let P (Ĩi,j) = [Ĉσ(j−1) −

∑
i′≤i γi′,j , Ĉσ(j−1) −

∑
i′<i γi′,j ].
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0 C1C2 1

Ĩ1,∅Ĩ2,1Ĩ2,∅Ĩ∅,1Ĩ∅,2Ĩ∅,∅

0 Ĉσ(1)Ĉσ(2) 1

P (Ĩ2,1)P (Ĩ∅,1)P (Ĩ∅,2)P (Ĩ1,∅)P (Ĩ2,∅)P (Ĩ∅,∅)

Figure 1: Constructing the permutation P for n = 2 schools, where σ is the identity permutation.
The intervals Ĩi,j for i ≤ σ(j) = j < N + 1 are empty by definition, as all transfers are index-
decreasing.

We note that
∑N+1

j=1 γi,j = Ci−1 − Ci, which is the proportion of students whose first-round

affordable set is Xi. We may interpret γi,j to be the proportion of students who can deduce that

their lottery number is in the interval [Ci, Ci−1], and whose second-round affordable set is X̃j , and

so
∑N+1

i=1 γi,j is the proportion of students whose second-round affordable set is X̃j . We remark that

there may be multiple values of i, j for which γi,j = 0 (i.e. there are no students whose first-round

affordable set is Xi and second-round affordable set is Xj), but that this does not affect our ability

to assign students to all possible pairs of schools that are consistent with consistent preferences and

the first- and second-round overdemand orderings. For example γ1,j = 0 for all j, but any student

whose first-round affordable set is X1 is assigned to her top choice school in both rounds, and hence

her second-round affordable set is inconsequential.

We show that there exists a PLDA mechanism with permutation P , where the students with

first-round scores in Ĩi,j are precisely the students with a first-round affordable set Xi and a second-

round affordable set X̃j , and that this PLDA mechanism gives the same joint distribution over first-

and second-round assignments as M . To do this, we first show that this distribution of first- and

second-round affordable sets gives rise to the correct joint first- and second-round assignments over

all students. We then use anonymity to construct L in such a way as to have the correct first-

and second-round assignment joint distributions for each student. Finally, we verify that these

second-round affordable sets give the student-optimal stable matching under the second round

school preferences given by P .

(2c) Equivalence of the joint distribution of assignments given by affordable sets and

M .

Fix student preferences θ = (�, �̂). We show that if we let γi,j be the proportion of students

with preferences θ who have first- and second-round affordables Xi and X̃j respectively, then we
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obtain the same joint distribution over assignments in the first and second rounds for students with

preferences θ as under mechanism M . In doing so, we will use the following “prefix lemma”.

The “prefix lemma” states that for every set of schools S′, there exist certain intervals of the

form Iji = [Ci, Cj ] such that for any two student types whose top set of acceptable schools under

second-round preference reports is S′, the proportion of students with lotteries in Iji who are

upgraded to a school in S′ in the second round is the same for each type.

We define a prefix of preferences � to be a set of schools S′ that is a top set of acceptable

schools under �; that is, for all s′ ∈ S′ and s 6∈ S′, it holds that s′ � s.

Lemma 3. [Prefix Property] Let s = sj be a school, and let S′ 63 s be a set of schools such that

i(S′) < j. Let θ = (�, �̂) and θ′ = (�′, �̂′) be consistent preferences such that S′ is a prefix of �, �̂

and some students with preferences θ are assigned to school s in the first round, and similarly S′ is

a prefix of �′, �̂′ and some students with preferences θ′ are assigned to school s in the first round.

Then
ρθ([Cj , Ci(S′)], S

′) = ρθ
′
([Cj , Ci(S′)], S

′).

That is, the proportion of students of type θ whose first-round lotteries are in the interval [Cj , Ci(S′)]

and who are assigned to a school in S′ in the second round is the same as the proportion of students

of type θ′ whose first-round lotteries are in the interval [Cj , Ci(S′)] and who are assigned to a school

in S′ in the second round.

