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A large fraction of online advertisements are sold via repeated second-price auctions. In these auctions, the

reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following

question: How can the auctioneer optimize the reserve prices by learning from the previous bids, while

accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a

seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item

are drawn i.i.d. from a distribution F that is unknown to the seller. We find that if the seller attempts to

dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers

to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility

can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set

using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue

obtained under the static Myerson optimal auction for F . Further, if valuation distributions differ across

bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We

extend our results to a contextual setting where the valuations of the buyers depend on observed features of

the items. When up-front fees are permitted, we show how the seller can determine such payments based on

the bids of others to obtain an approximately incentive compatible-mechanism that extracts nearly all the

surplus.

1. Introduction

Advertising is the main component of the monetization strategy of most Internet companies. A

large fraction of online advertisements are sold via auctions where advertisers bid in real time for

a chance to show their ads to users. Examples of such auction platforms, called advertisement

* Minor revision submitted to Operations Research on Oct 30, 2019.

1



Kanoria and Nazerzadeh: Incentive-Compatible Learning of Reserve Prices for Repeated Auctions

2 00(0), pp. 000–000, c© 0000 INFORMS

exchanges (Muthukrishnan 2009, McAfee 2011), include Google’s Doubleclick (AdX), Facebook,

AppNexus, and OpenX.

The second-price auction is a common mechanism used by advertisement exchanges. It is a

simple mechanism that incentivizes advertisers to be truthful in a static setting. The second-price

auction can maximize the social welfare (i.e., the value created in the system) by allocating the

item to the highest bidder.

To maximize the revenue earned in a second-price auction, the auctioneer can set a reserve

price and not make any allocations when the bids are low. In fact, under symmetry and regularity

assumptions (see Section 2), the second-price auction with an appropriately chosen reserve price is

optimal and maximizes revenue among all selling mechanisms (Myerson 1981, Riley and Samuelson

1981).

However, to set the reserve price effectively, the auctioneer requires information about the dis-

tribution of the valuations of the bidders. A natural idea, which is widely used in practice, is to

construct these distributions using the history of the bids. This approach, though intuitive, raises

a major concern with regard to the long-term (dynamic) incentives of the advertisers. Because the

bid of an advertiser may determine the price she pays in future auctions, this approach may lead

the advertisers to shade their bids and ultimately result in a loss of revenue for the auctioneer.

To understand the effects of changing reserve prices based on previous bids, we study a setting

where the auctioneer sells impressions (advertisement space) via repeated second-price auctions.

More specifically, in the main model we consider, the valuations of the bidders are drawn i.i.d.

from a distribution. The bidders are strategic and aim to maximize their cumulative utility. We

demonstrate that the long-term incentives of advertisers play an important role in the performance

of these repeated auctions.

We show that natural mechanisms that set a common reserve price using the history of the bids

may create substantial incentives for the buyers to shade their bids. On the other hand, we propose

an incentive-compatible mechanism that sets a personalized reserve price for each agent based on

the bids of other agents.1 Our mechanism allocates the item to the highest bidder if his bid exceeds

his personal reserve price. If the item is allocated, the price is equal to the maximum of the second-

highest bid and the personal reserve price of the winner. This structure corresponds to mechanisms

used in practice, as described in Paes Leme et al. (2016). By appropriately choosing the function

that maps historical bids of others to a personal reserve price, we show that the expected revenue

1 In case of unlimited supply the incentive compatibility directly follows if the price of each buyer only depends on

the other buyers, cf., Balcan et al. (2008). With limited supply, obtaining incentive compatibility is more challenging

because of “competition” among buyers.
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per round is asymptotically as large as that under the static Myerson optimal auction that a-priori

knows the distribution of the bids.2

We discussed earlier that using the bids from the others has a “first order effect” of preventing a

bidder from lowering the reserve price he will see in future by misreporting his valuation. However,

we show that despite only using bids of other agents, there is room for a “second order effect” by

which a bidder could seek to benefit by affecting the reserve prices of others and thus indirectly

himself. Hence, importantly, for addressing the second order effect, our mechanism is “lazy” (see

more on this in the section on related work below), in that it allocates the item only to the highest

bidder (if she clears her personal reserve); it is not enough for some bidder to clear her personal

reserve. An “eager” variant would allocate the item to the highest bidder among those who clear

their reserve; this would create an incentive for agents to overbid so as to increase the personal

reserves of other agents in future, thereby increasing their likelihood of being eliminated.

As described earlier, our mechanism allocates the item to the highest bidder if her bid exceeds

her personal reserve price. The personal reserve is chosen to maximize revenue for a distribution

estimated using other agents’ bids. A natural concern with such an approach is that if agents’

valuation distributions differ from each other, it may lead to a lower personal reserve price for

agents with a higher valuation distribution, and vice versa, thereby hurting revenue. We show that

this issue is not significant when differences in valuation distributions are not too large (our notion

of the distance between two distributions is the maximum absolute difference between their virtual

value functions). In particular, we show that the loss relative to the Myerson benchmark is only

quadratic in the size of such differences, and supplement this theoretical result with numerical

examples.

We also generalize our result across another dimension. Namely, we extend our results to a

contextual setting with heterogeneous items that are represented by a feature vector of covariates.

The valuations of the buyers are linear in the feature vectors (with a-priori unknown coefficients)

plus an idiosyncratic private component. We present a learning algorithm that determines the

reserve price for each buyer using an ordinary least squares estimator for the feature coefficients.

We show that the loss of revenue is sub-linear in the number of samples (previous auctions).

For the aforementioned results, we benchmarked the performance of the mechanisms with respect

to the static Myerson optimal auction that knows the distribution of the bids in advance. However,

we note that this static mechanism is not the optimal mechanism among the class of dynamic

mechanisms. In fact, we present a mechanism that can extract (almost all of) the surplus of the

2 From a technical perspective, we build on prior work that investigates how samples from a distribution can be used

to set a near-optimal reserve price, cf., Dhangwatnotai et al. (2015).
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agents. The basic idea is that using the bids of other agents, the seller can construct an estimate of

the valuation distribution and hence of the expected utility per round of each agent when individual

items are allocated using second-price auctions. Based on this estimate, the mechanism charges a

surplus-extracting up-front payment at the beginning of each round. Since agents can influence the

up-front payments of other agents, they may have an incentive to overbid to eliminate competing

agents from future auctions. We propose a solution that asymptotically removes the incentive

for agents to deviate from truthfulness: the mechanism simulates agents who choose not to pay

the entrance fee. We show that under our mechanism, truthfulness constitutes an approximate

equilibrium.

In each of our proposed mechanisms, we overcome incentive issues using the same two key ideas:

(i) we eliminate incentives for lowering bids by individually choosing a pricing rule for each agent,

based only on the bids of other agents, and (ii) we disincentivize overbidding by preventing an

agent from benefiting from suppressing participation of other agents by raising the prices they

face; this has been achieved in our setting by allocating the item only to the highest bidder in our

mechanisms that achieve the Myerson benchmark, and by simulating non-participating agents in

our surplus-extracting mechanism. In a setting where agents’ valuation distributions are identical

(or similar to each other), this approach enables the seller to obtain as much revenue as if he

knew the valuation distribution F , while maintaining incentive compatibility. We believe that these

design principles should be broadly applicable to overcome the lack of knowledge of F when there

is competition between strategic agents/buyers; see Section 8 for further discussion.

Related Work

In this section, we briefly discuss work closely related to ours along two dimensions, behavior-based

(personalized) pricing and reserve pricing optimization for online advertising.

Behavior-Based Pricing. Our work is closely related to the literature on behavior-based pricing

strategies where the seller changes the prices for one buyer (or a segment of the buyers) based on

her previous behavior. For instance, the seller may increase the price after a purchase or reduce

the price in the case of no-purchase; see Fudenberg and Villas-Boas (2007) and Esteves (2009) for

surveys.

The common insight from the literature is that the optimal pricing strategy is to commit to a

single price over the length of the horizon (Stokey 1979, Salant 1989, Hart and Tirole 1988). In

fact, when customers anticipate a future reduction in prices, dynamic pricing may hurt the seller’s

revenue (Taylor 2004, Villas-Boas 2004). Similar insights are obtained in environments where the

goal is to sell a fixed initial inventory of products to unit-demand buyers who arrive over time (Aviv

and Pazgal 2008, Dasu and Tong 2010, Aviv et al. 2013, Correa et al. 2016).
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There has been renewed interest in behavior-based pricing strategies, mainly motivated by the

development in e-commerce technologies that enable online retailers and other Internet companies

to determine the price for the buyer based on her previous purchases. Acquisti and Varian (2005)

show that when a sufficient proportion of customers are myopic or when the valuations of customers

increase (by providing enhanced services), dynamic pricing may increase the revenue. Another

setting where dynamic pricing can boost the revenue is when the seller is more patient than

the buyer and discounts his utility over time at a lower rate than the buyer (Bikhchandani and

McCardle 2012, Amin et al. 2013, Mohri and Medina 2014a, Chen and Wang 2016). See Taylor

(2004) and Conitzer et al. (2012) for privacy issues and anonymization approaches in this context.

In contrast with these works, our focus is on auction environments and we study the role of

competition among strategic bidders who remain in the system over a long horizon. We observe that

when there is competition, there is value in personalizing prices, in particular, when the valuations

are drawn i.i.d. over time. In fact, the seller can extract nearly all the surplus.

The problem of learning the distribution of valuations and optimal pricing has also been studied

in the context of revenue management and pricing for markets where each (infinitesimal) buyer

does not have an effect on future prices and the demand curve can be learned with near-optimal

regret (Segal 2003, Baliga and Vohra 2003, Besbes and Zeevi 2009, Harrison et al. 2012, Wang

et al. 2014); see den Boer (2015) for a survey. In this work, we consider a setting where the goal

is to learn the optimal reserve price with a small number of strategic and forward-looking buyers

with multi-unit demand, where the action of each buyer can change the prices in the future.

Reserve Price Optimization. Several recent work have studied reserve price optimization. Most

of the if focused on algorithmic issues but ignores strategic aspects and incentive-compatibility

issues, cf., Cesa-Bianchi et al. (2013), Mohri and Medina (2014b), Cesa-Bianchi et al. (2015),

Roughgarden and Wang (2016), Golrezaei et al. (2018a). Most closely related to our work is the

work by Paes Leme et al. (2016) who compare different generalizations of the second-price auction

with a personalized reserve. In their “lazy” version, the item is allocated only to the highest bidder.

In their “eager” version, first, all the bidders below their personal reserve are eliminated, and then

the item is allocated to the highest surviving bidder. From an optimization/learning perspective,

they show that lazy reserves are easy to optimize and A/B test in production, whereas eager

reserves lead to higher surplus, but their optimization is NP-complete, and naive A/B testing leads

to incorrect conclusions. Whereas in their setting both eager and lazy are incentive compatible,

this is not true in our setting. The mechanism we propose corresponds to their lazy version. We

show how this mechanism – a lazy second-price auction with personalized reserves – can be used to

optimize reserve prices in an incentive-compatible way by appropriately learning from the previous

bids (in contrast, the eager version creates incentives to overbid).
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Ostrovsky and Schwarz (2009) conducted a large-scale field experiment at Yahoo! and showed

that choosing reserve prices guided by the theory of optimal auctions can significantly increase the

revenue of sponsored search auctions. To mitigate the aforementioned incentive concerns, they drop

the highest bid from each auction when estimating the distribution of the valuations. However,

they do not formally discuss the consequences of this approach.

Another common solution offered to mitigate incentive constraints is to bundle a large number

of impressions (or keywords) together so that the bid of each advertiser has little impact on the

aggregate distribution learned from the history of bids. However, this approach may lead to signif-

icant estimation errors since a variety of different types of impressions fall into the same bundle,

resulting in a suboptimal choice of reserve price, cf. Epasto et al. (2018). To the best of our knowl-

edge, the present work is the first to rigorously study the long-term and dynamic incentive issues

in repeated auctions with dynamic reserves.

Organization. The rest of the paper is organized as follows. We formally present our model in

Section 2. In Section 3 we show that mechanisms which optimize a common reserve price suffer

from incentive issues, and this may also hurt revenue. By contrast, in Section 4, we present truthful

mechanisms with personalized reserve prices, where the reserves are optimized based on earlier

bids by competing agents. In Section 5, we show robustness of our revenue guarantee to differences

in valuation distributions across buyers. Then, in Section 6, generalize our result to the case of

heterogeneous items. Finally, we present a truthful surplus-extracting mechanism in Section 7.

Proofs are deferred to the appendices.

2. Model and Preliminaries

A seller, using a second-price auction, sells items over time to n≥ 1 agents. The valuation of agent

i ∈ {1, . . . , n} for an item at time t, denoted by vit, is drawn independently and identically from

distribution F . (Later, in Section 5, we will consider the case where different agents have different

valuation distributions.) There is exactly one item for sale at each time t= 1,2, · · · . In Section 6

we extend our results to a contextual setting with heterogeneous items. For the sake of simplicity,

we assume that the length of the horizon is infinite and the seller and the agents respectively aim

to maximize their average long-term revenue and utility. This is a reasonable assumption, given

the very large number of impressions sold in practice.

More specifically, the average per-round revenue of the seller, denoted by Rev, is equal to

Rev= lim
T→∞

(
1

T
×E

[
T∑
t=1

n∑
i=1

pit

])
, (1)
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where pit denotes the payment of agent i at time t. Note that if the limit exists, then the average

revenue is maximized. Otherwise, the seller aims to maximize the worst-case average revenue.

Similarly, for the average per-round utility of buyer i, denoted by Ui, we have

Ui = lim
T→∞

(
1

T
×E

[
T∑
t=1

(
vitqit− pit

)])
, (2)

where qit = 1 if the item at time t is allocated to agent i and otherwise it is equal to 0. The expecta-

tions are with respect to the realizations of the valuations of the agents and any randomization in

the mechanism and agent strategies. Each agent aims to maximize the worst-case average utility.

The mechanisms we will introduce and the corresponding equilibria/strategies of agents will be

stationary in time (after an initial transient), hence the above limits will exist.

We assume that the distribution of valuations F is unknown to the auctioneer/seller, who may

not even have a prior on F . The valuation vit of agent i is privately known to agent i. To simplify

the presentation, we assume that the distribution of the valuations F is common knowledge among

the agents. (We discuss our informational assumptions later in this section.) We assume that F

is a monotone hazard rate (MHR) distribution, i.e., the hazard rate f(v)/(1−F (v)) is monotone

non-decreasing in v. MHR distributions include all sufficiently light-tailed distributions, including

uniform, exponential, and normal. For most of our results, we provide versions that apply to the

larger class of regular distributions, i.e., distributions for which the virtual value function φ(v) =

v− (1−F (v))/f(v) is monotone increasing in v. (For instance, log-normal distributions are regular

but not MHR.)

Let us now consider the seller’s problem. The seller aims to maximize his expected revenue via

a repeated second-price auction, despite his lack of knowledge of F . He can attempt to do this by

dynamically updating the reserve price based on history of bids so far.

A “generic” dynamic second-price mechanism. At time 0, the auctioneer announces the

reserve price function Ω :H→R+ that maps the history observed by the mechanism to a reserve

price. The history observed by the mechanism up to time τ , denoted by HΩ,τ ∈H, consists of the

reserve price, the agents participating in round t and their bids, and the allocation and payments

for each round t < τ . More precisely,

HΩ,τ , 〈(r1, b1, q1, p1), · · · , (rτ−1, bτ−1, qτ−1, pτ−1)〉 ,

where

• rt is the reserve price at time t.

• bt = 〈b1t, · · · , bnt〉 where bit denotes the bid of agent i at time t.
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• qt corresponds to the allocation vector. If all the bids are smaller than the reserve price rt,

the item is not allocated. Otherwise, the item is allocated to agent i? = arg maxi{bit} and we have

qi?t = 1; in case of a tie, the item is allocated to a uniformly random agent among those who bid

highest. For all the agents who do not receive the item, qit is equal to 0.

