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Abstract: We propose and analyze rejection samplers for simulating from
an extended Gamma distribution. This distribution is supported on (0, co)
and has density proportional to t*~! exp(—t — 2v/ty), where a and 7 are
two real parameters with a > 0. The proposed samplers use normal and
Gamma instrumental distributions. We show that when o > 1/2, a suitable
combination of the samplers has acceptance rate at least 0.8 for all v and
near 1 when || is small or large. When @ < 1/2, our optimal acceptance
rates are uniformly close to 1 for v > 0.
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1. Introduction

This paper treats the problem of drawing random samples from the probability
distribution with density

1

ftla,7) 5:m

t*Lexp (—t - 2\/1?7) . t>0. (1.1)
Here, @ > 0 and v € R are two parameters, and Z(«,~) is the normalizing
constant; the factor ‘2’ in the denominator is kept for later convenience. This
two-parameter family provides an extension of Gamma distributions in that
f(+|a,0) defines the Gamma distribution with shape parameter « and scale
parameter 1. Some examples of graphs of f(-|a,~) are shown in Figure 1.

We begin this introduction by motivating our interest in the extended Gamma
distributions (Section 1.1). Next, we describe the contribution of the paper,
which consists of a rejection sampling algorithm. For o > 1/2, as is the case
in our motivating application, our sampler has an acceptance rate that never
drops below 0.8 and is close to 1 when |y| is near zero or sufficiently large.
The description of the algorithm is split into two subsections. We first state
three different types of rejection samplers (Section 1.2) and then explain how
they can be combined in an optimal fashion (Section 1.3). This part of the
introduction includes pseudo-code and provides all information necessary for
implementation of our sampler. We conclude the introduction with an outline
of the remainder of the paper (Section 1.4), in which we prove correctness and
analyze the acceptance rates of the rejection samplers we propose and combine.

0
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Fic 1. Graphs of the target density f(t|o,vy) versust for y = —1, —1/2, 0, 1/2, and 1, and
o =1 (Panel 1) and o = 4 (Panel 2).

The remainder also includes a discussion of the case a < 1/2, which our methods
address satisfactorily only for v > 0.

1.1. Motivation

Our interest in the density from (1.1) is due to its relevance for statistical com-
putation for certain multivariate t-distributions. Let Z be a Gamma random
variable, with Z ~ ['(v/2,v/2) for a degrees of freedom parameter v > 0; we
parametrize the density g(z) of I'(c, 3) to be proportional to 2%~ 'e~#%. Suppose
that given Z, the random vector Y is p-variate normal with

(Y12) ~ Np(pn, X/Z) (1.2)

for a mean vector p and a positive definite matrix 3. Then the (marginal) distri-
bution of Y is the classical multivariate ¢-distribution with v degrees of freedom.
Statistical modelling with t¢-distributions, multivariate or not, is a common ap-
proach when data are heavy-tailed or may contain outliers; compare, e.g., Besag
and Higdon (1999) or Gottardo et al. (2006). Solutions to computational prob-
lems in such models often exploit the above scale mixture representation of the
t-distribution. In particular, it is straightforward to set up a Gibbs sampler be-
cause the conditional distribution of Z given Y is a Gamma distribution. This
fact is also important for EM algorithms (Liu and Rubin, 1995).

The scale mixture that yields the classical multivariate t-distribution involves
a single divisor Z for the entire vector Y. This can be unsuitable when modelling
highly multivariate data that contain outliers in small parts of many observa-
tions. Instead, Finegold and Drton (2011) propose an alternative ¢-distribution
that is obtained by associating independent I'(v/2, v/2) divisors Z1, ..., Z, with
the different coordinates of Y = (Y1,...,Y,)". Defining the diagonal matrix
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D(Z) = diag(Za, ..., Zp), the alternative t-distribution is the (marginal) distri-
bution of Y when

(Y|Z) ~ N, (n,D(Z)" > =D(Z)"/?). (1.3)

For statistical computation, as in Gibbs sampling for Bayesian inference or in
Monte Carlo EM algorithms, we now need to be able to sample from the con-
ditional distributions of Z; given Y and the remaining divisors Z;, j # 4. Up
to rescaling Z; by a constant, this conditional distribution is of the extended
Gamma type as defined in (1.1). Similarly, the extended Gamma distribution
arises as a conditional distribution in Finegold and Drton (2012), where a clus-
tering model allows for sharing of Gamma divisors across different coordinates.