Sketch of proof of Lemma 3. The idea of the proof is to use weak strategy-proofness and first-order

stochastic dominance to show that the probabilities of being assigned to S′ (conditional on certain

first-round assignments) are the same for students of type θ or θ′. We then invoke anonymity to

argue that proportions of types of students assigned to a certain school are given by the conditional

probabilities of individual students being assigned to that school. We present the full proof at the

end of Section 3.1.

We now show that the mechanism M and the affordable set distribution γi,j produce the same

joint distribution of assignments.

(2c.i.) Students with two acceptable schools.

To give a bit of the flavor of the proof, we first consider student preferences θ of the form

�: [s, s′, sN+1] and �̂ : [s, sN+1], where all other schools are unacceptable. We let k, l be the indices

such that s = sk and s′ = sl.
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There are five ordered pairs of schools that students of this type can be assigned to in the two

rounds. Namely, if we let (s, s′) denote assignment to s in the first round and to s′ in the second

round, then the ordered pairs are (s, s), (s′, s), (s′, sN+1), (sN+1, s), and (sN+1, sN+1). Since

the proportion of students with each first-round assignment is fixed, it suffices to show that the

mechanism M and the mechanism that assigns first- and second-round affordable set distributions

according to γi,j produce the same proportion of students assigned to (s′, s) and the same proportion

of students assigned to (sN+1, s).

Let Ikl = [Cl, Ck], and let I
max{k,l}
N+1 = [0, Cmax{k,l}]. The proportions of students with pref-

erences θ who are assigned to (s′, s) and (sN+1, s) under M are given by ρθ([Cl, Ck], s) and

ρθ([0, Cmax{k,l}], s) respectively. We want to show that this is the same as the proportion of students

with preferences θ who are assigned to (s′, s) and (sN+1, s) respectively when first- and second-

round affordable sets are given by the affordable set distribution γi,j . We remark that when k > l

this holds vacuously, since all the terms are 0. Hence, since for any school s the proportion of

students with preferences θ who are assigned to s in the first round does not depend on θ, it suffices

to consider the case where k < l.

Let θ′ = (�′, �̂′) be the preferences given by �′: [s = sk, sk+1, . . . , sl−1, s
′ = sl, sN+1] and

�̂′ : [s = sk, sN+1], where only the schools with indices between k and l are acceptable in the first

round, only s = sk is acceptable in the second round, and all other schools are unacceptable.

For all pairs of indices i, j such that j < i, let θ′i,j = (�i,j , �̂i,j) be the student preferences such

that �i,j : [sj , si−1, si, sN+1] and �̂i,j : [sj , sN+1], with all other schools unacceptable. (In the case

where i = j + 1, we let the first two schools under the preference ordering �i,j coincide.) We note

that θ′i,j = θi,σ−1(j), where θi,j was defined in (2b), and that for i > σ(j) we previously defined

ρi,j =
∑

l≤j γi,l to be the proportion of students of type θi,j whose first-round assignment is si and

whose second-round assignment is school sj .
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The proportion of students with preferences θ who are assigned to (s′, s) under M is given by

ρθ([Cl, Ck], s) = ρθ
′
([Cl, Ck], s) (by the prefix property (Lemma 3))

=
∑
k<i≤l

ρθ
′
([Ci, Ci−1], s)

=
∑
k<i≤l

ρθ
′
i,k([Ci, Ci−1], s)

(since the second-round assignment does not depend on the first-round report)

=
∑
k<i≤l

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑
k<i≤l

∑
j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (s′, s) if the

first- and second-round affordable sets are given by γi,j .

Similarly, let θ′′ = (�′′, �̂′′) be the preferences given by �′′: [s = sk, s
′ = sl, sl+1, . . . , sN , sN+1]

and �̂′′ : [s = sk, sN+1], where only s = sk and the schools with indices greater than l are

acceptable in the first round, only s = sk is acceptable in the second round, and all other schools

are unacceptable. Then the proportion of students with preferences θ who are assigned to (sN+1, s)

under M is given by

ρθ([0, Cl], s) = ρθ
′′
([0, Cl], s) (by the prefix property (Lemma 3))

=
∑
l<i≤N

ρθ
′′
([Ci, Ci−1], s)

=
∑
l<i≤N

ρθ
′
i,k([Ci, Ci−1], s)

(since the second-round assignment does not depend on the first-round report)

=
∑
l<i≤N

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑

i,j:l<i≤N,j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (sN+1, s) if the

first- and second-round affordable sets are given by γi,j .