• pt is the vector of payments. If qit = 0, then pit = 0; and if qit = 1, then pit =

max{maxj 6=i {bjt} , rt}.
In our notation, Ω specifies a reserve price function for each period t. Note that the auctioneer

commits beforehand to a reserve update rule Ω. It is well known that in the absence of commitment,

the seller earns less revenue (see, e.g., Devanur et al. 2014).

An important subclass of the mechanisms above is static mechanisms where the reserve does

not depend on the history or time. Another important subclass is window-based mechanisms, with

window length W , which use only the bids received in the previous W periods to determine the

reserve in the next period.3 A window-based mechanism is stationary if the rule that maps bids in

the last W periods to the reserve in period t does not depend on t. When considering stationary

window-based mechanisms, we call the function (a close cousin of Ω) that maps the history of bids

in the last W periods to the reserve price in the next period the reserve optimization function

(ROF).

The seller aims to choose a reserve price function Ω that maximizes the average revenue, defined

in Eq. (1), when the buyers play an equilibrium with respect to the choice of Ω. To define the

utility of the agents and the information available to them, let Hi,τ denote the history observed by

agent i up to time τ , consisting of her valuations, bids, allocations and payments. Namely,

Hi,τ = 〈(vi1, bi1, qi1, pi1), · · · , (vi,τ−1, bi,τ−1, qi,τ−1, pi,τ−1)〉.

We refer to Hi,τ as the personal history of agent i.

We assume that agents do not see the reserve price before they bid,4 but that they know the

reserve price update rule Ω.

The bidding strategy Bi :Hi×R→R of agent i maps the valuation of the agent viτ , the history

Hi,τ , and the reserve rτ at time τ to a bid biτ . Here Hi is the set of possible histories observed by

agent i.

3 We allow such a mechanism to use only the bids and not the reserve prices (nor the allocations and payments), since

the entire history can be “encoded” in the decimal representation of reserve rτ , with vanishing impact on revenues,

and this would defeat the purpose of defining window-length W .

4 This is similar to the common practice in ad exchanges, where the bidder may not see the reserve. Often the

exchanges communicates a (possibly lower) reserve price, which may be different from the reserve price that is applied

to the payments.
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Finally, we define the history of the game up to time τ as

Hτ = 〈(r1, v1, b1, q1, p1), · · · , (rτ−1, vτ−1, bτ−1, qτ−1, pτ−1)〉.

Note that compared to HΩ,τ , which is the history observed by the seller, Hτ also includes the

valuations of the agents.

We say that an agent plays the always truthful strategy, or we simply call the agent truthful, if at

every time t, we have bit = vit irrespective of the history Hit and the reserve rt. We now formalize

our definition of incentive-compatibility. We define the inf-utility and sup-utility of agent i when

each agent i′ plays strategy Bi′ respectively as follows.

U i(Bi,B−i) = lim inf
T→∞

(
1

T
×E

[
T∑
t=1

vitqit− pit

])
,

U i(Bi,B−i) = limsup
T→∞

(
1

T
×E

[
T∑
t=1

vitqit− pit

])
.

We say that a mechanism is incentive compatible (IC) if, for each agent i, if other agents are always

truthful, then the inf-utility under the always truthful strategy (weakly) exceeds the sup-utility

under any other strategy. Formally, we require

U i(B
Tr
i ,B

Tr
−i)≥U i(Bi,B

Tr
−i)

for any strategy Bi, where BTr
i denotes the truthful strategy. Intuitively, a mechanism is IC if the

always truthful strategy by all agents constitutes a Nash equilibrium. We emphasize that since our

environment and proposed mechanisms are time-invariant (after an initial transient), and always

truthful is also a time-invariant strategy, the right-hand side of the definition of utility (2) has a

limiting value as T →∞ when all agents are always truthful. More precisely, Ui(B
Tr
i ,B

Tr
−i) is well

defined and equal to U i(B
Tr
i ,B

Tr
−i).

The above notion of incentive-compatibility is static in the sense that the strategies that agents

choose before the game starts define an equilibrium. We now define a stronger and dynamic notion.

We say that a mechanism is dynamic incentive compatible, or more precisely periodic ex-post

incentive-compatible, if at every time τ , for every history Hτ , each agent i’s best-response strategy

to her personal history Hi,τ is to be truthful assuming that all the other agents will be truthful in

future (Bergemann and Välimäki 2010). More precisely, define the future inf utility of an agent as

U i,Hi,τ
(Bi,B

Tr
−i) = lim inf

T→∞

(
1

T
×EHi,τ

[
T∑
t=τ

vitqit− pit

])
, (3)
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i.e., it is the (worst-case) future per-auction utility of agent i at time τ , assuming all other agents

will be truthful and agent i plays strategy Bi. Again, this limit will exist for the mechanisms we

consider when Bi =BTr
i . Also define the future sup utility as

U i,Hi,τ (Bi,B
Tr
−i) = limsup

T→∞

(
1

T
×EHi,τ

[
T∑
t=τ

vitqit− pit

])
. (4)

A mechanism is dynamic incentive compatible if, for each agent i, we have

U i,Hi,τ
(BTr

i ,B
Tr
−i)≥U i,Hi,τ (Bi,B

Tr
−i)

for any time τ , any personal history Hi,τ , and any strategy Bi where BTr
i denotes the truthful

strategy. As discussed earlier, when all agents follow a truthful strategy in our setting we have

U i,Hi,τ
(BTr

i ,B
Tr
−i) =Ui,Hi,τ (BTr

i ,B
Tr
−i) = lim

T→∞

(
1

T
×EHi,τ

[
T∑
t=τ

vitqit− pit

])
.

In Section 7, we present an approximate notion of dynamic incentive-compatibility.

Discussion on Informational Assumptions. Our results are not sensitive to our informa-

tional assumptions. Our main results (Theorems 1, 2 and 4) are for incentive compatible mech-

anisms, so they hold even if the agents do not have perfect information regarding the valuation

distribution(s) and/or the reserve price function Ω. Theorems 1-4 (and their proofs) remain valid if

agents obtain information regarding past reserve prices and past bids, allocations and payments of

other agents.5 Regarding the seller, our mechanisms use prior-free learning algorithms. Of course,

the revenue guarantees remain valid if the seller does know something about the valuation distri-

bution(s).

Finally, consider our negative results in Section 3 (Example 1 and Proposition 1). Providing

additional information to agents can only make things (weakly) worse. On the other hand, strategic

bid-shading by an agent does rely on knowledge of the valuation distribution; note that if an agent

initially lacks this knowledge, she can acquire it over time.

Benchmark. In the first part of the paper, we restrict ourselves to dynamic second-price mech-

anisms. We use as a benchmark the average revenue that could have been achieved via the optimal

static mechanism if F had been known to the seller, i.e., the average revenue per round under

the static Myerson auction with the optimal reserve for distribution F . (Note that since F is an

MHR distribution, Myerson’s result says that the optimal static mechanism is, in fact, a second-

price auction with a reserve price. This extends to the case where F is a regular distribution.) Let

5 This informational robustness is in contrast with repeated first-price auction settings (e.g., see Bergemann and

Horner 2010) where information revelation can significantly change the outcome.
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Rev∗ denote the benchmark average revenue. We demonstrate an incentive-compatible second-price

mechanism (with personalized reserve prices) that asymptotically achieves the benchmark revenue

(see Section 4). Later, in Section 7, we go beyond dynamic second-price mechanisms to allow addi-

tional mechanism features such as upfront payments. We show how, using a modification of the

same ideas, the seller can approximately achieve the largest possible revenue, namely, the revenue

corresponding to full surplus extraction, while retaining (approximate) incentive-compatibility.

3. Incentive Problems with Learning a Common Reserve Price

In this section, we argue that if the seller attempts to learn a common reserve price using historical

bids, this leads to incentive issues, specifically, agents may shade their bids in order to reduce the

reserve prices they face in future, and in turn such shading may reduce the revenue earned by the

seller.

For simplicity, we start by analyzing a simple reserve-price optimization approach, which we call

the histogram method, that is the basis of a lot of non-parametric approaches used in practice

(see Nazerzadeh et al. 2016), and find significant issues as above. Next, in Section A.2, we argue

that these issues are typical in mechanisms that attempt to learn a common reserve price from

historical bids. Throughout this section, we will consider stationary mechanisms and time-invariant

strategies, and look for a non-truthful agent strategy such that if other agents are always truthful,

the limiting agent’s utility (as defined in (2); note that the limit exists) is strictly larger than that

resulting from being always truthful.

Histogram Method. For simplicity, we consider a setting with n= 2 bidders and demonstrate

the issue with incentives and the resulting revenue impact. (The problem is even more acute when

there is just one buyer/agent, in which case the agent can drive the reserve price, and hence seller

revenue, down to zero, while still winning the item each time. We comment on this case later.)

Let F̂t be the joint empirical distribution of all the bids submitted during the last W periods (we

will consider the limit W →∞ in our analysis below). The histogram method is a window-based

stationary second-price mechanism with a very simple reserve optimization function (ROF). The

reserve price at time t is chosen to be the one that maximizes expected revenue when the bid vector

is from F̂t. Formally,

rt = arg max
r

{
E(b1,b2)∼F̂t

[
max

{(
max{b1, b2}−max

{
r,min{b1, b2}

})
,0

}]}
; (5)

in case of ties, rt is the smallest reserve in the arg max.

As described in Section 2, the seller allocates the item to a buyer with the highest bid larger than

the reserve. If no bid is above rt, the item is not allocated. In case of a tie, the item is allocated at

random to one of the highest bidders.
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To convey intuition about the incentive issues associated with this approach to reserve price

optimization, we start with a simple model. Assume that the valuations of the bidders are drawn

i.i.d. from a Uniform(0,1) distribution.

Let us see how an agent may react in response to this mechanism. Intuitively, an agent may

want to shade her bid. We present a simple shading strategy where an agent shades her bid if her

valuation is between two parameters r and r and bids truthfully otherwise. More specifically,

• If 0≤ vt ≤ r or r≤ vt ≤ 1, then bt = vt.

• If r < vt < r, then bt = r.

We observe that by playing the above strategy, an agent can increase her utility by reducing the

reserve, even if the other agent is truthful.6 More importantly, shading can significantly increase

the agent’s utility. Further, such strategic shading by an agent reduces the revenue of the seller.7

Example 1 (Learning a common reserve price using the Histogram method is not IC)

Assume that the valuations of the agents are i.i.d. Uniform(0,1), and that the seller uses histogram-

based reserve optimization, using bids from the last W rounds, and consider W →∞. If one of

the agents follows the above shading strategy for values of r= 0.378 and r= 2/3 = 0.667, while the

other agent is always truthful, then the reserve price converges to8 r = 0.378, with the following

consequences.

Revenue. The limiting average revenue obtained by the seller is close to 0.383. By contrast, if

both agents are truthful, the limiting average revenue is equal to 5
12

= 0.417. If the seller does not

use any reserve price, the average revenue is equal to 1
3

= 0.333. Therefore, more than 40% of the

benefit from reserve-price optimization is lost even if one of the agents shades her bid strategically.

Incentives. The limiting expected utility of the agent from the always truthful strategy is close

to 0.083. On the other hand, the limiting expected utility from the aforementioned shading strategy

is close to 0.109. Therefore, the agent can increase her utility by more than 30% via shading.

See Appendix A.1 for details. A little reflection immediately reveals that in the absence of

competition between agents, the incentive issues associated with the histogram method are even

more acute.

6 If both agents shade, the resulting equilibrium (or limit cycle) may involve further loss of revenue for the seller.

7 A more general class of strategies involves bidding some r0 ∈ [r, r] for all valuations in [r, r] and bidding truthfully

otherwise. We expect that a best response in this class would yield a larger benefit from deviation, while still hurting

the revenue earned by the seller.

8 The numbers in this example are rounded to three decimal points; see Appendix A.1 for details.
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Remark 1 If, instead, there is only n = 1 agent, then the agent can employ the above shading

strategy with r= ε∈ (0,1/2) and r=∞ (or, equivalently, r= 1). Under such an agent strategy, as

W →∞, the seller’s estimated F̂t has an atom of mass exceeding 1/2 at ε, leading to limW→∞ rt = ε

for all t >W . By choosing ε close enough to 0, the agent can win the item in almost all rounds,

while making arbitrarily small payments; thus, this is a best response for the agent as ε→ 0+. The

result is that the seller revenue is vanishing when she uses the histogram method when selling to a

single strategic agent.

We note that our example extends to general valuation distributions F .

Remark 2 Though we fixed F to Uniform(0,1) in Example 1, the idea easily extends to general

regular F with continuous density f , when the seller sets the reserve using the histogram method.

Let r∗ be the Myerson optimal static reserve. (As the window-length W →∞, under truthful bidding

by all agents, the reserve set by the seller converges to r∗.) Suppose that agents other than i are

always truthful. Then for sufficiently small ε, a shading strategy based on r= r∗−ε and r= r∗+1.1ε

constitutes a profitable deviation for agent i, by causing the seller to set a reserve of r= r∗− ε with

high probability in steady state. Such shading leads to a myopic loss of O(ε2) in expected utility from

the current round—due to losing the item though i would have won it under truthful bidding—which

occurs with probability O(ε) and causes an O(ε) loss in utility in each case. However, there is a

(larger) Ω(ε) increase in expected utility due to the reserve being lower by ε, due to bid-shading in

the past. This bid-shading by agent i causes a loss in revenue of Ω(ε) to the seller.

In the Online Appendix A.2, we show that incentive concerns apply not just to the histogram

method, but to a broad class of dynamic reserve mechanisms that set a common reserve based on

historical bids.

4. Incentive-Compatible Optimization of Personalized Reserve Prices

In the previous section, we identified significant incentive concerns associated with optimizing

the reserve price when all agents face exactly the same reserve price, and bidders are strategic.

Specifically, natural mechanisms for optimizing the reserve based on historical bids encourage

bidders to shade their bids, which in turn reduces seller revenue in turn.

In this section, we present a mechanism that eliminates incentives for agents to misreport their

valuations. As mentioned earlier, we overcome incentive issues using two key ideas: (i) we personalize

reserves by choosing a pricing rule9 for each agent, based only on the bids of other agents; hence,

agents do not benefit from under-bidding and (ii) by allocating the item only to the highest bidder,

agents do not benefit from overbidding that can prevent others from participating in the auctions.

9 Formally, the reserve price function Ω now outputs an n-vector of reserve prices, one for each agent.
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Highest-Only Self-Excluding-Reserve-Price (HO-SERP) Mechanisms. A second-price

auction with personalized reserves is an HO-SERP mechanism if it satisfies the following two

properties:

• Highest-Only: The mechanism allocates the item only to the highest bidder. If the highest

bidder i does not meet his reserve (bit < rit), then the item is not allocated. If bit ≥ rit, the highest

bidder i is charged a price equal to max
{
rit,maxj 6=i{bjt}

}
.

• Self-Excluding-Reserve-Price: The reserve price for agent i is determined using only the bids

of other bidders, and does not depend on the bids of agent i herself.10 Let F̂−i be the empirical

distribution of the bids by agents other than i in the relevant rounds (a window-based mechanism

will consider the last W rounds).11 Then the personal reserve rit of agent i is set based on F̂−i.

Personalized reserve prices may appear more complex than a mechanism with a common reserve.

But we note that they have been widely used in practice; e.g., see Paes Leme et al. (2016). Moreover,

we establish strong incentive properties for HO-SERP mechanisms.

To (approximately) maximize the revenue earned, we set rit to be the optimal monopoly price

for costless goods when faced with buyers with this valuation distribution, i.e.,12

rit = arg max
r

r(1− F̂−i(r)) . (6)

This allows us to approximately achieve the revenue benchmark. The latter is proved using conver-

gence rate bounds from Dhangwatnotai et al. (2015); other related papers on learning the optimal

reserve price from samples include Cole and Roughgarden (2014), Huang et al. (2015), Devanur

et al. (2016).

Theorem 1 Any HO-SERP mechanism is periodic ex-post incentive compatible. In particular, all

agents following the always truthful strategy constitutes an equilibrium. Further, there exists C <∞
that does not depend on the valuation distribution F , such that for any F that is MHR and any

ε ∈ (0,1), the HO-SERP mechanism with window length W ≥ C log(1/ε)/ε2 and personal reserve

prices set as per (6) achieves average revenue per round that is at least (1− ε)Rev∗, where Rev∗

is the expected revenue under the optimal static mechanism, i.e., the second-price auction with

Myerson-optimal reserve.