Example 1.1. Form the diagonal matrix D(Z) = diag(Z1, Z2, Z3) from two
independent I'(v/2,v/2) random variables Z7, Zs. Let the conditional distribu-
tion of Y = (Y7, Y3, Y3) given (Z1, Z2) be trivariate normal, following (1.3) with
mean vector i = 0 and inverse covariance matrix

271 ZiZ: 0
D(2)'*s'D2)? = | VZiZ: 22, 0
0 0 27

Then the conditional density of Z; given (Y, Z2) = (1,2, 22) is proportional
to the function

z1 z§”71)/2 exp [—21 : (% + yf) -z (yly2\/5)} )

and the conditional density of Z, given (Y, Z1) = (y1, y2, 21) is proportional to

14

Z9 22,,/2 exp [—zz . (2 + 2 +y32,) —/z2- (ylyg\/a)} )

Up to rescaling of z; and z9, respectively, the two densities have the extended
Gamma form with shape parameter « that is larger than 1/2 and depends on
the degrees of freedom v as well as the number of coordinates of Y that Z; or
Zy were associated to. The second parameter v can be any real number.

1.2. Three rejection samplers

The contribution of this paper are rejection samplers for the extended Gamma
distributions from (1.1). One advantage of rejection sampling is that it avoids
the need to compute the normalizing constant Z(«, ) in (1.1). While software
such as Mathematica readily expresses Z(«,7) in terms of special functions,
evaluating those numerically becomes unreliable when ~ or « are of larger mag-
nitude. Similarly, quadrature methods for numerical integration fail to converge
in more extreme cases when Z(«,~) can be very large or small. These numeri-
cal issues aside, it is also natural to turn to rejection sampling for our problem
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because the state-of-the-art methods for fast sampling from Gamma distribu-
tions are rejection samplers. Throughout the paper we assume that an efficient
routine for drawing from Gamma distributions is available; see Marsaglia and
Tsang (2000) and the older references therein for this (non-trivial) problem.

For a brief review of the principle underlying rejection sampling, consider two
probability densities f and g. If there is a finite constant M such that f(t) <
Mg(t) for all ¢ in the domain of f, then we can draw from f by rejection sampling
with ¢ as instrumental distribution. In other words, we generate draws t from g
until one such draw is accepted, where the probability of accepting draw ¢t is
f(t)/[Mg(t)]. The acceptance rate of the sampler, that is, the unconditional
probability of accepting a draw from g, is 1/M; compare Liu (2008) or Robert
and Casella (2004). Clearly, the smaller M is the larger is the acceptance rate;
the smallest allowable M is

Maps = sup{ f(£)/g(t) : f(£) > 0}. (14)

We now give three rejection samplers for extended Gamma distributions.
Depending on the parameters « and 7y, each sampler selects an optimal instru-
mental distribution from a particular parametric class. Here, optimality refers
to maximizing the acceptance rate 1/Mqp; resulting from (1.4).

a) Gamma distributions on original scale. The density f(-|«,0) defines
the standard Gamma distribution I'(a, 1). The family {T'(r,0) : r,d > 0} thus
provides natural candidates for instrumental distributions in rejection sampling.
For v < 0, numerical evaluation of the acceptance rate 1/Mqp(r,d) for a wide
range of choices of (r,d) suggests taking the shape parameter to be r = «, for
which the optimal choice of the scale parameter is

So(a, ) = L 20— V' H day? da (1.5)
ola, = = . .
20 (V2 +da+ )