(2c.ii.) Students with general preferences.
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We now consider general (consistent) student preferences θ of the form (�, �̂), where

�: [si1 , si2 , . . . , sik , sN+1] and �̂ : [si1 , si2 , . . . , sil , sN+1],

for some k > l and where all other schools are unacceptable. We wish to show that for every pair of

schools s, s′ ∈ {si1 , si2 , . . . , sik , sN+1}, the mechanism M and the mechanism that assigns first- and

second-round affordable set distributions according to γi,j produce the same proportion of students

assigned to (s, s′). It suffices to show that for every prefix S′ of the preferences �̂ and every school

s ∈ {si2 , . . . , sik , sN+1}, the mechanism M and the mechanism that assigns first- and second-round

affordable set distributions according to γi,j produce the same proportion of students assigned to s

in the first round and some school in S′ in the second round. We say that the students are assigned

to (s, S′).

Fix a prefix S′ of �̂ and a school s = sij , 1 < j ≤ k. Let m ≤ k be such that S′ =

{si1 , si2 , . . . , sim}. If j ≤ m then s ∈ S′, and so in any mechanism that respects guarantees,

the proportion of students assigned to (s, S′) is the same as the proportion of students assigned to

s in the first round.

Recall that i(S′) is the largest index of a school in S′, i.e. if i(S′) = max{i′ : si′ ∈ S′}. (Note

that this is not necessarily im, the index of the school in S′ that is least preferred by a student of

type θ.) If j > m and ij ≤ i(S′), then in the first round, whenever the school ij is available in

the first round, so is the preferred school i(S′); thus, for any school s′, the proportion of students

assigned to s in the first round is 0. It follows that in any mechanism that respects guarantees, the

proportion of students assigned to (s, S′) is 0.

From here on, we may assume that j > m (i.e., s 6∈ S′) and ij > i(S′). Since ij > i(S′),

the proportion of students with preferences θ who are assigned to (s, S′) under M is given by

ρθ([Cij , Ci(S′)], S
′). Let i(σ(S′)) be the index i such that si ∈ S′ and σ−1(i) is maximal, that is,

the index of the school in S′ that is most affordable in the second round.

Let θ′ = (�′, �̂′) be the preferences given by

�′: [si(σ(S′)), s
′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sN+1] and �̂′ : [si(σ(S′)), s

′, sN+1]
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for all s′ ∈ S′ \ {si(σ(S′))}. It may be helpful to think of this as all preferences of the form

�′: [S′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sN+1] and �̂′ : [S′, sN+1],

where the school si(σ(S′)) comes first and otherwise the schools in S′ are ordered arbitrarily, and

where all schools between si(S′) and sij are acceptable in the same order as first round overdemand.

We remark that only the schools in S′ and the schools with indices between i(S′) and ij are

acceptable in the first round, only the schools in S′ are acceptable in the second round, and all

other schools are unacceptable. Since j > m, ij > i(S′), and the preferences θ are consistent,

the preferences θ′ are well defined. Let θ′′ = (�′′, �̂′′) be the preferences given by �′′=�′ and

�̂′′ : [si(σ(S′)), sN+1].

Recall that for all i > i(σ(S′)), θ′i,i(σ(S′)) = (�i,i(σ(S′)), �̂i,i(σ(S′))) are the student preferences

such that

�i,i(σ(S′)): [si(σ(S′)), si−1, si, sN+1] and �̂i,i(σ(S′)) : [si(σ(S′)), sN+1],

with all other schools unacceptable. Additionally, recall that ρi,σ−1(i(σ(S′))) is the proportion of

students of type θi,i(σ(S′)) whose first-round assignment is si and whose second-round assignment

is school si(σ(S′)).