10 Goldberg et al. (2001) and follow-up works broadly inspired this approach, though the setting and results are quite

different; there, a digital good (which can be reproduced costlessly) is sold simultaneously to multiple buyers, and

the seller does not know the valuation distribution.

11 To clarify this definition, suppose that there are three bidders i, j, and k. Then the bids bjτ and bkτ for relevant

τ < t are regarded as two separate, scalar, data points in the definition of F̂−i. Thus, if window-length W is used, the

empirical distribution is based on (n− 1)W data points/bids by other bidders during the last W rounds.

12 We adopt the definition F (r) = Pr(v < r) with a strict inequality so that the arg max exists.
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Theorem 1 is proved in Appendix B. The rapid decay of revenue loss with window-length W

suggests that our approach should do well with as few as thousands of items/impressions. We

remark that a similar result can be established under the weaker requirement of a regular valuation

distribution F , for a window-length bounded as13 W ≥C log(1/ε)/ε3.

In Appendix B, we provide a finite horizon version of Theorem 2 (Corollary 1); showing that

the revenue loss under our HO-SERP mechanism (using all samples so far) is O(
√
T logT ) over a

horizon of length T for MHR F . We further show that the revenue loss under our mechanism is

lower bounded as Ω(T 1/3−ε) (Theorem 5) for a standard (exponential) distribution.

Note that the HO-SERP mechanism makes use of all bids by agents other than i, including those

that do not clear the agent’s own reserve. However, unlike static settings, using other agents’ bids

to determine the payments may not be enough to yield robust incentive compatibility. Whereas

truthfulness is a best response when agent i’s valuation vit < rit, it is also a best response to submit

any other bid bit ∈ [0, rit). In order to make truthfulness the unique best response strategy, we can

tweak the mechanism such that with a small probability γ in each round, all the reserve prices

are set to 0, i.i.d. across rounds.14 Agents are told of this tweak, but they do not know if the

reserves are zero in the current round at the time they submit their bids. This makes truthfulness

the unique dominant strategy best response to other agents following the always truthful strategy,

a more robust form of incentive compatibility. The loss in expected revenue due to occasionally

setting the reserve prices to zero is bounded above as being at most a γ fraction of the benchmark.

A seeming disadvantage of the HO-SERP mechanism is that if the highest bidder’s valuation

does not exceed her reserve, the item goes unallocated even though there may be other bidders who

meet their reserves. (The reserves may differ from each other due to statistical variation and/or

differences in valuation distributions across bidders.) An “eager” variation of SERP is the following:

allocate the item to the highest bidder among all the agents whose bids “survive” by being above

their personal reserve,15 and charge her the larger of her personal reserve and the second highest

surviving bid. Unfortunately, this variation of the SERP auction creates an incentive to deviate

from truthfulness. The intuition is that an agent can benefit from increasing the likelihood that

13 In this case the mechanism should compute the so-called “guarded empirical reserve” from the empirical distribution

of historical bids, that eliminates the largest bids from consideration as potential reserve prices, see Dhangwatnotai

et al. (2015, (12) and Lemma 4.1).

14 Since F is an MHR distribution, it has positive density everywhere in the support, making truthful bidding the

unique myopic best response whenever there are two or more bidders.

15 These variations are sometimes called lazy and eager respectively; see Dhangwatnotai et al. (2015), Paes Leme

et al. (2016).
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a competing agent in eliminated (due to not clearing her personal reserve), and this creates an

incentive to overbid so as to raise the personal reserve faced by competing agents in future. The

example below illustrates this phenomenon.

Example 2 (“Eager” SERP is not IC) Let us consider a setting with two agents whose valua-

tions are drawn i.i.d. from uniform distribution [0,1]. The item is allocated as follows: first remove

all the agents whose bid is less than their personal reserve, set as per (6). If no agents remain, the

item will not be allocated. If only one agent survives, the item will be allocated at a price equal to

her personal reserve. If two agents remain, the item will be allocated to the highest agent at a price

equal to the maximum of her personal reserve and the other bid.

Suppose that the first agent is truthful. We present a profitable deviation for the second agent as

follows:

bit =


vit 0≤ vit < 1

2

1 1
2
≤ vit ≤ 1

Note that the second agent overbids if her valuation is larger than 1
2

and is truthful otherwise.

Hence, the limiting reserve price for the first agent is equal to 1. Therefore, the first agent would

be eliminated from all the auctions. In the appendix, we present a family of profitable deviation

strategies including the one above and show that the expected per-round utility of the second agent

will be increased by 1
24

under the strategy above. In other words, the second agent can increase her

utility by 50% since her utility under the truthful strategy is equal to 1
12

.

In the next section, we will show robustness of the near optimality of the HO-SERP mechanism

to small differences in the valuation distributions across agents. In particular, this will imply that

revenue losses caused by the item going unallocated even though some agents meet their reserve,

are small in expectation when valuation distributions are similar across agents.

5. Robustness to Asymmetry Among Bidders

We have so far assumed that the agents have the same distributions of valuations. In this section, we

discuss the robustness of our results with respect to the asymmetry among bidders. We first like to

note that when the valuations are heterogenous, then the second price auction, even with optimized

personalized reserver prices may not be the optimal static mechanism and revenue maximizing

Myerson auction takes a bit more complicated form when the item is allocated to an agent with

the highest virtual value (defined below).16 Nevertheless, we show that when agents have different

16 See Golrezaei et al. (2018b) for a discussion on challenges of implementing Myerson auction in practical settings.
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valuation distributions, the loss of limiting revenue per round of HO-SERP compared to the static

Myerson optimal auction can be bounded.

Consider a case with two agents i and j. Suppose that agent i has a higher valuation distribution

than that of j, in the sense that the optimal monopoly price for Fi is larger than the optimal

monopoly price for Fj. Then, an HO-SERP mechanism with personal reserve prices set as per (6)

sets rj > ri instead. As a result, losses are incurred due to two reasons. (i) The reserve for each agent

is not suitable for the valuation distribution of that agent. (Further, the static Myerson optimal

auction allocates to the bidder with the highest virtual value,17 which HO-SERP does not do.) (ii)

The fact that the reserve prices for the two agents are different from each other means that the

realized pair of valuations in a round could be such that rj > vj > vi > ri. If this occurs, the item

is not allocated because the highest valuation agent (agent j) did not clear her reserve, though a

different agent (agent i) did clear his reserve. In this section, we will show that if the valuation

distributions are not too different from each other, the loss of revenue under our mechanism relative

to the static Myerson-optimal mechanism is small (specifically, it is quadratic in the size of the

difference between valuation distributions).

Consider a setting with two agents, whose valuation distributions are δ different from each other.

(We formally define a notion of distance below.) We claim that the loss in revenue, relative to

repeating the Myerson optimal mechanism that knows the valuation distributions, is typically

O(δ2). The rough reason is that each of the two problems causes a loss of this order. Having a

reserve for each agent that is wrong by O(δ), or, related to this, not mapping the reported valuation

appropriately to a virtual value, causes a loss of order O(δ2), since we are at a distance O(δ) from

the global maximum of a well-behaved optimization problem. The chance that i clears his reserve

but the item is not allocated to anyone is bounded by

Pr(r2 > v2 > v1 > r1)<Pr(v1 ∈ (r1, r2) AND v2 ∈ (r1, r2)) =O(δ) ·O(δ) =O(δ2) .

Hence, this issue also causes a loss of order O(δ2).

Let us begin with an example, before we make this rigorous.

Example 3 Suppose that agent 1 has a Uniform(0,1) valuation distribution, whereas agent 2 has a

Uniform(δ,1+ δ) valuation distribution for some (small) δ > 0. Then the mechanism we introduced

above sets r1 = (1 + δ)/2 and r2 = 1/2. The expected revenue it earns is

E[Revenue from agent 1] + E[Revenue from agent 2]

=
5− 6δ− 3δ3 + 4δ3

24
+

5 + 15δ

24

=
10 + 9δ− 3δ2 + 4δ3

24
.

17 The virtual value for agent i is φi(vi) = vi− (1−Fi(vi))/fi(vi).
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On the other hand, consider the Myerson-optimal mechanism, which uses virtual values φ1(v1) =

2v1 − 1 and φ2(v2) = 2v2 − 1− δ, allocating the item to the agent with the highest virtual value,

if it is positive, and charges that agent the smallest bid/valuation for which she would still have

been awarded the item. This mechanism produces revenue 10+9δ+3δ2+3δ3

24
. It follows that the revenue

under the Myerson optimal mechanism is 6δ2−δ3
24

= O(δ2) more than that under our mechanism.

For δ = 0.1, the revenue loss is just 0.0025 or 0.54%. For δ = 0.2, the revenue loss is just 0.0097

or 1.9% and even for large δ= 0.3, the revenue loss is 0.021 or 3.9%.

We now formalize this. Let agent i have valuation distribution Fi, which is once again assumed

to be MHR, i.e., to have an increasing hazard rate.18 We define the distance ‖Fi − Fj‖ between

distributions Fi and Fj as

‖Fi−Fj‖= max
v
|φi(v)−φj(v)| , (7)

where φi(v) = v− (1−Fi(v))/fi(v) is the virtual value function.19

Theorem 2 Consider a setting with n agents where agent i’s valuation distribution is Fi. Again,

any HO-SERP mechanism is periodic ex-post incentive compatible. Suppose that for each agent

i, the valuation distribution Fi is MHR and has density bounded above by fmax. Suppose also

that ‖Fi − Fj‖ = δ for all pairs of agents i and j, for some δ <∞. We have that the limiting

average per round revenue under HO-SERP with personal reserve prices set as per (6) is at least

Rev∗− 2(n− 1)fmaxδ
2 as W →∞, where Rev∗ is the expected revenue achieved by the Myerson-

optimal static mechanism. Equivalently, HO-SERP with these reserves achieves a fraction (1 −

2(n− 1)fmaxδ
2/Rev∗) of the benchmark revenue in the limit W →∞.

Thus, if agent valuation distributions are not too different from each other, our proposed mech-

anism approximately achieves the benchmark revenue. The proof (see Appendix C) formalizes the

intuition above by using Myerson’s lemma (Myerson 1981), which says that the expected revenue of

a truthful mechanism is equal to the expected virtual value of the winning bidder (defined as zero if

the item is not allocated). The revenue-maximizing static mechanism allocates to the bidder with

the largest virtual value, if this virtual value is non-negative. We show that our mechanism deviates

from this allocation with probability no more than 2(n− 1)fmaxδ = O(δ) and further chooses an

18 We should be able to extend to α-strongly regular distributions (Cole and Roughgarden 2014), where the virtual

value functions increase at rate at least α everywhere in the support. The lower bound α on the rate of increase

(which is currently 1, for MHR distributions), will be a part of the upper bound on revenue loss.

19 In fact, in definition (7) we can ignore values of v below min(r1, r2) (the smaller of the Myerson optimal reserve

prices for Fi and Fj). Theorem 2 still holds, and the proof is unaffected.
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allocation that is within δ of the ideal allocation in terms of virtual value in cases where it allocates

wrongly. These bounds then enable us to obtain a 2(n− 1)fmaxδ
2 = O(δ2) bound on the loss in

expected revenue.

As an illustration we can apply this result to the setting in Example 3. We have n= 2, f̄ = 1,

and ‖F1−F2‖= δ, and so we obtain from Theorem 2 that the revenue loss relative to the Myerson

benchmark is bounded above by 2δ2. The actual loss turns out to be 6δ2−δ3
24

.

We conclude this section with a discussion of a byproduct of our results that could be of inde-

pendent interest. Hartline and Roughgarden (2009) show that where the valuation of each agent is

drawn independently from a different regular distribution, second-price auctions with a personal-

ized reserve obtain a 1
2
-approximation of the optimal revenue. As a corollary of the analysis leading

to our Theorem 2, we obtain a complementary result: that using a second price auction in the

asymmetric valuations case, the seller can obtain expected revenue within O(δ2) of the optimal,

where δ is the maximum “distance” between valuation distributions; see Remark 4 in the Online

Appendix for details.

6. Heterogeneous Items

In this section we provide guidance on how heterogeneity between items can be incorporated

in our proposed HO-SERP mechanism described in Theorem 1. (A similar approach can be used

to extend the SESE mechanism from Section 7 to a heterogeneous items setting.) Our model of

valuations may be interpreted as one way to incorporate correlation between agent valuations for

an item, (cf. McAfee and Vincent 1992).

We generalize the model in Section 2 as follows. Each item has m attributes, where m is a fixed

constant. We denote attributes of the t-th item by xt = (xt1, xt2, . . . , xtm)T , and henceforth call xt

the context at period t. We model the valuation vi of each agent i for the t-th item as

vi = βTxt + ṽi , (8)

where ṽi ∼ F is drawn independently across agents and items, and β ∈Rm is the vector of context

coefficients (common across agents and items). Thus, the context causes an additive translation in

valuations; the amount of translation has a linear functional form in the attributes and is common

across agents. We assume that the contexts (xt)
∞
t=1 are drawn i.i.d. from some distribution G. Our

technical development in this section draws upon the work of Golrezaei et al. (2018a) on contextual

auctions. Two key high level differences from that paper are: (i) Our agents are patient, and hence

to obtain good incentive properties, we stay with our proposal to choose a personalized price for

agent i based on the past bids of other agents. In that paper, agents are impatient, and so the
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mechanism is able to set a personalized price for i based on the past bids of agent i herself. (ii)

We assume distribution F is time invariant and obtain revenue guarantees for any F in a class F ,

whereas the other paper solves a robust optimization problem where F can vary arbitrarily over

time within F .

Assumptions on F , G and β. We assume F is MHR as before, but in addition assume that

F has bounded support (−BF ,BF ) for some BF <∞. We absorb the mean of distribution F into

βTxτ (we can include an attribute that always takes the value 1 so that its coefficient will be the

intercept which includes the mean of F ) and hence assume Eṽ∼F [ṽ] = 0. (This implies E[vi′τ ] =

βTxτ .) We assume that distribution G has bounded support; without loss of generality we assume

it is supported on {x : ‖x‖ ≤ 1} (we use the Euclidean norm throughout). We further assume G has

a second moment matrix Σ =Ex∼G[xxT ] which is strictly positive definite with smallest eigenvalue

at least 1/BΣ for some BΣ <∞. We also assume that ‖β‖ ≤Bβ for some Bβ <∞.

Auctioneer’s knowledge. The auctioneer observes the context xt before each period t and

knows the bounds BF , BΣ and Bβ but does not know F , G or β beforehand. As before, the

auctioneer wants to set personalized reserve prices to maximize long run average revenue (1) while

accounting for the strategic response of the agents who aim to maximize the average per-round

utility (2). (All expectations now include expectation over the contexts xt ∼G i.i.d. across periods

t.)

The reserve price function Ω : H→ Rn maps the history observed by the mechanism up to t

including the current context xt to reserve prices (rit)
n
i=1. The history observed by the mechanism,

and by each agent, up to time t now include the contexts in each period so far including period t

HΩ,t = 〈(x1, r1, b1, q1, p1), · · · , (xt−1, rt−1, bt−1, qt−1, pt−1), xt〉 , (9)

Hi,t = 〈(x1, vi1, bi1, qi1, pi1), · · · , (xt−1, vi,t−1, bi,t−1, qi,t−1, pi,t−1), xt〉 . (10)

We include xt in Hi,t to clarify that the agents know the current context xt before they submit their

bids bt. The auctioneer commits beforehand to Ω. The definition of dynamic incentive compatibility

remains as before. As in Theorem 1, we will provide a stationary window-based Ω with good

properties and average revenue approaching that under the static Myerson auction. Note that

the reserve price of the benchmark static Myerson auction will be dependent on the context, and

correspondingly, the reserve price set by our mechanism in period t will account for xt.