Similarly, for v > 0, we take § = 1 and altough the acceptance rate is maximized

by ro = O, where 6 is root of function s(0) = 1;/((55)) —2109(%). But there is

additional computational cost to get this optimal » and computing Ajc;t()t) in the
sampling process. So for simplicity and computational speed, we use I'(«, 1) for
this case. Pseudo-code for the rejection sampler based on these choices is given
in Algorithm 1. We denote the sampler by Sy. Figure 2 graphs the sampler’s
acceptance rate Ag(q,y) for a selection of fixed values of o and for v of the form
Cy/a for |C| < 4. The sampler works for any o > 0 and is perfect for v = 0,

but Figure 2 shows that the acceptance rates grow ever smaller as || increases.

Remark. The pseudo-code in Algorithm 1, and the later Algorithms 2 and 3, is
not meant to be an efficient implementation. For instance, it will typically be
beneficial to take logarithms in the acceptance rule.

In order to remedy the problem of decreasing acceptance rates, we consider
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Algorithm 1 (Gamma rejection sampler on original scale: Sp)

Input: Parameters o > 0 and v € R
if v <0 then

5O<_4ia

(VA2 +aa+v| )2 ’
repeat
Generate T ~ I'(r,§p) and U ~ Uniform(0,1).
until U < exp(=T(1 — o) — 2vTy — $)-
else
repeat
Generate T' ~ I'(a, 1) and U ~ Uniform (0, 1).
until U < exp(—2aVT).
end if
Output: Accepted draw T'.

1.0
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FI1G 2. Graphs of the acceptance rate Ag(a, Cv/a) versus C for a = 1/2, 1, 2, 4, 8, and in
the limit as a — oo, when using Gamma instrumental distributions on the original scale.
See (2.9) for the case a < oo and (5.22) and (5.29) for the limiting case.
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an alternative approach in which we transform f(¢|«,~) to

1 20—1 2
" exp(—z* — 2yx), x>0, 1.6
Z(a,7) ( ) (1.6)

hz|a,v) =

by the substitution ¢t = z2. A squared draw from h(-|«,) follows f(-|a,7).

b) Normal distributions on square-root scale. For v — —oo, we can ap-
proximate h(-|,~) by a normal density. Therefore, we consider normal distri-
butions as instruments for drawing from h(-|«,~). This approach works only
for @ > 1/2; the supremum M, is never finite for @ < 1/2. For an optimal
choice of the normal instrument, we may set the variance to o2 = 1/2 and the
mean to

—+V/ v tda-2 20—1 if
= , >1/2,
m(a,y) = 2 Gty raa—2) / (1.7)
max(—~, 0) ifa=1/2.

Pseudo-code for the resulting sampler Sy is given in Algorithm 2. The sampler’s
acceptance rate Apr(a,7y) is strictly decreasing in ~y; compare Figure 3 which
plots Axr together with the acceptance rates of the next sampler we consider.

Algorithm 2 (Normal rejection sampler on square-root scale: Sy/)

Input: Parameters o > 1/2 and v € R
if a =1/2 then
m < max(—~,0)

else
m < 2a—1
Y42 +4a-2
end if
repeat

Generate X ~ N(m,1/2) and U ~ Uniform(0, 1)
until X >0 and m?*~1.U < X?*~lexp{—2(m + 7)(X —m)}
Output: Squared accepted draw X2.

¢) Gamma distributions on square-root scale. For v — oo, the density
h(-],~) can be approximated by a Gamma distribution. In an approach that
works for all @ > 0, we use Gamma instruments I'(r, §) to sample from A( - | a, 7).
A computer study involving a broad range of a’s and 7’s suggests that in this
setting the best choice of the shape parameter is r = 2«, regardless of the value
of 4. The optimal choice of the scale parameter is then

4
Si(a) =y + VPR fda= —— (1.8)

V+da—v

Pseudo-code for this sampler Sg is given in Algorithm 3. The associated accep-
tance rate Ag(«,~y) is strictly increasing in v and again graphed in Figure 3.

imsart-ejs ver. 2011/12/06 file: extgamma.tex date: November 4, 2013



Y. Liu et al./Rejection Sampling for an Extended Gamma Distribution 6

Algorithm 3 (Gamma rejection sampler on square-root scale: Sg)
Input: Parameters a > 0 and v € R

61 +— v+ V72 +4a
4 2a
repeat
Generate X ~ I'(r, 1) and U ~Uniform(0,1)
until U < exp(—(X — (61/2 —))?)
Output: Accepted draw X2.