Let Ŝ = {si1 , si2 , . . . , sij−1}, and let i(Ŝ) be the index i such that i ∈ Ŝ and σ−1(i) is maximal,

that is, the index of the school preferable to s under � that is most affordable in the second round.

Then the proportion of students with preferences θ who are assigned to (s, S′) under M is given
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by ρθ([Cij , Ci(Ŝ)], S
′), where

ρθ([Cij , Ci(Ŝ)], S
′) = ρθ

′
([Cij , Ci(Ŝ)], S

′) (by the prefix property (Lemma 3) with prefix S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], si(σ(S′)))

(by the definition of the second-round overdemand ordering)

=
∑

i(Ŝ)<i≤ij

ρθ
′′
([Ci, Ci−1], si(σ(S′))) (by the prefix property with prefix {si(σ(S′))})

=
∑

i(Ŝ)<i≤ij

ρ
θ′
i,i(σ(S′))([Ci, Ci−1], si(σ(S′)))

(since the second-round assignment does not depend on the first-round report)

=
∑

i(Ŝ)<i≤ij

ρi,σ−1(i(σ(S′))) (by the definition of ρi,σ−1(i(σ(S′))))

=
∑

i(Ŝ)<i≤ij

∑
j′≤σ−1(i(σ(S′)))

γi,j′ (by the definition of γi,j′),

which is precisely the proportion of students with preferences θ who are assigned to (s, S′) if the

first- and second-round affordable sets are given by γi,j′ . Note that all θ′i,i(σ(S′)) and ρi,σ−1(i(σ(S′)))

in the summation are well-defined, since the sum is over indices satisfying i > i
(
Ŝ
)

, and since

j > m it follows that Ŝ ⊇ S′ and hence i > i
(
Ŝ
)
≥ i (σ (S′)) .

(2d) Constructing the lottery L.

Fix a student λ who reports first- and second-round preferences θ = (�, �̂). Suppose that λ is

assigned to schools (si, sj) in the first and second rounds respectively. We first characterize all first-

and second-round budget sets consistent with the overdemand orderings that could have led to this

assignment. Let i be the smallest index i′ such that max�Xi′ = si, let j be the smallest index j′

such that max�̂ X̃j′ ∪ {si} = sj , and let j be the largest index j′ such that max�̂ X̃j′ ∪ {si} = sj .

Then the set of first- and second-round budget sets that student λ could have been assigned by the

mechanism is given by {Xi′ , Xj′ ∪ {si} : i ≤ i′ ≤ i, j ≤ j′ ≤ j}. (We remark that the asymmetry

in these definitions is due to the existence of the first-round guarantee in the second-round budget

sets.)

Conditional on λ being assigned to schools (si, sj) in the first and second rounds respec-

tively, we assign a lottery number L(λ) to λ distributed uniformly over the union of intervals
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∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ ,

( L(λ) | (µ(λ), µ̃(λ)) = (si, sj)) ∼ Unif
(
∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′

)
,

independent of all other students’ assignments.

We show that this is consistent with the first round of the mechanism being RSD. We have

shown in (1) that if for each pair of reported preferences θ = (�, �̂) ∈ Θ, a uniform proportion γi′,j′

of students with reported preferences θ are given first- and second-round budget sets Xi′ , {sθ} ∪

X̃j′ (where sθ = max�Xi is the first-round assignment of such students), we obtain the same

distribution of assignments as M . Since M is anonymous and satisfies the averaging axiom, and

since |Ĩi′,j′ | = γi′,j′ , it follows that each student’s first-round lottery number is distributed as

Unif[0, 1].

Given the constructed lottery L, we construct the second-round cutoffs Ĉi for the PLDA and

verify that the assignment µ̃ is feasible and stable with respect to the schools’ second-round prefer-

ences, as defined by P ◦L and the guarantee structure. Specifically, in PLDA, each student with a

first-round score l and a first-round assignment s has a second-round score r̂i = P (l) +1(s = si) at

each school si ∈ S, and students are assigned to their favorite school si at which their second-round

score exceeds the school’s second-round cutoff, r̂i ≥ Ĉi (or to the outside option sN+1).