Let Rev∗(x) be, for context x ∈Rm, the expected revenue under the Myerson optimal auction

for agents with valuations drawn i.i.d. from the contextual valuation distribution F x given by

F x(v), F (v−βTx) . (11)
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In an effort to obtain a revenue close to Rev∗(xt) in period t, but while retaining incentive com-

patibility, our proposed mechanism proceeds as follows. Fix the window length W . For every agent

i, the mechanism sets the personalized price rit using (i) the current context xt and (ii) the bids

of other agents in the last W periods (treating those bids as truthful) and the contexts in those

periods.

To properly account for the context xt in the choice of reserve prices rit, our mechanism needs to

learn the coefficient vector β. We proceed as follows. Recall that the expected valuation of item τ is

E[vi′τ ] = βTxτ allowing us to treat each period τ bid bi′τ = vi′τ by agent i′ 6= i as a noisy observation

of βTxτ , corrupted by zero mean “noise” ṽi′τ ∼ F that is i.i.d. across agents and periods. We use

these observed bids to obtain an ordinary least squares (OLS) estimate of β

β̂−i , arg min
β̃:‖β̃‖≤Bβ

L−i(β̃) , where L−i(β̃),
1

(n− 1)W

∑
i′ 6=i

t−1∑
τ=t−W

(bi′τ − β̃Txτ )2 .

This estimate converges rapidly to the true β.

Lemma 1 Fix the constants m, BF , BΣ and Bβ. There exists a constant C1 =C1(m,BF ,BΣ,Bβ)<

∞ such that, for any F , G and β (satisfying BF , BΣ and Bβ respectively), for any window length

W > 1, and each agent i, the estimated coefficients are close to the true ones: with probability

1− 1/W we have

‖β̂−i−β‖ ≤C1

√
logW

W
. (12)

We then deploy this estimate to “translate” the past bids to the current context xt: a bid of bi′τ

submitted under context xτ maps to the translated bid b̃i′τ,−i , bi′τ + β̂T−i(xt− xτ ). The empirical

distribution F̂ xt
−i of translated bids serves as an estimate for the true contextual distribution

F xt(v), F (v−βTxt) . (13)

We need to be careful here because our estimate of F̂ xt
−i(v) is imperfect for two reasons: First,

as in Section 4, it is based on a finite number of samples. Second, and this is an issue we did

not encounter before, our estimate β̂−i is imperfect. As a result, the samples upon which F̂ xt
−i is

based are not drawn from F xt itself: instead, the samples based on bids in period τ correspond

to sampling from F xt but then adding (β̂−i− β)T (xt− xτ ) to the realization. To ensure that this

additional source of error does not inadvertently lead to a large reduction in the probability of

selling (e.g., this could happen if F xt has an atom at the Myerson optimal reserve), our mechanism
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sets the price by making a small reduction to the estimated optimal reserve price. Accordingly, we

set the personalized reserve price as per the following modification of (6)

rit =−δ+ arg max
r

r
(
1− F̂ xt

−i(r)
)
. (14)

Here, we set δ = 2C1

√
logW/W , where C1 is the constant in Lemma 1. Informally, this is to

ensure that with probability 1− 1/W , errors in bid translation do not cause us to unintentionally

price out an agent. As a result of this adjustment to the mechanism, we now obtain an additive

approximation to the revenue instead of a multiplicative approximation.20

Theorem 3 Consider the setting with item attributes described above, with constants n, m, BF ,

BΣ and Bβ. Any HO-SERP mechanism is periodic ex-post incentive compatible. In particular,

all agents following the always truthful strategy constitutes an equilibrium. Further, there exists

C =C(n,m,BF ,BΣ,Bβ)<∞, such that for any F that is MHR, G and β (satisfying BF , BΣ and

Bβ respectively), any ε∈ (0,1) and any context xt : ‖xt‖ ≤ 1, the HO-SERP mechanism with window

length W ≥ C log(1/ε)/ε2 and personal reserve prices set as per (14) achieves expected21 revenue

in period t that is at least Rev∗(xt)− ε, where Rev∗(xt) is the expected revenue under the optimal

static mechanism (second-price auction with Myerson-optimal reserve) for the true bid distribution

F xt given by (13).

The proofs for this section are presented in Appendix D.

7. Incentive-Compatible Surplus Extraction

Although the second-price auction can be revenue-maximizing in static settings, it may not be the

optimal mechanism in dynamic environments. To convey intuition, let us first consider a setting

with n agents and a horizon of length T where the seller knows the distribution of the valuations

of agents. Consider the following mechanism: (i) The mechanism charges each agent i an up-front

payment equal to
∑T

t=1 E[uit], where uit denotes the random variable correspond to the utility of

agent i at time t; namely,

uit = max{vit−max
j 6=i
{bjt},0} . (15)

20 Note that a multiplicative approximation would be a stronger result — given our boundedness assumptions a

multiplicative approximation implies an additive approximation but not vice versa. However, as a result of estimation

errors in learning β we only obtain an additive approximation here.

21 The expectation is over the past contexts, past valuations and period t valuations.
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The expectation is calculated assuming that all agents are truthful. (ii) The mechanism runs a

second-price auction (with no reserve) in each of the T rounds. Notice that Eq. (15) is consistent

with this design.

Note that by using the up-front payments, the mechanism extracts the whole surplus of the

buyers and obtains average revenue of E[maxj{vjt}]. Assuming only individual rationality on the

part of agents, this is the maximum achievable average revenue per round for any mechanism. This

mechanism, although revenue optimal, is not directly applicable to the current online ad markets

because it charges an up-front payment; see Mirrokni and Nazerzadeh (2017).22 However, ignoring

this practical consideration, we show how the ideas above can be used to design an essentially

optimal mechanism in our setting.

The above surplus-extracting mechanism can also be implemented as follows (when the distri-

bution of the valuations, F , is known); cf. Arrow (1979), d’Aspremont and Gérard-Varet (1979),

Baron and Besanko (1984), Ëso and Szentes (2007). At each round t, the mechanism charges an

entrance fee of

µi = EF [ui] = EF [max{vit−max
j 6=i
{vjt},0}]. (16)

The agent may accept the entrance fee. Agents who pay the entrance fee, then learn their valuation

vi and can bid in the auction. The item is allocated via a second-price auction with no reserve

and therefore the agents will bid truthfully. Note that at the equilibrium the agents are indifferent

between participating or leaving but the mechanism can always nudge the agents to participate by

slightly reducing the entrance fee. Building on these ideas, we propose the following mechanism.

Surplus-Extracting-Self-Excluding (SESE) Mechanism. The mechanism consists of two

phases.

• In the first phase, which lasts for N rounds (where N is a parameter chosen by the seller), the

item is allocated via a second-price auction with no reserve. At the end of the first phase, for each

agent i, define µ̂i as follows:

µ̂i =
1

n

1

N/2

N/2∑
k=1

zk (17)

and zk’s for 1≤ k ≤N/2 are constructed as follows. We repeatedly sample without replacement n

bids from the set of bids in the first phase from all the bidders except agent i. Let Zk be the k-th

sampled set and let zk be the difference between the highest and the second-highest bid in Zk.

Note that since n≥ 2, the total number of sampled bids is nN/2≤ (n− 1)N , ensuring feasibility.

22 Reservation (guaranteed-delivery) contracts for selling display advertising specify the number of impressions to be

allocated under the contract in advance. The allocation is determined by the publisher and not via an auction.
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• In each round t >N in the second phase, the seller offers an entrance fee of
(
µ̂i−

√
2 logN
N

)
to

agent i. Note that the entrance fee is determined using the other agents’ bids in the first phase.

The item is allocated using a second-price auction with no reserve. Let S be the set of agents

who pay the entrance fee (and subsequently learn their valuation vit) and let S̄ represent the set

of agents who refuse to participate in this round. The mechanism simulates the agents in S̄. More

specifically, the mechanism randomly chooses a round τ < N and uses the bids in that round for

each agent j ∈ S̄. At time t, if a simulated bid is the highest, the item will not be allocated.

Otherwise, it will go to a highest bid at the price equal to the second-highest bid among agents in

S and S̄.

Here is the intuition behind the mechanism. Observe that by the above definition, when all the

agents are truthful and have the same valuation distribution, we have

E[zk] = E

[
n∑
i=1

uit

]
=

n∑
i=1

µi = nµi, (18)

where µi denotes E[uit] for agent i; see Eq. (16). Hence we have E[µ̂i] = µi.

Our mechanism achieves (approximate) incentive compatibility by leveraging the same two key

ideas that led to Theorems 1 and 3: i) The entrance fee charged to each agent (in the second

phase) depends only on the bids of the other agents in the first phase; thus an agent’s bids do not

affect the entrance fee that agent herself faces. We further deduce that the agents bid truthfully in

the second phase, since their bids have no future impact whatsoever. Hence, they would pay the

entrance fee if23 E[ui]≥ µ̂i−
√

2 logN
N

. ii) Using simulated bids, we bound the gain from overbidding

for the agents: note that the bids of the agents in the first phase can influence the outcomes in the

second phase. More specifically, agents can overbid and inflate the entrance fee of other agents,

which may result in the latter’s refusal to participate in the auctions in the second phase. Our

mechanism that simulates non-participating agents’ bids significantly lessens the benefit that may

be obtained from such deviations.

Note that our mechanism that simulates non-participating agents does not entirely eliminate the

incentive to deviate. For example, suppose that there are two agents and during the first (learning)

phase, the first agent’s bids are lower than usual. In this case, the second agent may prefer to

compete against the “simulated version” of the first agent, and can ensure this by overbidding

to force the first agent out of the auction. In addition, an agent may be eliminated by mistake.

23 To simplify the presentation, we assume that the agents know the distribution of valuations, since agents may learn

the distributions over time. Note that incentive compatibility clearly continues to hold even if agents do not know

distributions over valuations.
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Revisiting the scenario with two agents, suppose in the first phase the first agent’s bids are higher

than usual. This may result in a high entrance fee for the second bidder and may lead to elimination

of the second bidder from all the subsequent auctions. We include a small slack in the chosen

entrance fees to ensure that the likelihood of such mistaken elimination is small.

We can now state the main result of this section. Note that we do not need F to be an MHR

or even a regular distribution. A bounded support suffices; any other conditions under which a

Hoeffding-type bound holds uniformly would serve just as well.

Theorem 4 (Surplus-extracting mechanism) Suppose that the valuations of all agents are

drawn i.i.d. from distribution F over [0,1]. Distribution F is a-priori unknown to the seller but

it is known to the agents. If all the agents are truthful, the Surplus-Extracting-Self-Excluding

mechanism with an exploration phase of length N obtains an expected per-auction revenue24 of

E[maxj{vjt}]−O
(√

logN/N
)

.

In addition, under this mechanism, for any agent i and time t, if all the other agents are always

truthful, then with probability 1−O(N−2), the increase in per-auction utility that can be obtained

by deviating from the truthful strategy is bounded by O(
√

logN/N).

Note that the loss decreases as the length of the first phase increases. However, the mechanism

loses revenue in the first phase. The above theorem shows that SESE is approximately incentive-

compatible. In the proof, presented in Appendix E, we show that for any strategy B and every

period τ , with probability 1−O(N−2) when all agents are always truthful, the personal history

Hi,τ seen by agent i so far is such that

U i,Hi,τ
(BTr

i ,B
Tr
−i) +O(

√
logN/N)≥U i,Hi,τ (Bi,B

Tr
−i);

see (3) and (4). With the remaining probability, O(N−2), the benefit from deviating might be

larger but is nevertheless bounded by 1. Hence, the expected benefit of deviating from truthfulness

is O(
√

logN/N). In other words, truthfulness is an approximate best-response to the other agents

being always truthful. The notion of approximate incentive compatibility implies that agents do

not deviate from the truthful strategy when the benefit from such a deviation is insignificant. The

notion of approximate incentive compatibility is appealing when characterizing or computing the

best response strategy is challenging, and several works moreover use an additive notion of approx-

imate IC similar to ours (Schummer 2004, McSherry and Talwar 2007, Daskalakis et al. 2009,

24 Note that the limiting revenue (1) as well as the limiting per round utility (2) are well defined under SESE when

agents are always truthful.
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Nazerzadeh et al. 2013). In online ad auctions, finding profitable deviation strategies requires solv-

ing complicated dynamic programs in a highly uncertain environment. Thus, agents can plausibly

be expected to bid truthfully under an approximately incentive-compatible mechanism.

We remark that our notion of approximate incentive-compatibility is additive in the sense that

the absolute increase in utility from a deviation is small. An alternative definition would be mul-

tiplicative approximate incentive compatibility where the relative gain from a deviation is small.

Note that these two notions differ when the utility of a bidder is small (close to zero). We believe

that the additive notion may be a reasonable model for practical environments since figuring out

profitable deviation strategies is costly a fractional increase of a gain which was small to begin

with may not justify the required investment by the firm (bidder).25

The first and second phases can be interpreted as exploration and exploitation phases, respec-

tively. In an environment where valuations may change slightly over time, the seller can continue

to explore occasionally in order to adjust for the change in valuations. For instance, with a small

probability, any round t >N can be designated an exploration round and the entrance fees can be

set to zero. Stale exploration data can be discarded as new data is generated. (This will also ensure

that the long-run average revenue converges to the ex-ante expected value with probability 1.)

8. Conclusion

Designing data-driven incentive-compatible mechanisms has become an important research agenda,

motivated in part by the rapid growth of online marketplaces. In this work, we showed that the

revenue of repeated auctions can be optimized when the valuations of each bidder can be estimated

from the valuations of other bidders. The main goal of the paper was to study the tension between

learning and incentive properties. The model is set up to study the hardest case of this tension,

namely when all the bidders participate in all the auctions. If some bidders do not participate in

an auction, their previous bids can be used for learning and setting prices without causing any

incentive issues, in addition to previous bids by bidders who are participating. Even though we

have not explicitly modeled participation, our results would extend to such environments since

we proposed mechanisms based on the following two principles: (i) the personalized price for each

agent should be based only on the historical bids of other agents, and (ii) an agent should not

benefit from preventing other agents from participating by raising the prices they face.

We showed that our work can be practically useful by showing that there is only a small revenue

loss in case of limited heterogeneity in bidder valuation distributions, and by extending our ideas to

25 Technically, the mechanism can share some of the surplus with the bidders, hence maintaining both notions of

approximate IC.
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a contextual setting with heterogenous items that allows for correlation between valuations of buy-

ers. A natural research direction is to explore the optimal tradeoff between incentive compatibility

and learning, as a function of heterogeneity among bidders, cf. Golrezaei et al. (2018b). Another

interesting direction would be the case where the auctions are connected via budget constraints,

cf., Balseiro and Gur (2019).

Furthermore, we believe that the ideas developed here can be applied to other repeated auctions

mechanisms that were designed under the assumption that the valuation distributions are known.

For instance, Balseiro et al. (2016) propose a repeated auction mechanism that is a hybrid of first-

price and second-price auctions, and can extract almost the entire surplus of the buyers. We believe

that similar incentive-compatible approximately surplus-extracting mechanisms can be constructed

for an unknown distribution using our approach.
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Appendix

A. Appendix to Section 3

Proof of Proposition 1. All agents other than agent i are always truthful. Consider the (myopic) loss

in utility L in the current round experienced by agent i when she follows bε instead of bidding truthfully.

This loss occurs in cases where i would have won the current round if she had been truthful, but loses under

bε. The approach we adopt is to bound the probability density of L for positive values. Reveal valuations

vj for all bidders j 6= i. This fixes the largest valuation/bid vmax
−i = maxj 6=i vj among agents other than i. In

order for agent i to lose L, it must be that the valuation vi =L+ vmax
−i , and that bε(vi)≤ vmax

−i ⇒ vi− vmax
−i ≤

d(bε)⇒ L≤ ε. This yields an upper bound of fmax on the probability density of L in the interval [0, ε] and

an upper bound of 0 on the density for values exceeding ε. It follows that E[L]≤
∫ ε

0
xfmaxdx= fmaxε

2/2.

Next, consider the gain in utility for agent i resulting from the lowering of the reserve. Now, since bε has

the (Cε)-reserve impact property, we have that the reserve is at most r(Tr)−Cε when agent i uses bε. Since

the ROF has the (Cε, ε, q)-reserve matters property, and using symmetry of the valuation distribution across

agents, we have that with probability at least q/n, agent i has valuation exceeding r(Tr) + ε and all other

agents have valuations below r(Tr)−Cε. Moreover, the bid of agent i is at least r(Tr) + ε− d(bε)≥ r(Tr),

and hence agent i wins the item and pays at most r(Tr)−Cε. Thus, with probability at least q/n, agent i

gains at least Cε in utility.

We deduce that the net gain in expected utility for agent i by following bε is at least

qCε/n− fmaxε
2/2≥ qCε/(2n)
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for ε≤ qC/(nfmax).

Notice that in any realization such that the winning bidder has valuation exceeding r(Tr) + ε whereas

other valuations are all below r(Tr)−Cε, the seller loses at least Cε in revenue from the lower reserve price.

Since such a realization occurs with probability at least q, we deduce that the expected decrease in revenue

resulting from agent i following bε is at least qCε. �

A.1. Appendix to Example 1

We first show that if one of the buyers follows a shading strategy for values of r ≤ 1
2

and r ≤ 2
3

to be

determined later, while the other buyer is truthful, then the reserve price converges to r.

Suppose the first bidder decides to shade her bid. Since buyers are playing time-invariant strategies, Ft

would converge to a distribution we call F̂ . The seller chooses the revenue-maximizing reserve price as per

Eq. (5). Let g(r) be the expected revenue obtained from reserve r. Note that the reserve price will converge

to r if g(r) = g(r), based on our decision to break ties by picking the smallest revenue-maximizing price.

For r ∈ (r, r], the seller does not obtain any revenue if the valuation of the first buyer lies in (r, r], whereas

the second agent has valuation less than r. Therefore, we have

g(r) = r̄(1− r)× r+ (1− r)r× r+ (1− r)(1− r)× (r+ (1− r)/3) + (1− r)(r− r)× ((r+ r)/2)

= (r+ r− 2rr)r+ (1− r)2((1 + 2r)/3) + (1− r)(r2− r2)/2 . (19)

Taking the derivative with respect to r, we have

g′(r) = r+ 2(1− 2r)r− (1− r)r= r+ (1− 3r)r≥ r+ (1− 3r)r= (2− 3r)r ,

which is non-negative for all r ∈ (r, r] for r ≤ 2
3
. Therefore, g takes its maximum in (r, r] at r and this

maximum value is

g(r) = 2(1− r)r2 + (1− r)2((1 + 2r)/3) .

For r= r, we have

g(r) = (r+ r− 2rr)r+ (1− r)2((1 + 2r)/3) + (1− r)(r2− r2)/2 + (r− r)r2 .

The last term corresponds to the revenue obtained from the first buyer from realizations where that buyer

bids exactly at reserve r= r (note that g is discontinuous at r; this term is absent for r > r as per (19)).

We now show that for any r ∈ [0,1/2), there exists r such that g(r) = g(r). To this end, let us define h for

z ∈ (r,1], which, fixing r, is equal to the difference between g(r) and g(z = r). More precisely,

hr(z) , (z+ r− 2zr)r+ (1− z)2((1 + 2z)/3) + (1− z)(z2− r2)/2 + (z− r)r2

−2(1− z)z2− (1− z)2(((1 + 2z)/3))

= (z+ r− 2zr)r− (1− z)(3z2 + r2)/2 + (z− r)r2. (20)

Plugging z = 1
2

into Eq. (20), we get

hr(1/2) = r/2− (3/4 + r2)/4 + (1/2− r)r2,
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which is negative for r < 1/2. (To see why hr(1/2)< 0, observe that h0(1/2) =−3/16< 0, h1/2(1/2) = 0 and

dhr(1/2)/dr= (1/2−r)(1+3r)≥ 0 for r ∈ [0,1/2].) On the other hand, note that hr(z = 1) = (1−r)(r+r2)>

0. Therefore, for some value of z ∈ (r,1), hr(z) is equal to 0. Let r be the lowest such value.

Note that we should have r≤ 2
3
. Hence, solving for hr(2/3) = 0, we find that r= 0.379. For these parame-

ters, we have g(r) = 0.3827.

Now suppose that, using shading strategy (r, r), the reserve is reduced to r. Then, we can write the utility

of the buyer as follows:

U(r, r) =

∫ 1

r

(v− r)rdv+

∫ 1

r

∫ v

r

(v− y)dydv

=
1

2
(1− r)2r+

∫ 1

r

1

2
(v− r)2dv

= r(1− r)2/2 + (1− r)3/6− (r− r)3/6 .

Note that the truthful strategy corresponds to r= r= 1
2
. Plugging in the numbers, we have U(1/2,1/2) =

0.08333 and U(0.379,2/3) = 0.1090.

A.2. General negative result for learning a common reserve price

We now argue that for a broad class of (window-based) stationary mechanisms under which the reserve

changes if the bidding behavior of a particular bidder changes, truthful bidding does not constitute an

approximate equilibrium. For simplicity, we consider sequences of ROFs with increasing window-length W

such that when agents use fixed bid functions, as W →∞, the resulting reserve has a limiting value for t≥W .

(Note that the distribution of the reserve price is time-invariant for all t≥W since the ROF is time-invariant

and agents are using fixed bid functions.)

Consider the perspective of agent i. Suppose that other bidders are following the always truthful strategy,

i.e., bidding truthfully irrespective of the information they receive over time. Agent i considers what bid

function she should use to map from valuations v to corresponding bids b(v) ≤ v, i.e., she does not bid

higher than her true valuation. (She could use some more complex strategy, that reacts to the current reserve

price, her history, etc., and/or overbids, but we are looking for a profitable deviation in this space of simple,

“shading-only” strategies.) We define the magnitude of shading of a bid function as d(b) = supv(v − b(v)).

Let fmax = supv f(v).

We say that a bid function involving bid-shading, i.e., b(v) ≤ v for all v, satisfies the δ-reserve impact

property for agent i if the following holds. Let r(Tr) be the limiting reserve price when agent i employs the

always truthful strategy (which corresponds to the identity bid function), and let r(b) be the limiting reserve

when agent i employs the bid function b always. Then r(b)≤ r(Tr)− δ.

We say that an ROF satisfies the (δ, ε, q)-reserve matters property (for a particular F , n) if the following

holds. With probability at least q in any round, we have that (i) the highest valuation is at least r(Tr) +

max(ε− δ,0), and (ii) each of the other agents has a valuation below r(Tr)− δ. Intuitively, an agent can

hope to benefit from a lower reserve price (with likelihood q/n, by an amount δ) if an ROF has the reserve

matters property, even if the agent is shading her bid by up to ε.
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Proposition 1 Fix the ROF and suppose that all agents other than i are always truthful. Suppose that there

exist C ∈ (0,1], q ∈ (0,1] and ε ∈ (0, qC/(nfmax)) and a bid function bε such that the following conditions

hold:

• The bid function bε satisfies bε(v)≤ v for all v and d(bε)≤ ε as well as the (Cε)-reserve impact property.

• The ROF satisfies the (Cε, ε, q)-reserve matters property.

Then, the steady-state average utility per auction for agent i exceeds that resulting from always being truthful

by at least qCε/(2n).

Further, if agent i adopts the non-truthful strategy bε, this causes a decrease in revenue per auction of at

least26 qCε.

Despite the technical nature of its statement, this result says something powerful and general. Whenever

an agent, by using a bid function that involves shading by no more than (small) ε, can cause the seller

to reduce the reserve price by order ε, and the reserve price matters, this is a beneficial deviation for the

buyer and it causes revenue loss to the seller. The reason the buyer benefits from deviating is similar to that

captured in Remark 2; namely, the myopic utility loss to the agent from this bid-shading (which causes the

agent to sometimes lose the item) is only O(ε2), whereas the gain in utility resulting from the lower reserve

is Ω(ε). This argument lies at the heart of the proof of the proposition (see Appendix A).

For many if not most ROFs, one would expect the existence of a suitable shading-only bid function that

causes a reduction in the reserve price by an amount of the same order as the magnitude of shading. Here is

an argument to justify this claim: One may expect a reasonable ROF to be scale-invariant, meaning that if

all historical bids are multiplied by the same factor α, then the reserve price chosen by the ROF should also

be multiplied by α. Consider α= 1− ε for some small ε, and n= 2 agents (for instance). If both agents bid

a multiple 1− ε of their true valuation, the resulting reserve under a scale-invariant ROF is reduced to 1− ε

times its original value. Then, for any scale-invariant ROF that is differentiable in its inputs (i.e., previous

bids), it must be that if just one agent bids a multiple 1− ε of her true valuation while the other agent is

truthful, the resulting reserve is Ω(ε) below the original one for small enough ε. (One may expect this to

hold also for many scale-invariant ROFs that are not differentiable in the inputs.)

We informally remark here that the ability of an agent to influence a common reserve learnt from historical

bids (cf. the reserve impact property) is significant when there are a small number of bidders, and this is

also the setting in which the reserve matters (cf. the reserve matters property), both for the revenue earned

by the seller and also for the expected utility of the agent. Thus, Proposition 1 suggests that there may

be significant incentive issues associated with learning a common reserve when there are a small number of

bidders, i.e., exactly when the reserve price is important for boosting revenues.

We now provide an illustration of the use of this result. Again considering the setting in Example 1 with

two bidders and Uniform(0,1) valuations, we show how Proposition 1 implies that a bid-shading strategy with

r= 0.484 and r= 0.526 is beneficial to an agent and results in revenue loss to the seller, due to the reserve

26 This is the loss due to reduction in the reserve price; we ignore here the additional loss of revenue due to bid-shading

by agent i.
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going down to r= 0.484 from r∗ = 0.5. To apply the proposition, we set ε= r− r= 0.042, δ = r∗− r= 0.016,

C = δ/ε= 0.381, and q= r(1−r) = 0.229, and observe that fmax = 1. Thus, qC/(2fmax) = 0.044> ε as needed,

the bid function has the (Cε)-reserve impact property, and one can check that ROF has the (Cε, ε, q)-reserve

matters property. Thus, Proposition 1 tells us that the agent can gain at least qCε/(2n) = 0.00092 or 1.1%

in expected utility by this deviation, and the seller loses at least qCε= 0.0037 or 0.9% in expected revenue.

These numbers are somewhat smaller than those captured in Example 1 due to the slack in Proposition 1.

An alternative to setting the reserve based on the joint distribution of historical bids as per (5), is to pool

historical bids from all bidders into a single empirical distribution F̂ , and then set the reserve to be the

optimal monopoly price argmaxr r(1− F̂ (r)) for this valuation distribution (Baliga and Vohra 2003). This

approach suffers from similar incentive issues and again, Proposition 1 captures this. In fact, we can consider

exactly the same deviation as above with r= 0.484 and r= 0.526, and again deduce from the proposition that

the agent’s expected utility increases by at least 1.1%, whereas the expected revenue of the seller decreases

by at least 0.9%. (These effects can be increased slightly by considering symmetric deviations r = 1/2− δ

and r = 1/2 + δ. Again, there is some slack in using Proposition 1, but it captures the qualitative fact that

incentives are a concern when learning a common reserve, and this affects revenues.) In the next section,

we modify the monopoly pricing approach to appropriately set personalized reserves for buyers in a manner

that overcomes incentive issues.

B. Appendix to Section 4

The following lemma controls the amount by which the empirical cdf based on i.i.d. samples can deviate from

the true cdf, allowing us to bound the loss in revenue. We state a general version that allows an adversary to

perturb each sample by up to δ ≥ 0 so that we can reuse the lemma later to analyze the contextual setting

(i.e., in the proof of Theorem 3). In proving the bound on revenue loss in Theorem 1, we will simply set

δ = 0 when we invoke this lemma.

Lemma 2 There exists C8 <∞ such that the following holds. Consider any δ ≥ 0 and an arbitrary distri-

bution F , and let v1, v2, . . . , vN be N i.i.d. samples from F , except that an adversary may have arbitrarily

modified (increased or decreased) each sample by an amount of at most δ. Let F̂ be the empirical distribution

of these perturbed samples. Then, with probability at least 1− 1/N , it holds that for all r,

F̂ (r)∈ [F (r− δ)−C8

√
logN/N,F (r+ δ) +C8

√
logN/N ] . (21)

Proof of Lemma 2. We draw inspiration from the proof of (Dhangwatnotai et al. 2015, Lemma 4.1 and

Remark 4.2). Using Chernoff bounds followed by a union bound as in that proof, we obtain that with no

adversarial perturbations, with probability at least 1− 1/N , it holds for all i= 1,2, . . . ,N that

|F̂np(ṽi−)−F (ṽi−)| ≤C8

√
logN/N and

|F̂np(ṽi+)−F (ṽi+)| ≤C8

√
logN/N , (22)
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where F̂np(·) is the empirical distribution of unperturbed samples ṽ1, ṽ2, . . . , ṽN . (We carry bounds on both

the left- and right-hand limits throughout this proof.) Now consider the effect of adversarial perturbations.

Since these perturbations are of size at most δ, i.e., |ṽi− vi| ≤ δ ∀i, it is immediate to deduce that for all r

we have

F̂ (r)∈ [F̂np(r− δ), F̂np(r+ δ)] . (23)

Combining (22) and (23) we obtain that with probability at least 1−1/N , it holds for all i= 1,2, . . . ,N that

F̂ (vi−)∈ [F ((vi− δ)−)−C8

√
logN/N,F ((vi + δ)−) +C8

√
logN/N ] and

F̂ (vi+)∈ [F ((vi− δ)+)−C8

√
logN/N,F ((vi + δ)+) +C8

√
logN/N ] . (24)

We can now extend to all r as follows. Without loss of generality assume that the values of the samples

v1, v2, . . . , vN are in descending order. If r is equal in value to one of these samples we are done since F̂ (r) =

F̂ (r−) and F (r′) = F (r′−) ∀r′, as per the convention in this paper of defining cumulative distributions with

a strict inequality F (r) = Pr(v < r). For convenience, define v0 ,BF + δ and vN+1 ,−BF − δ. Given that

F is supported on (−BF ,BF ), observe that F (v0) = F̂ (v0) = 0 and F (BF ) = F̂ (v0) = 1, and hence that (24)

extends to v0 and vN+1. For any r such that |r|<BF +δ, there exists i∈ {0,1, . . . ,N} such that vi > r > vi+1.

By definition of F̂ (·) we have F̂ (r) = F̂ (vi−) = F̂ (vi+1+). Using (24) and monotonicity of F (·), we have

F̂ (r) = F̂ (vi−)≥ F ((vi− δ)−)−C8

√
logN/N ≥ F (r− δ)−C8

√
logN/N and

F̂ (r) = F̂ (vi+1+)≤ F ((vi+1 + δ)+) +C8

√
logN/N ≤ F (r+ δ) +C8

√
logN/N .

Finally, for r≥BF + δ we have F̂ (r) = F (r) = 1 and the bounds clearly hold; and similarly for r≤−BF − δ.

This completes the proof of the lemma. �

We will need one more lemma that will ensure that the empirical revenue maximizing reserve price is

within a constant factor of the true revenue maximizing reserve price.

Lemma 3 Consider any MHR distribution F , and let F̂ be the empirical distribution of N i.i.d. samples

from F . Let r̂∗ ,maxr r(1− F̂ (r)) and r∗ = maxr r(1−F (r)). Then there exists C ′ <∞ such that, for all N ,

we have that r̂∗ ≤ 6r∗ holds with probability 1−C ′ exp(−N0.4).

Proof of Lemma 3. Let the samples, in descending order, be v1, v2, . . . , vN . Note that r̂∗ takes on one of

these N values. For each i≤N/(6e), we will show that the probability that r̂∗ = vi is small by showing that

there are unlikely to be i samples that take large enough values. We will then use a union bound to establish

the lemma.