Recall that the schools are indexed so that C1 ≥ C2 ≥ · · · ≥ CN+1, and that the permutation σ

is chosen so that the second-round overdemand ordering is given by sσ(1), sσ(2), . . . , sσ(N+1) = sN+1,

and so it should follow that the second-round cutoffs Ĉi satisfy Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(N+1).

By the characterization of stable assignments given by Azevedo and Leshno (2016), it suf-

fices to show that if each student with a first-round assignment s and second-round lottery num-

ber in [Ĉσ−1(i), Ĉσ−1(i−1)] is assigned to her favorite school in {s} ∪ X̃i, where we define X̃i =

{sσ(i), sσ(i+1), . . . , sσ(N+1)}, then the resulting assignment µ̂ is equal to the second-round assign-

ment µ̃ of our mechanism M , and satisfies that η(µ̂−1(si)) ≤ qi for any school si, and η(µ̂−1(si)) = qi

if Ĉi > 0.

For fixed i, j, let Ĉσ(j) = 1−
∑

i′,j′:j′≤j γi′,j′ and let Ĉi,σ(j) = Ĉσ(j−1) −
∑

i′≤i γi′,j . (We remark

that since γi,j refers to the i-th school to fill in the first round, si, and the j-th school to fill in the

second round, sσ(j), the Ĉ are indexed slightly differently than γi,j is.)

We use the averaging assumption and the equivalence of assignment probabilities that we have
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shown in (1) to conclude that if µ̂ is the assignment given by running DA with round scores r̂ and

cutoffs Ĉ, then µ̃ = µ̂.

This is fairly evident, but we also show it explicitly below. Specifically, consider a student

λ ∈ Λ with a first-round lottery number L(λ) and reported preferences θ = (�, �̂). Let i, j be

such that L(λ) ∈ ∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ , where i is the smallest index i′ such that max�Xi′ = si,

j is the smallest index j′ such that max�̂ X̃j′ ∪ {si} = sj , and j is the largest index j′ such that

max�̂ X̃j′ ∪ {si} = sj . Then, because of the way in which we have constructed the lottery L,

(µ(λ), µ̃(λ)) = (si, sj).

Moreover, since

P (L(λ)) ∈ P (∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′)

= ∪i′,j′:i≤i′≤i,j≤j′≤jP (Ĩi′,j′),

where P (Ĩi′,j′) ∈ [Ĉσ(j′), Ĉσ(j′−1)], it holds that under µ̂, student λ receives her favorite school in

{si} ∪ X̃j′ for some j ≤ j′ ≤ j, which is the school sj . Hence µ̃(λ) = µ̂(λ) = sj .

It follows immediately that the assignment µ̂ is feasible, since it is equal to the feasible assign-

ment µ̃.

Finally, let us check that the assignment is stable. Suppose that Ĉj > 0. We want to show that

η(µ̃−1(sj)) = qj . First note that it follows from the definition of Ĉj that

1 >
∑

i′,j′:j′≤σ−1(j)

γi′,j′ =
∑
i′

ρi′,σ−1(j).

Consider student preferences θ = (�,�) given by �: [sj , s1, s2, . . . , sj−1, sj+1, . . . , sN+1]. Then∑
i′ ρi′,σ−1(j) is the proportion of students of type θ who are assigned to school sj in the second

round, which, by assumption, is also the probability that a student with preferences θ is assigned

to sj in the second round. But since M is non-wasteful, this means that η(µ̃−1(sj)) = qj . It follows

from constrained Pareto efficiency that the output of M is the student-optimal stable matching.

Proof of Lemma 3. Here, we prove the prefix property. We first observe that any schools reported

to be acceptable but ranked below s in the first round are inconsequential. Moreover, since M

respects guarantees, weak two-round strategy-proofness implies that any schools reported to be

acceptable but ranked below s in the second round are inconsequential. Hence it suffices to prove
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the lemma for first-round preference orderings � and �′ for which s is the last acceptable school.

Suppose that the lemma holds for i = i (C′). Then if i (C′) = i′ < i it holds that

ρθ
(
[Cj , Ci] , C′

)
=

ρθ
([
Cj , Ci(C′)

]
, C′
) (
Ci(C′) − Cj

)
− ρθ

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

=
ρθ
′ ([

Cj , Ci(C′)
]
, C′
) (
Ci(C′) − Cj

)
− ρθ′

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

= ρθ
′ (

[Cj , Ci] , C′
)
,

where the first and last equalities follow from Bayes’ rule, and the second equality holds since the

lemma holds for i = i (C′), and the theorem follows. Hence it suffices to prove the lemma for

i = i (C′).

Let i1, . . . , ik be the indices of the schools in S′, in increasing order. We observe that ik = i(S′).

Recall that s = sj , where ik < j.

Since we wish to prove that the lemma holds for all pairs θ, θ′ satisfying the assumptions, it

suffices to show that the lemma holds for a fixed preference θ when we vary only θ′. Therefore, we

may, without loss of generality, fix the preferences θ to satisfy that

�: [si(S′), si1 , . . . , sik−1
, s = sj , sN+1] and �̂ : [si(S′), si1 , · · · , sik−1

, sN+1],

and all other schools are unacceptable. That is, the worst school in S′ is top ranked, then all other

schools in S′ in order. In the first round s = sj is also acceptable, and in the second round only

schools in S′ are acceptable.

We remark that given the first-round ordering, the worst school in S′ and the school s (namely,

si(S′) and sj) are the only acceptable schools to which students of type θ will be assigned in the first

round. Moreover, the proportion of students with preferences θ (or θ′) who can deduce that their

score is in [Cj , Ci(S′)] is precisely Ci(S′) −Cj , since such students are assigned in the first round to

some school not in S′ that they weakly prefer to s, and all such schools are between si(S′′) and sj

in the overdemand ordering. Similarly, the proportion of students with preferences θ (or θ′) who

can deduce that their lottery number is in [Ci(S′), 1] is precisely 1− Ci(S′), since such students are

assigned in the first round to a school in S′. (Note that students with preferences θ′ may be able to

deduce that their lottery number falls in a subinterval of the interval we have specified. However,

this does not affect our statements.) To compare the proportion of students of types θ and θ′ whose
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scores are in [Cj , Ci(S′)] and who are assigned to S′ in the second round, we define a third student

type θ′′ as follows. Let θ′′ = (�′, �̂) be a set of preferences where the first-round preferences are

the same as the first-round preferences of θ′, and the second-round preferences are the same as the

second-round preferences of type θ.

Let λ be a student with preferences θ, and similarly let λ′ be a student with preferences θ′. We

use the two-round strategy-proofness of the mechanism to show that λ has the same probability

of being assigned to some school in S′ in the second round as if she had reported type θ′′, and

similarly for λ′. Since the proportion of students of either type being assigned to a school in S′ in

the first round is the same and the mechanism respects guarantees, this is sufficient to prove the

prefix property.

Formally, let ρ be the probability that λ is assigned to some school in S′ in the second round if

she reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci(S′)],

and let ρ′ be the probability that λ′ is assigned to some school in S′ in the second round if she

reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci(S′)].

(We note that given her first-round assignment µ(ρ′), the student ρ′ may actually be able to deduce

more about her first-round score, and so the interim probability after knowing her assignment that

ρ′ is assigned to some school in S′ in the second round if she reports truthfully is not necessarily ρ′.)

Let ρ′′ be the probability that a student with preferences θ′′ and a first-round score in [Cj , Ci(S′)]

chosen uniformly at random is assigned to some school in S′ in the second round. It follows from

the design of the first round and from anonymity that ρ is the probability that a student with

preferences θ and a lottery number in [Cj , Ci(S′)] chosen uniformly at random is assigned to some

school in S′ in the second round, and similarly for ρ′.

Proving the lemma is equivalent to proving ρ = ρ′. We show that ρ = ρ′′ = ρ′. Note that the

first equality is between preferences that are identical in the second round, and the second equality

is between preferences that are identical in the first round.