We use the simple fact, first noted in (Hartline et al. 2008, Lemma 4.1), that since F is MHR, we have

1−F (r∗)≥ 1/e . (25)
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It follows using a Chernoff bound on Binomial(N,1/e) that event E0 ,
{

1 − F̂ (r∗) < 0.9/e
}

occurs with

probability at most exp(−(0.1)2N/(2e))≤ exp(−0.001N). Note that 1− F̂ (vi) = i/N . Assume E0 does not

occur. Then in order to have r̂∗ = vi, it must be that

vii/N ≥ r∗(1− F̂ (r∗)) ⇒ vi ≥ 0.9Nr∗/(ie) , (26)

using 1− F̂ (r∗)≥ 0.9r∗/e. Accordingly, define the event Ei , {vi ≥ 0.9Nr∗/(ie)}, i.e., Ei is the event that

there are i or more samples with value at least 0.9Nr∗/(ie). We will show that Ei is unlikely. Let h(r) ,

f(r)/(1− F (r)) denote the hazard rate of F . The first order condition corresponding to the definition r∗

tells us that h(r∗) = 1/r∗. Using that F is MHR, for any r > r∗, we have

1−F (r) = (1−F (r∗)) exp

(
−
∫ r

r∗

h(r′)dr′
)

≤ (1−F (r∗)) exp (−(r− r∗)h(r∗)) = (1−F (r∗)) exp (−(r− r∗)/r∗)

≤ exp (−(r− r∗)/r∗) = exp (1− r/r∗) .

In particular,

1−F (0.9Nr∗/(ie))≤ qi , exp (1− 0.9N/(ie)) . (27)

Thus, we have that

Pr(Ei)≤Pr(Binomial(N,qi)≥ i) .

Note that for all i <N/6e, we have eqi < 0.6i and in particular qi < i. (This can seen by observing that `(y),

y exp(−y) is monotone decreasing for y > 1, that `(5.4) = 0.544 . . . < 0.6, and defining y , 0.9N/(ie)> 5.4.)

Using a Chernoff bound for i >N/6e, the right-hand side is bounded above as

Pr(Binomial(N,qi)≥ i)≤
ei−qi

(i/qi)i
= (eqi/i)

i/eqi ≤ (eqi/i)
i .

For i≥
√
N , using eqi < 0.6i, we immediately get an upper bound of 0.6i ≤ exp

(
− 0.5

√
N
)
, using ln(0.6)<

−0.5. On the other hand, for i <
√
N , we have an upper bound of eqi/i= e exp(1− 0.9N/(ie))/i≤ exp

(
2−

0.3
√
N
)

using 0.9/e > 0.3. Thus, we have established that

Pr(Ei)≤ exp
(
2− 0.3

√
N
)

for all i <N/6e . (28)

It follows using a union bound that probability that at least one of E0,E1, . . . ,EN/(6e) occurs is bounded

above by N exp
(
2 − 0.3

√
N
)
/(6e) + exp(−0.001N). Observe that for appropriately chosen C ′ <∞, this

quantity is further bounded above by C ′ exp(−N0.4) for all N .

Thus, with probability at least 1−C ′ exp(−N0.4), none of E0,E1, . . . ,EN/(6e) occur. When none of these

events occur, by the argument above, r̂∗ < vN/(6e) < 0.9Nr∗/(eN/(6e)) = 5.4r∗ < 6r∗. This completes the

proof.

�

Proof of Theorem 1: Consider agent i at time t and assume that all other agents will be truthful (at

time t and in the future). Note that for each agent i, the sequence of her reserve prices and her prices to win
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the item (the maximum of rit and the highest bids of other agents) do not depend at all on i’s own bids.

Hence, the bid of agent i does not affect her utility in future rounds and myopically maximizing utility in

each round is optimal for maximizing the long-term utility. Since truthful bidding is myopically a dominant

strategy in each round, being truthful is a best response, and this establishes periodic ex-post incentive

compatibility. In particular, all agents following the always truthful strategy constitutes an equilibrium.

The lower bound on revenue follows from Remark 4.2 from Dhangwatnotai et al. (2015), and the fact that

it can be used to show a (1− ε)-factor revenue optimality even when there are multiple bidders (see the proof

of Theorem 4.3 in Dhangwatnotai et al. 2015). For completeness we provide a full proof.

By definition of rit, we have

rit(1− F̂−i(rit))≥ r∗(1− F̂−i(r∗)) . (29)

For window length W , using Lemma 2 with δ = 0, we have that with probability at least 1− 1/W ,

min
(
1,1−F (r) +C8

√
logW/W

)
≥ 1− F̂−i(r) for all r , and (30)

1−F (r∗)−C8

√
logW/W ≤ 1− F̂−i(r∗) . (31)

where we also used F̂−i(r)≥ 0 ⇒ 1− F̂−i(r)≤ 1 to obtain (30). Using (30) to upper bound the left-hand side

of (29) and using (31) to lower bound the right-hand side of (29), we obtain that with probability at least

1− 1/W ,

ritmin
(
1,1−F (rit) +C8

√
logW/W

)
≥ r∗

(
1−F (r∗)−C8

√
logW/W

)
. (32)

Define the monopoly revenue MonRevr , r(1−F (r)). We deduce that

MonRevrit ≥MonRevr∗ −C8(rit + r∗)
√

logW/W . (33)

We now convert this into a multiplicative bound using Lemma 3. Using a union bound, the characterizations

in both Lemma 2 and Lemma 3 simultaneously hold with probability at least 1− 1/W − C ′ exp(−W 0.4).

Lemma 3 tells us that rit < 6r∗. Along with fact (25) that states 1−F (r∗)≥ 1/e, we obtain that

rit + r∗ < 7r∗ = 7MonRevr∗/(1−F (r∗))≤ 7eMonRevr∗ .

Plugging into (33), we obtain

MonRevrit ≥
(
1− δ̃

)
MonRevr∗ , where δ̃, 7eC8

√
logW/W . (34)

We now extend this multiplicative bound to the actual auction revenue with multiple bidders. As in the

proof of (Dhangwatnotai et al. 2015, Theorem 4.3, top of page 332), we infer that

MonRevmax(rit,b) ≥
(
1− δ̃

)
MonRevmax(r∗,b) for all b∈R , (35)

via a simple case analysis, using the property that monopoly revenue is a concave function of the price:

(i) If b≤ r∗, then the right-hand side is simply (1− δ̃)MonRevr∗ . Since max(rit, b) ∈ [rit, r∗], and because

the monopoly revenue is increasing in price to the left of r∗, the left-hand side is lower bounded by

E[MonRevrit ] ≥ (1− δ̃)E[MonRevr∗ ] = RHS. Thus, we have established (35) for this case. (ii) If b > r∗,
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then the right-hand side is simply (1− δ̃)MonRevb. The left-hand side is identical if rit ≤ b, in which case we

are done. Else, we have rit > b and the LHS is MonRevrit ≥ (1− δ̃)MonRevr∗ ≥ (1− δ̃)MonRevb = RHS.

Again, we are done.

Now setting b to be the largest bid submitted by an agent other than i and taking expectation over the

bids of the other agents, we get

E[Revenue from i under proposed mechanism]≥E[Revenue from i under Myerson](1− δ̃)

⇒ E[Revenue under proposed mechanism]≥ (1− δ̃)Rev∗ ,

where the second step follows by summing over i. Thus, incorporating the 1/W +C exp(−W 0.4) probability

of failure of Lemma 2 and/or Lemma 3 due to an atypical empirical distribution of historical bids, in which

case revenue loss can be up to Rev∗, the overall loss in expected revenue under our mechanism (relative to

Myerson) is bounded above by

Rev∗
(
δ̃+ 1/W +C ′ exp(−W 0.4)

)
≤Rev∗C

′′
√

logW/W

for appropriate C ′′ <∞, for all W . It follows that for appropriate C <∞, for any ε > 0, window length

W > C log(1/ε)/ε2 ensures a revenue loss of at most εRev∗. The lower bound of (1− ε)Rev∗ on revenue

follows.

(In the case where F is a regular distribution – a weaker requirement than MHR – we need to use

the so-called “guarded empirical reserve” that forbids the largest samples from acting as reserve prices,

and to require that W ≥ C log(1/ε)/ε3 in order to obtain (1− ε)-factor optimality using Lemma 4.1 from

Dhangwatnotai et al. (2015).) �

Remark 3 Our above proof of the lower bound on revenue leveraged results from Dhangwatnotai et al.

(2015). We remark that using Lemma 2 (which we will establish en route to a proof of Theorem 3), the proof

can be made self contained: Using Lemma 2, we see that with probability 1− 1/N , the following conditions

hold

We now provide a finite horizon version of Theorem 1. Suppose the seller is trying to maximize revenue

over a horizon of T periods. Correspondingly, agents are trying to maximize their utility over T rounds. The

definition of periodic ex-post incentive compatibility and HO-SERP mechanisms remains unchanged. We

use the HO-SERP mechanism that uses all bids in periods 1 through t− 1 to determine the reserve prices

in period t (rather than using bids in a window of length W ), and provide an upper bound on the loss in

average revenue relative to the Myerson benchmark.

Corollary 1 Consider a finite horizon setting with horizon length T . Any HO-SERP mechanism is periodic

ex-post incentive compatible. In particular, all agents following the always truthful strategy constitutes an

equilibrium. Now consider the HO-SERP mechanism that sets personal reserve prices in period t as per (6)

where F̂−i(·) is the empirical distribution of bids by other agents in periods 1, 2, . . . , t−1. There exists C <∞
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that does not depend on the valuation distribution F , such that for any F that is MHR, this mechanism

achieves average revenue that is at least (T −C
√
T logT )Rev∗, where Rev∗ is the expected revenue under

the optimal static mechanism, i.e., the second-price auction with Myerson-optimal reserve.

Proof of Corollary 1. The proof of periodic ex-post IC is as before. Consider the expected revenue in period

t≥ 2. It is the same as the per period average revenue of the windowed HO-SERP mechanism with window

length t− 1. Let Ĉ denote the constant in Theorem 1 for purposes of this proof. We can use Theorem 1

with ε such that t− 1 = Ĉ log(1/ε)/ε2, i.e., ε≤ C̃ log t/
√
t for some C̃ <∞ and t≥ 2. This gives us a bound

of C̃Rev∗ log t/
√
t on the expected revenue loss in period t+ 1 for t ≥ 2. In the first period the expected

revenue loss is bounded by Rev∗. It follows that the expected revenue loss over T periods is bounded by

C̃Rev∗

(
1 +

∑T

t=2 log t/
√
t
)
≤CRev∗

√
T logT for some C <∞. This completes the proof. �

Finally, we provide a lower bound on the revenue loss under our suggested mechanism. We choose to stay

in the finite horizon setting to state this result. We show that the revenue loss is Ω(Rev∗T
0.33) under our

proposed HO-SERP mechanism for a representative (exponential)27 valuation distribution F .

Theorem 5 Consider a finite horizon setting with horizon length T , and the HO-SERP mechanism in

Corollary 1 that sets personal reserve prices in period t as per (6) where F̂−i(·) is the empirical distribution

of bids by other agents in periods 1, 2, . . . , t− 1. For any ε > 0 and F (v) = e−v, the average revenue under

this mechanism is bounded above as T −Ω(T 1/3−ε).

The key lemma to establish this result is the following.

Lemma 4 Fix any ε > 0. Let F̂ be the empirical distribution based on t ∈ N independent identically dis-

tributed samples from distribution F (v) = e−v. Suppose we set

r̂∗ = arg max
r
r(1− F̂ (r)) . (36)

Define R(r), r(1−F (r)). Note that R(r) is maximized at r∗ = 1. Then we have with probability Ω(1) that

|r̂∗− r∗|= Ω(t−1/3−ε/2) , and (37)

R(r̂∗)≤R(r∗)−Ω(t−2/3−ε) . (38)

Proof of Lemma 4. For convenience, define δ,min(ε/4,1/50). Define r0 , r?− t−1/3−δ, r1 , r?− t−1/3−2δ

and r2 , r? + t−1/3−2δ. Define the empirically estimated counterpart of R(·),

R̂(r), r(1− F̂ (r)) . (39)

27 The analogous bound in the infinite horizon setting with the windowed HO-SERP mechanism is: to obtain average

revenue loss per period of no more than εRev∗, the required minimum window length is W = Ω(1/ε1.49). We omit

this infinite horizon bound in the interest of space.
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We will show that with probability Ω(1), we have that

R̂(r0)> R̂(r) ∀r ∈ [r1, r2] ⇒ r̂∗ /∈ [r1, r2] , (40)

yielding (37). Throughout the proof, we omit the phrase “for large enough t” though it is repeatedly invoked.

Of the t total samples, let N(r), t(1− F̂ (r−)) be the number of samples of value at least R. We define

the following events

E0 , {N(r0)−N(r1)≥ te−1(r1− r0) + t1/3−δ/2} , (41)

E1 , {|N(r1)− te−1| ≤ 2t2/3−2δ} , (42)

E2 , {N(r1)−N(r)≥ (r− r1)e−1t− t1/3−2δ/3 for all r ∈ [r1, r2]} . (43)

The event E0 captures “more than the expected number of samples in [r0, r1]” and occurs with probability

Ω(1), for the following reason: The number of samples in [r0, r1) is Binomial(t,F (r0)−F (r1)). We can bound

the mean from below as t(F (r0)−F (r1))≥ t(r1−r0)f(r∗) = t(r1−r0)e−1 using that f(·) is decreasing. Since

the variance of the binomial is then t2/3−δ(1−O(t−1/3−δ)), we have

Ω(1) = P
(
N(r0)−N(r1)≥ te−1(r1− r0) +

√
t2/3−δ

)
= P (E0)

using the central limit theorem.

The event E1 captures “typical number of samples with value at least r1” and occurs with high probability,

i.e., with probability 1− o(1). This is straightforward to see: the number of samples is Binomial(t, e−r1) and

e−r1 = 1 + t−1/3−2δ +O(t−2/3−4δ). The variance of the Binomial is less than t. The claim then follows from

a standard Chernoff bound since the permitted slack of t2/3−2δ grows faster than the standard deviation of

O(
√
t).

The event E2 captures, roughly that “the empirical distribution of samples in [r1, r2] will not be much

sparser than a typical realization” and occurs with high probability. To establish this, we argue as follows:

First note that we can legitimately generate t i.i.d. samples from F via the following approach, which will

facilitate our analysis. Simulate a Poisson process on R+ with intensity tf(r)(1 − t−0.4) at r. With high

probability (using a Chernoff bound), the total number of points in the realization will be t′ < t. Then draw

t− t′ additional i.i.d. samples from F to complete the set of t i.i.d. samples. What we gained here is that

we “lower bounded” the point process of t samples from F via a Poisson process of intensity tf(r)(1 −
t−0.4). Now we characterize the typical realizations of the lower-bounding Poisson process on [r1, r2]. The

interval has length 2t−1/3−2δ. The Poisson density on this interval is everywhere at least tf(r2)(1− t−0.4)≥
te−1(1 − 2t−1/3−2δ). We now rescale r as well as the Poisson intensity by the same factor t−1/3−2δ. Let

s(r) , (r − r1)/t−1/3−2δ for r ∈ [r1, r2]⇔ s ∈ [0,2]. Let Ñ(s) be the value of a Poisson process of uniform

intensity λ, te−1(1−2t−1/3−2δ)× t−1/3−2δ = e−1(t2/3−2δ−2t1/3−4δ) on s∈ [0,2]. Note that we have retained

the lower bounding property that, with high probability, N(r)−N(r1)≥ Ñ(s) for all r ∈ [r1, r2]. Since the

intensity λ of Ñ(s) scales up with t, the process converges to a standard Brownian motion (e.g., see Billingsley

2013, Theorem 37.8) after subtracting the mean and scaling by
√
λ, i.e.,

Ñ(s)−λs√
λ

t→∞−−−→ Ws on s∈ [0,2] , (44)
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where Ws is standard Brownian motion. For standard Brownian motion in a horizon of length 2, we know

that, with high probability, it does not ever become too small;

P ( min
s∈[0,2]

Ws <−M)
M→∞−−−−→ 0 . (45)

Using M , tδ/3 and plugging back into (44) we obtain that, with high probability, for all s∈ [0,2] we have28

Ñ(s)≥ sλ− (M + 1)
√
λ≥ se−1t2/3−2δ − t1/3−2δ/3 = (r− r1)e−1t− t1/3−2δ/3 . (46)

The lower bounding property of Ñ(s) then implies that E2 occurs with high probability.

Since E0 occurs with probability Ω(1) whereas E1 and E2 occur with high probability, it follows that

E0 ∩E1 ∩E2 occurs with probability Ω(1). Henceforth in this proof we assume that all three events occur.