We first show that ρ = ρ′′; that is, changing just the first-round preferences does not affect the

probability of assignment to S′. This is almost immediate from first-order stochastic dominance

of truthful reporting, since the second-round preferences under θ and θ′′ are identical. (This also

illustrates the power of the assumption that the second-round assignment does not depend on first-

round preferences. It implies that manipulating first-round reports to obtain a more fine-grained

knowledge of the lottery number does not help, since assignment probabilities are conditionally
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independent of the lottery number.) We present the full argument below.

Let π be the probability that a student with preferences θ who is unassigned in the first round

is assigned to a school in S′ in the second round. We note that since the last acceptable school

under preferences θ and θ′ is s = sj , the set of students with preferences θ who are unassigned in

the first round is equal to the set of students with preferences θ with lottery number in [0, Cj ], and

similarly the set of students with preferences θ′′ who are unassigned in the first round is equal to

the set of students with preferences θ′′ with lottery number in [0, Cj ]. Hence, the fact that θ and

θ′′ have the same second preferences gives us that π is also the probability that a student with

preferences θ′′ who is unassigned in the first round is assigned to a school in S′ in the second round.

The probability of being assigned in the second round to a school in S′ when reporting θ is

given by:

(1− Ci(S′)) + (Ci(S′) − Cj)ρ+ Cjπ,

The probability of being assigned in the second round to a school in S′ when reporting θ′′ is given

by:

(1− Ci(S′)) + (Ci(S′) − Cj)ρ′′ + Cjπ,

It follows from first-order stochastic dominance of truthful reporting for types θ and θ′ that

ρ = ρ′′.

We now show that ρ′ = ρ′′. This is a little more involved, but essentially relies on breaking

the set of students with first-round score in [Cj , Ci(S′)] into smaller subsets, depending on their

first-round assignment, and using first-order stochastic dominance of truthful reporting to show

that in each subset, the probability of an arbitrary student being assigned to a school in S′ in the

second round is the same for students with either set of preferences θ′ or θ′′.

We first introduce some notation for describing the first-round preferences of θ′ and θ′′. Let

{j1 ≤ · · · ≤ jm} be the indices between i(S′) and j corresponding to schools that a student with

preferences θ′ and a lottery number in [Cj , Ci(S′)] could have been assigned to in the first round.

Formally, we define them to be the indices k for which sk 6∈ S′, i(S′) < k ≤ j, sk �′ sj and sk is

relevant in the first-round overdemand ordering, that is, k′ < k for all k′ such that sk′ �′ sk. We

observe that jm = j. For l = 1, . . . ,m, let ρ′l be the probability that a student with preferences θ′

who was assigned to school sjl is assigned to a school in S′ in the second round.

The set of students with preferences θ′ assigned to school sjl in the first round is precisely the
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set of students with preferences θ′ whose first-round lottery number is in [Cjl , Cjl−1
] and similarly

the set of students with preferences θ′′ assigned to school sjl in the first round is precisely the set of

students with preferences θ′′ whose first-round lottery number is in [Cjl , Cjl−1
]. If we define j0 = i,

it follows that (Ci(S′) − Cj) =
∑m

l=1(Cjl−1
− Cjl), and that

(Ci(S′) − Cj)ρ′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′
l.

Let ρ′′l be the probability that a student with preferences θ′′ who was assigned to school sjl is

assigned to a school in S′ in the second round. Then it also holds that

(Ci(S′) − Cj)ρ′′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′′
l .

We show now that ρ′′l = ρ′l for all l, which implies that ρ′ = ρ′′.

Consider a student λl who reported �′=�′′ in the first round and was assigned to school sjl .

Note that such a report is consistent with either reporting θ′ or θ′′, and since the first-round

reports of these types are the same and the first-round mechanism is DA-STB there exists some

set of lottery numbers Ll such that students of type θ′ and θ′′ are assigned to jl in the first round

if and only if their lottery lies in Ll. The probabilities that this student is assigned in the second

round to a school in C′ when reporting θ′ and θ′′ are given by ρ′l and ρ′′l respectively. Now for any

fixed lottery L (λ), truthful reporting is a dominant strategy in the second round for types θ and

θ′. It follows that ρ′l = ρ′′l . This completes the proof of the lemma.
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