Our goal is to establish (40). We will rely on E0 and E1 to show that R̂(r0) is significantly larger than R̂(r1),

and then deduce (40) by using E2.

Observe that, by definition, we have

R̂(r0)− R̂(r1) =−N(r1)(r1− r0) + (N(r0)−N(r1))r0

Using the upper bound on N(r1) in (42) and the lower bound on N(r0)−N(r1) in (41), we deduce

R̂(r0)− R̂(r1)≥ t1/3−δ/2/2 . (47)

Now consider

R̂(r)− R̂(r1) =−N(r1)(r1− r) + (N(r)−N(r1))r ,

for r ∈ [r1, r2]. Using the lower bound on N(r1) in (42) for the first term and the lower bound on N(r)−N(r1)

in (43) for the second term, we obtain

R̂(r)− R̂(r1)≤ 2t1/3−2δ/3 (48)

for all r ∈ [r1, r2].

Combining (47) and (48) and using 1/3− 2δ/3 > 1/3− δ/2, we deduce (40). (38) follows: by definition

of r∗, we have R′(r?) = 0, and one can further verify that R′(r) =−rf(r) + 1− F (r) is positive for r < r?

and negative for r > r?. Further R′′(r) = e−r(r− 2)<−0.5e−1.5 for all r ∈ [0.5,1.5]⊇ [r1, r2]. It follows that

supr/∈[r1,r2]R(r) ≤max(R(r1),R(r2)) ≤ R(r∗)− (1/2)(0.5e−1.5)(t−1/3−2δ)2 = R(r∗)−Ω(t−2/3−4δ), where the

first inequality follows from the unimodality of R(·) and the second inequality follows from Taylor’s theorem

using the bound on R′′(r) and |r1− r?|= |r2− r?|= t−1/3−2δ. Hence, r /∈ [r1, r2] implies (38). �

Proof of Theorem 5. Lemma 4 tells us that the expected (additive) revenue loss relative to Rev∗ in period

t under the proposed HO-SERP mechanism is Ω(t−2/3−ε). Summing over t= 1,2, . . . , T gives the result. �

28 Since the left-hand side in (44) converges to the right-hand side, the two stochastic process do not differ by 1

unit at any s, and in particular, the minimum value of the left-hand process is smaller than the minimum value of

right-hand process by at most 1.
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Our lower bound in Lemma 4 contributes to the agenda pursued in Dhangwatnotai et al. (2015) regarding

choosing a price to optimize revenue based on a limited number of samples from the valuation distribu-

tion. The reader will notice a gap between our lower bound of Ω(Rev∗T
0.33) and our upper bound of

O(Rev∗
√
T logT ) on the expected revenue loss. We leave it as an interesting open problem to close this

gap. We have a (weak) conjecture that our lower bound on revenue is nearly tight; the worst case expected

revenue loss may indeed be29 Θ(T 1/3).

Proof for Example 2. As mentioned in the example, suppose that the first buyer is truthful. We present

a profitable deviation for the second buyer, parameterized by ∆ and later we show that the deviation is most

profitable at ∆ = 1
2
. The second buyer, for a parameter ∆≤ 1

2
, bids as follows:

bit =


vit 0≤ vit < 1

2

1
2

+ ∆ 1
2
≤ vit < 1

2
+ ∆

vit
1
2

+ ∆≤ vit ≤ 1

Note that the second bidder overbids if her valuation is in [ 1
2
, 1

2
+ ∆) and is truthful otherwise. Therefore,

the limiting reserve price for the first bidder (him) is 1
2

+ ∆. Since the first bidder is truthful, the limiting

reserve price for the second bidder is 1
2
.

We now calculate the per-round increase in profit from this deviation. Observe that the deviating second

agent obtains higher utility only when the price reduces because the first bidder is eliminated on account

of not clearing his personal reserve price, whereas he would have cleared the reserve of 1/2 resulting from

truthful bidding by the second agent. Thus, the elimination happens only if the truthful bidder’s valuation

lies in [ 1
2
, 1

2
+ ∆) which occurs with probability ∆. If the deviating agent’s valuation is above 1

2
+ ∆, she

benefits from such elimination via a price that is ∆/2 lower on average. This case contributes

Pr(v1 ∈ [1/2,1/2 + ∆)) Pr(v2 ∈ [1/2 + ∆,1])∆/2 = ∆(1/2−∆)×∆/2 = ∆2/4−∆3/2

to the gain in expected utility. In addition, if vi ∈ [1/2,1/2+∆) for both i= 1,2, this leads to a min(v1, v2)−
1/2 gain in utility for the second bidder due to agent 1 not clearing his reserve. The resulting contribution

to the gain in expected utility is∫ 1/2+∆

1/2

∫ 1/2+∆

1/2

(
min(v1, v2)− 1/2

)
f(v1)f(v2)dv1dv2 = ∆3/3.

Hence, the overall gain in expected utility from bid-shading is ∆2/4−∆3/6.

Note that in the limiting steady state, overbidding does not lead to utility loss for the second agent. The

reason is that when she overbids, her bid is 1/2 + ∆, but this bid wins only if the first agent does not clear

his reserve of 1/2 + ∆. Thus, the price paid by the second agent is only her reserve of 1/2, which is less than

her true valuation.

The gain in expected utility from deviation of ∆2/4−∆3/6 is non-negative for all ∆∈ [0,1/2]. The benefit

of deviation is maximized at ∆ = 1/2, which can increase the utility of the second agent, compared to the

29 This conjecture arose from a discussion with Amine Allouah.
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truthful strategy, by 1/24 = 0.0417 or 50% (since her utility under the truthful strategy is 1/12 = 0.0833).

Note how this effectively prevents the first agent from ever being allocated the item since r1t = 1 under the

deviation. �

C. Appendix to Section 5

We first provide a fact we will use to establish Theorem 2 for n> 2.

Fact 5 Let Fa and Fb be distributions with virtual value functions φa and φb respectively. Then, for any

λ∈ [0,1], the convex combination of the two distributions Fλ = λFa + (1−λ)Fb has virtual value function φλ

which is between the virtual value function of the individual distributions, i.e., for all v,

φλ(v)∈

 [φa(v), φb(v)] if φa(v)≤ φb(v) ,

[φb(v), φa(v)] otherwise .
(49)

Proof of Fact 5. Recall that the virtual value function for any distribution F is defined as φ(v) = v −

(1− F (v))/f(v). Hence, in order to show that φλ is between φa and φb, it suffices to show that ρλ(v) ,

(1 − Fλ(v))/fλ(v) is between ρa(v) , (1 − Fa(v))/fa(v) and ρb(v) , (1 − Fb(v))/fb(v) for all v. Observe

that from the definition of Fλ we have fλ(v) = λfa(v) + (1− λ)fb(v). Without loss of generality, suppose

ρa(v)≥ ρb(v). We immediately deduce that

ρλ(v) =
λ(1−Fa(v)) + (1−λ)(1−Fb(v))

λfa(v) + (1−λ)fb(v)

=
λρa(v)fa(v) + (1−λ)ρb(v)fb(v)

λfa(v) + (1−λ)fb(v)
(using 1−Fi(v) = ρi(v)fi(v) for i= a, b)

≥ λρb(v)fa(v) + (1−λ)ρb(v)fb(v)

λfa(v) + (1−λ)fb(v)
(using ρa(v)≥ ρb(v))

= ρb(v) .

A very similar argument establishes ρλ(v)≤ ρa(v), thus yielding ρλ(v)∈ [ρb(v), ρa(v)] as needed. �

We remark that if Fa and Fb are MHR, the convex combination Fλ may still not be MHR (for example,

the convex combination of two exponential distributions with different parameters is not MHR) and in fact,

may not even be regular (we omit an example in the interest of space). However, lack of regularity will not

create difficulties for us in proving our robustness result. (As an aside for the reader who is familiar with

auction design theory: If Fa and Fb are regular, the “ironed” virtual value function (Myerson 1981, (6.5))

of the convex combination φ̃λ can also be shown to lie between φa and φb. The function φ̃λ is monotone

non-decreasing and we could have chosen to work with it in place of the virtual value function. For instance,

r∗ = arg maxr r(1− Fλ(r)) is the value at which φ̃λ(r∗) = 0. However, the first order condition also tells us

that φλ(r∗) = 0 for the virtual value function without ironing (though this function may have multiple zeros).
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It turns out that φλ(r∗) = 0 is the only property we need for our proof, and so we do not pass to the ironed

virtual value function in our formal analysis.)

We are now ready to prove Theorem 2.

Proof of Theorem 2. The proof of periodic ex-post incentive compatibility in Theorem 1 remains valid

when agents have heterogeneous valuation distributions.

We now prove that the loss in average per round seller revenue, relative to the Myerson-optimal static

benchmark, is no more than 2(n−1)fmaxδ
2. Note that since the agent valuation distributions are MHR, the

virtual value functions are monotone increasing, and that we have

φi(v+ z)−φi(v)≥ z (50)

for all z > 0. We begin by considering n= 2 agents and later generalize to an arbitrary number of agents.

Proof for n = 2. Consider our mechanism after learning has occurred. Our mechanism (as well as Myer-

son’s mechanism) is truthful. As a result, using Myerson’s lemma (Myerson 1981), the revenue of the mech-

anism can be written purely in terms of allocation (a1, a2), where a1 = a1(v1, v2) is the likelihood (0 or 1 for

our mechanism, which is deterministic) that agent 1 is allocated the item, and similarly for a2 = a2(v1, v2).

The revenue is

Rev=

∫ ∞
0

∫ ∞
0

(
a1(v1, v2)φ1(v1) + a2(v1, v2)φ2(v2)

)
f1(v1)f2(v2)dv1dv2 . (51)

The revenue under Myerson’s mechanism (which allocates the item to the agent with the highest virtual

value, if that virtual value is non-negative) is simply

Rev∗ =

∫ ∞
0

∫ ∞
0

max(φ1(v1), φ2(v2),0)f1(v1)f2(v2)dv1dv2 . (52)

Preliminary observations. We make some preliminary observations before proceeding to bound Rev∗−
Rev. Note that if v1 ≥ v2, we have

φ1(v1)≥ φ2(v1)− δ≥ φ2(v2)− δ+ v1− v2 , (53)

where the first inequality follows from the assumption ‖Fi−Fj‖ ≤ δ, and the second inequality follows from

(50). In particular, we deduce

φ1(v1)≥ φ2(v2)− δ for all v1 ≥ v2 , and (54)

φ1(v1)≥ φ2(v2) for all v1 ≥ v2 + δ . (55)

Let r2 be the unique value such that φ1(r2) = 0 and let r1 be the unique value such that φ2(r1) = 0. Then it

follows from (55) that |r2− r1| ≤ δ. Under our mechanism personal reserve prices are set as per (6), and in

the limit W →∞, the personalized reserve for agent 1 is r1 and for agent 2 it is r2. Without loss of generality,

suppose that r1 ≥ r2.

We now derive two identities regarding quantities that will come up when we compute the revenue loss.

First, note that when agent 1 wins the item under our mechanism, i.e., when a1 = 1, agent 1 clears her

reserve v1 ≥ r1, and so φ1(v1)≥ φ1(r1)≥ φ1(r2) = 0. We deduce that

I(a1 = 1) ⇒ φ1(v1)≥ 0 ⇒
(
z+−φ1(v1)

)
+

=
(
z−φ1(v1)

)
I(φ1(v1)< z) for any z ∈R , (56)
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where z̃+ ,max(z̃,0) for z̃ ∈R.

Similarly, if the item is not allocated a1 = a2 = 0, then the highest bidder does not clear her per-

sonal reserve and we can rewrite max
(
φ1(v1), φ2(v2),0

)
— If agent 1 is the highest bidder, we have

v2 < v1 < r1 and so φ2(v2) < φ2(r1) = 0, and if φ1(v1) > 0 then v1 > r2; overall max
(
φ1(v1), φ2(v2),0

)
=

φ1(v1)I
(
v1 ∈ (max(r2, v2), r1)

)
. On the other hand if agent 2 is the highest bidder, we have v1 ≤ v2 < r2

and so φ2(v2) < φ2(r2) ≤ φ2(r1) = 0, and φ1(v1) < φ1(r2) = 0; overall max
(
φ1(v1), φ2(v2),0

)
= 0. Again

max
(
φ1(v1), φ2(v2),0

)
= φ1(v1)I

(
v1 ∈ (max(r2, v2), r1)

)
remains valid since I

(
v1 ∈ (max(r2, v2), r1)

)
= 0.

Thus, we have established that

I(a1 = a2 = 0) ⇒ max
(
φ1(v1), φ2(v2),0

)
= φ1(v1)I

(
v1 ∈ (max(r2, v2), r1)

)
.

In fact, we can write

I(a1 = a2 = 0) max
(
φ1(v1), φ2(v2),0

)
= φ1(v1)I

(
v1 ∈ (max(r2, v2), r1)

)
, (57)

since I(a1 = a2 = 0) = 0 ⇒ I
(
v1 ∈ (max(r2, v2), r1)

)
= 0.

Bounding the revenue loss. We now proceed to bound the loss in revenue under our mechanism, relative

to Myerson. Subtracting (51) from (52) and using that the allocation is deterministic under our mechanism,

we obtain

Rev∗−Rev=

∫ ∞
0

∫ ∞
0

[
I(a1 = 1)

((
φ2(v2)

)
+
−φ1(v1)

)
+

+ I(a2 = 1)
((
φ1(v1)

)
+
−φ2(v2)

)
+

+ max
(
φ1(v1), φ2(v2),0

)
I(a1 = a2 = 0)

]
f1(v1)f2(v2)dv1dv2 ,

= E
[
I
(
φ1(v1)<φ2(v2) ∧ a1 = 1

) (
φ2(v2)−φ1(v1)

)
+ I
(
φ2(v2)< (φ1(v1))+ ∧ a2 = 1

) (
(φ1(v1))+−φ2(v2)

)
+ φ1(v1)I

(
v1 ∈ (max(r2, v2), r1)

)]
,

where we made use of (56) to rewrite the first term and (57) to rewrite the third term. The first term captures

revenue loss from the item being allocated to agent 1 though Myerson would not have (the revenue loss is

φ2(v2)−φ1(v1) =
(
φ2(v2)

)
+
−φ1(v1) when φ2(v2)>max(φ1(v1),0) and so the item should instead have been

allocated to agent 2, the loss is −φ1(v1) =
(
φ2(v2)

)
+
− φ1(v1) > 0 when φ1(v1) < 0, φ2(v2) < 0 and so the

item should not have been allocated at all, and there is no loss otherwise when φ1(v1) ≥max(φ2(v2),0)).

The second term similarly captures revenue loss from wrongly allocating the item to agent 2. The third term

captures revenue loss from not allocating the item, whereas Myerson would have allocated it.

Let us bound each of the terms. We start by considering the first two terms. For the first term to be

positive we need event E1 , (φ1(v1)<φ2(v2) ∧ a1 = 1) to occur. Now if E1 occurs then a1 = 1 ⇒ v1 > v2 so

it must be that φ2(v1)>φ2(v2)>φ1(v1), and it also must be that v2 ∈ (v1− δ, v1) using (55), and of course

v1 ≥ r1. Similarly, for the second term to be positive we need event E2 , (φ2(v2)< (φ1(v1))+ ∧ a2 = 1). If

E2 occurs then v2 ≥max(v1, r2) and one of the following two cases must arise:
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1. v1 ≥ r2 ⇒ φ1(v1)≥ 0 in which case φ2(v1)≤ φ2(v2)<φ1(v1) and v2 ∈ (v1, v1 + δ] using (55).

2. v1 < r2 ⇒ φ1(v1)< 0 and hence φ2(v2)< 0, implying v2 ∈ [r2, r1). Note that

φ1(v2)≥ φ1(r2) = 0 ⇒ φ2(v2)≥−δ (58)

follows, using ‖F1−F2‖ ≤ δ.

Observe that the above events are mutually exclusive E1∩E2 = ∅, since they result in different agents being

allocated the item. We will now show that P (E1 ∪E2|v1)≤ fmaxδ for any v1. If v1 < r2 this rules out event

E1 since v1 < r2 < r1 and so a1 = 0. For event E2 to occur requires case 2 to arise, in particular v2 ∈ [r2, r1],

which occurs with probability at most fmaxδ using r1−r2 ≤ δ. Now consider the complementary case v1 ≥ r2.

Note that we need case 1 to arise in order for event E2 to occur. Comparing φ2(v1) with φ1(v1) rules out

one of the two events; if φ2(v1)≤ φ1(v1) this rules out event E1, whereas φ2(v1)>φ1(v1) rules out event E2.

The event which has not yet been ruled out then requires v2 to lie in an interval of length δ, and this occurs

with probability at most fmaxδ. Thus we established that P (E1 ∪E2|v1)≤ fmaxδ for all v1. We are now in a

position to bound the expectation of the first two terms above. Each of them is pointwise bounded above by

δ using (54) and (58). Hence, the sum of the expectations of the first two terms is bounded above (recalling

E1 ∩E2 = ∅) by

Ev1 [ Ev2 [ I(E1 ∪E2)δ ] ]≤Ev1 [ δP (E1 ∪E2|v1) ]≤ δEv1 [fmaxδ] = fmaxδ
2 .

We are left with the third term which requires I
(
v1 ∈ (max(r2, v2), r1)

)
= 1 to be non-zero. This term again

is pointwise bounded above by δ since φ2(v1)≤ φ2(r1) = 0 ⇒ φ1(v1)≤ δ similar to (58). Further, we need

that v1 ∈ (r2, r1), which occurs with likelihood bounded above by fmaxδ using r1 − r2 ≤ δ, and hence the

expectation of the third term is again bounded above by fmaxδ
2.

Summing gives the bound of 2fmaxδ
2 on revenue loss, as stated in the proposition.

Extension to general n. We start with some preliminary observations. First, use Fact 5 to observe

that the virtual value function corresponding to the average valuation distribution of any combination of

agents must lie between the largest and smallest virtual value function for any of the individual agents. In

particular, φ−i lies between the largest and smallest φj for j 6= i. Using the hypothesis that ‖Fi−Fj‖ ≤ δ for

all agent pairs i, j, we then deduce that for any agent i we have

|φi(v)−φ−i(v)| ≤max
i′ 6=i
|φi(v)−φi′(v)| ≤ δ ,

i.e., ‖Fi−F−i‖ ≤ δ. For the limiting reserve price ri = arg maxr r(1−F−i(r)) for agent i as W →∞, the first

order condition tells us that φ−i(ri) = 0. We deduce the analog of (58), namely, that for any vi ≥ ri, we have

φi(vi)≥ φi(ri)≥ φ−i(ri)− δ = 0− δ =−δ . (59)

Define r̃i to be the Myerson optimal reserve price for agent i, i.e., the unique value satisfying φi(r̃i) = 0.

Using (50) and |φi(ri)| ≤ δ, we are guaranteed

|ri− r̃i| ≤ δ . (60)

Observe that (54) and (55) hold as before.
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We now proceed to bound the loss in revenue. In bounding the contribution due to the item being wrongly

allocated to some agent, we argue as follows. Reveal the valuations sequentially, starting with the agent

imin = arg mini r̃i. We have rimin
≥ r̃imin

, which holds since φ−imin
(rimin

) = 0 whereas for all v < r̃imin
we have

φj(v) < 0 ∀j ∈ imin ⇒ φ−imin
(v) < 0 by definition of imin and using Fact 5. Note that agent imin is never

allocated the item when her virtual value is negative. For each valuation revealed after that of imin, declare a

failure if there is a possibility of revenue loss based on the value just revealed as follows. Let v be the highest

valuation so far, achieved by agent i∗. Suppose that the next valuation to be revealed is that of the j-th

agent. If φi∗(v)< 0, then we declare failure if vj ∈ [rj , r̃j ] (if this occurs the item may be allocated to j, even

though φj(vj) < 0, causing revenue loss). Using (60) we observe that this occurs with probability at most

fmaxδ. Else, if φi∗(v)≥ 0, compare φj(v) with φi∗(v). If φj(v)>φi∗(v), then it must be30 that vj ∈ (v− δ, v]

for there to be a contribution to revenue loss (from not giving the item to j though Myerson would have

allocated it to j), whereas if φj(v)≤ φi∗(v), then it must be that vj ∈ [v, v+ δ] for there to be a contribution

to revenue loss (from allocating j the item though Myerson would have allocated it to some other agent).

Either way, the problematic case arises with probability at most fmaxδ, and the revenue loss is at most δ

using (54) and (59). Using a union bound over the n− 1 successive valuations revealed after the first one,

we find that the probability of failure during the entire revelation process is at most (n− 1)fmaxδ. A failure

contributes a revenue loss of at most δ; hence, the loss in expected revenue due to misallocation is bounded

above by (n− 1)fmaxδ
2.

Next, we can bound the loss in revenue due to the item not being allocated, though it should have been.

This never occurs with the agent imax = arg maxi r̃i being the one who should have been allocated the

item. The reason is that rimax ≤ r̃imax , which holds since φ−imax(rimax) = 0 whereas for all v > r̃imax we have

φj(v)> 0 ∀j ∈ imax ⇒ φ−imax(v)> 0 by definition of imax and using Fact 5. For each of the other agents

j 6= imax, this source of revenue loss requires the valuation vj of the agent to satisfy vj ∈ [r̃j , rj), an interval

of length at most δ by (60). Hence, this kind of failure occurs with probability at most fmaxδ for each of

these agents, and probability at most (n− 1)fmaxδ overall. When this failure occurs, again the contribution

to revenue loss is at most δ, since, for vj < rj , we have φj(vj) < φj(rj) ≤ φ−j(rj) + δ = 0 + δ = δ using

‖Fj −F−j‖ ≤ δ. Hence, the revenue loss due to the item not being allocated, though it should have been, is

bounded above by (n− 1)fmaxδ
2.

Combining the above bounds, we obtain the required bound of 2(n−1)fmaxδ
2 on the total additive revenue

loss. �

Remark 4 A very similar analysis to the above shows that in a static setting with known asymmetric

valuation distributions separated by at most δ, using a second-price auction with a common reserve (which can

be set, e.g., according to any one of the valuation distributions Fi), the revenue obtained is (additively) within

30 We need vj ≤ v else agent j would have been given the item over agent i∗, and there would be no revenue loss. We

further use (55) and φj(v)>φi∗(v) to infer that vj > v− δ.
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(n− 1)fmaxδ
2 of the optimal revenue. This complements the worst-case result of Hartline and Roughgarden

(2009), who show that with arbitrary asymmetric regular valuations, second-price auctions (with personalized

reserves) suffice to obtain at least 1/2 the optimal revenue.

D. Appendix to Section 6

Proof of Lemma 1. We follow the approach in Golrezaei et al. (2018a). The gradient and the Hessian of

the loss function L(·) =L−i(·) are given by

∇L(β̃) =
1

(n− 1)W

∑
i′ 6=i

t−1∑
τ=t−W

µi′τ (β̃)xτ , ∇2L(β̃) =
1

W

t−1∑
τ=t−W

xτx
T
τ , (61)

where µi′τ (β̃) , 2(xTτ β̃ − bi′τ ). Since β̂−i minimizes L(·), we have L(β̂−i) ≤ L(β). Substituting a Taylor

expansion of L around β on the left-hand side then gives

(1/2) (β̂−i−β)T ∇2L(β̃) (β̂−i−β)≤−(∇L(β))T (β̂−i−β) , (62)

for some β̃ on the segment between β and β̂−i. Notice that µi′τ (β) are i.i.d., zero mean and bounded. Analo-

gous to Golrezaei et al. (2018a, Lemma 7), we can use the Azuma-Hoeffding inequality (or Matrix Freedman

inequality) to control ∇L(β). In particular, there exists a constant C2 <∞ such that, with probability

1− 1/(2W ), it holds that

‖∇L(β)‖ ≤C2

√
logW

W
. (63)

Next, notice that ∇2L(β̃) does not depend on β̃ and, in fact, is nothing but the sample covariance matrix of

distribution G, which moreover has subgaussian rows since ‖xτ‖ ≤ 1 for all τ . Following the steps Golrezaei

et al. (2018a, (71)-(73)), we can show (relying upon convergence of the sample covariance matrix to the

true covariance matrix Σ) that there exists C3 <∞ such that for any W > C3, with probability at least

1− 1/(2W ), we have

(1/2) (β̂−i−β)T ∇2L(β̃) (β̂−i−β)≥ ‖β̂−i−β‖2/C3 . (64)

Upper bounding the right-hand side of (62) by ‖∇L(β)‖‖β̂−i−β‖ and substituting (63) and (64), we obtain

via a union bound that for any W >C3, with probability at least 1− 1/W we have

‖β̂−i−β‖2/C3 ≤C2

√
logW

W
‖β̂−i−β‖ . (65)

The lemma follows from dividing both sides by ‖β̂−i − β‖/C3 and then choosing C ,

max(C2C3,2Bβ
√
C3/ logC3 ) (the second term in the max ensures that the bound holds for all W ≤C3 as

well, since ‖β̂−i−β‖ ≤ 2Bβ given ‖β̂−i‖ ≤Bβ,‖β‖ ≤Bβ). �

Proof of Theorem 3. We make use of Lemma 1 to conclude that with probability 1− 1/W , (12) holds

for agent i, i.e., our estimate β̂−i is close to β. The loss in expected revenue from the possibility that (12) fails
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for one or more agents is at most Ext [Rev∗(xt)]/W ≤ (Bβ +BF )n/W , since the probability of failure is at

most n/W , and Rev∗(xt)≤Bβ +BF for all xt : ‖xt‖ ≤ 1. Henceforth, assume that (12) holds. Then F̂ xt
−i is the

empirical distribution of translated samples, each of which deviate by at most δ = 2C1

√
logW/W from being

true samples from F xt , since the deviation of each sample based on bids in period τ is (β̂−i−β)T (xt−xτ )≤

2‖β̂−i−β‖ ≤ δ. Let

rt,∗ , arg max
r

r(1−F xt(r)) ,

r̂it,∗ , arg max
r

r(1− F̂ xt
−i(r)) .

By definition of r̂it,∗, we have

r̂it,∗(1− F̂ xt
−i(r̂it,∗))≥ (rt,∗− δ)(1− F̂ xt

−i(rt,∗− δ)) . (66)

Using Lemma 2, we have that with probability at least 1− 1/W ,

min
(
1,1−F xt(r̂it,∗− δ) +C8

√
logW/W

)
≥ 1− F̂ xt

−i(r̂it,∗) , and (67)

1−F xt(rt,∗)−C8

√
logW/W ≤ 1− F̂ xt

−i(r̂it,∗− δ) , (68)

where we also used F̂ xt
−i(r̂it,∗)≥ 0 ⇒ 1− F̂ xt

−i(r̂it,∗)≤ 1 to obtain (67). Using (67) to upper bound the left-hand

side of (66) and using (68) to lower bound the right-hand side of (66), we obtain that with probability at

least 1− 1/W ,

r̂it,∗min
(
1,1−F xt(r̂it,∗− δ) +C8

√
logW/W

)
≥ (rt,∗− δ)

(
1−F xt(rt,∗)−C8

√
logW/W

)
. (69)

Observe that the left-hand side of (69) is at most

(r̂it,∗− δ)
(
1−F xt(r̂it,∗− δ) +C8

√
logW/W

)
+ δ

=MonRevrit(xt) + (r̂it,∗− δ)C8

√
logW/W + δ (recalling rit = r̂it,∗− δ)

≤MonRevrit(xt) + (BF +Bβ)C8

√
logW/W + δ (since r̂it,∗ <BF +Bβ + δ) ,

where MonRevr(xt) , r(1− F xt(r)) is the expected revenue of a monopolist who sells to a single buyer

using price r (conditioned on the past bids). The right-hand side of (69) is at least rt,∗(1−F xt(rt,∗))− δ−

(BF +Bβ)C8

√
logW/W = MonRevrt,∗(xt)− δ − (BF +Bβ)C8

√
logW/W , by definition of rt,∗. It follows

immediately that

MonRevrit(xt) + δ+ (BF +Bβ)C8

√
logW/W ≥MonRevrt,∗(xt)− δ− (BF +Bβ)C8

√
logW/W

⇒ MonRevrit(xt)≥MonRevrt,∗(xt)(1− δ̃)

where δ̃, 2(δ+ (BF +Bβ)C8

√
logW/W )/MonRevrt,∗(xt) ,

as long as (12) holds. Exactly as we showed (35) in the proof of Theorem 1, we extend this multiplicative

bound to the actual revenue under multiple bidders:

MonRevmax(rit,b)(xt)≥MonRevmax(rt,∗,b)(xt)(1− δ̃) for all b∈R . (70)
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Now setting b to be the largest bid submitted by an agent other than i and taking expectation over the

bids of the other agents, we get

E[Revenue from i under proposed mechanism]≥E[Revenue from i under Myerson](1− δ̃)

⇒ E[Revenue under proposed mechanism]≥Rev∗(xt)(1− δ̃) ,

where the second step follows by summing over i. Thus, incorporating the 1/W probability of failure of

(67) and/or (68), the overall additive loss in expected revenue under our mechanism (relative to Myerson)

is bounded above by

Rev∗(xt)δ̃+ (Bβ +BF )n/W = 2(δ+ (BF +Bβ)C8

√
logW/W )Rev∗(xt)/MonRevrt,∗(xt) + (Bβ +BF )n/W

≤ 2(δ+ (BF +Bβ)C8

√
logW/W )n+ (Bβ +BF )n/W .

The theorem follows. �

E. Appendix to Section 7

Proof of Theorem 4. To prove the first part, let us assume that all agents are truthful. Note that the loss

of revenue from the first phase is constant, and so its per-auction contribution vanishes in the long run. We

now show that the loss in revenue from agents refusing to pay the up-front payment isO(N−2). Using Eq. (18),

since zit/n are distributed i.i.d. and are bounded between 0 and 1, by Hoeffding’s inequality (Hoeffding

1963), we have

Pr

[∣∣∣µi− µ̂i∣∣∣≥√2 logN

N

]
=O(N−2).

Therefore, with probability 1−O(N−2), in each round all agents pay their entrance fees and the per-round

loss from “refusals” is bounded by O(N−2). Also, for the auctions where all the agents pay their up-front

payment, the per-round loss of revenue relative to the optimal is bounded by the slack in the entrance fees,

which is O

(√
logN
N

)
. This yields an overall O

(√
logN
N

)
bound on loss in revenue relative to the optimal.

We now prove the incentive compatibility result. As mentioned before, the only benefit from deviating from

the truthful strategy would be to eliminate some of the bidders from the second-phase auctions and to instead

compete with their simulated versions. To establish the incentive compatibility properties of our mechanism,

let us consider the following augmented action space for an agent i. Suppose that at the beginning of each

round, bidder i can choose sets S and S̄. Namely, for each agent i′, she can decide whether she wants to

compete against the actual bidder or against her simulated version that uses bids from the first phase. This

setting provides an upper bound on the benefit from deviating for each agent i. Nevertheless, we show that

the upper bound is O(
√

logN/N) per round.

For t≤N , let us define yi,t,S̄ = ES,S̄[max{Vit−max{maxi′∈S\{i}{Vi′t},maxi′∈S̄{bi′t},0}], where for agents

i′ ∈ S (including i), random variable Vi′t is drawn i.i.d. from distribution F . For i′ ∈ S̄, we use their bids at
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period t. Note that E[yit] = µi when the expectation is over the bids in S̄ and all the agents in S̄ are truthful.

Therefore, using Hoeffding’s inequality, we get

Pr

[∣∣∣µi− 1

N

N∑
i=1

yi,t,S̄

∣∣∣≥√2 logN

N

]
=O(N−2).

If this event
∣∣∣µi − 1

N

∑N

i=1 yi,t,S̄

∣∣∣≥√ 2 logN
N

occurs, then dropping agents in S̄ may increase utility by more

than
√

2 logN
N

per round, but not otherwise. Note that there are at most 2n choices for S̄. We can use a

simple union bound since n is a constant to show that with probability 1−O(N−2), the per-round benefit

from deviating from the truthful strategy is bounded by O

(√
logN
N

)
. �
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