1.0
0.8
0.6

0.4 4

Acceptay
0.2 -

F1a 3. Graphs of the acceptance rates Apn(a, C\/a) and Ag(a, Cv/a ) versus C fora =1/2, 1,
2, 4, 8, and in the limit as o — oo, when using normal and Gamma instrumental distributions
on the square-root scale. The Anr curves slope downward, the Ag curves upward. See (3.12)
and (3.18) for the case o < 0o and (5.5) and (5.12) for the limiting cases.
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1.3. Optimal combination

The Gamma instrumental distributions on the original scale yield high accep-
tance rates when C' = v/y/a is of small magnitude (Figure 2). Using the square-
root scale works best for C' of large magnitude with the Gamma and the normal
instruments yielding large acceptance rates for C' positive and C' negative, re-
spectively (Figure 3). Recall, however, that normal instruments are applicable
only for @ > 1/2. Clearly, it is beneficial to combine all three approaches.

Due to the monotonicity of the acceptance rates as a function of v, optimal
combination requires determination of two thresholds for 7, one negative and
one positive. Equivalently, we may specify the thresholds in terms of C'. Then
sampler Sy is applied when C € (€xo—(a), €o4 g()), sampler Sy when C <
Ca0-(), and sampler Sg when C' > €4 g(); compare Panel 1 of Figure 4
that shows graphs of all three acceptance rates for the smaller range of |C| < 2.
The thresholds € o—(a) and €4 g(a) that optimize the acceptance rate can
be precomputed as functions of 1/« on a fine grid from (0, 2]; the graphs of the
functions are shown in Panel 2 of Figure 4. In particular, the thresholds for C'
vary only modestly with «. The combination of Sy, Syr and Sg achieves high
acceptance rates uniformly across all values of (a,y) with e > 1/2. As can be
seen by studying the top two curves in Panel 3 of Figure 4, the acceptance rate
for our algorithm never drops below 0.8. For C close to zero or of moderately
large value, the rate will be close to one; see again Panel 1 of Figure 4.

1.4. Owutline of the paper

In the remainder of the paper we first prove correctness of the three rejection
samplers from Section 1.2. The sampler Sy with Gamma instrumental distribu-
tions on the original scale is treated in Section 2. The analysis of this sampler
separates the cases v > 0 and v < 0, and we indicate this in our notation
by referring to two samplers Sp; and Sp—. The two samplers Sy and Sg that
use normal and Gamma instruments on the square-root scale are treated in Sec-
tion 3. Next, in Section 4, we give some more details on the optimal combination
of the three samplers Sy, Sy and Sg that was described in Section 1.3.

The optimal combination relies on monotonocity properties of the accep-
tance rates of Sy, Spr and Sg that are suggested by Figures 2 and 3. Section 5
establishes those properties rigorously and quantifies them. Section 6 carries the
analysis further by developing asymptotic expansions for the samplers’ accep-
tance rates A(«,~y). An expansion is given for A(a, Cv/a) as « tends to infinity
with C held fixed, and also as C' tends to infinity with « held fixed.

Section 7 addresses the case a < 1/2. When v > 0, the acceptance rate of Sg
tends to 1 uniformly in v as « | 0. Unfortunately, when v < 0, the acceptance
rate of our best sampler falls off quickly as « increases in magnitude. These
properties are illustrated in Figure 6. Section 8 gives some concluding remarks.
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F1c 4. Panel 1 graphs the acceptance rates Ap(a, Cy/a), Ag(a,Cy/a), and Ag(a, Cy/ar)
versus C for o = 1/2, 1, 2, 4, 8, and in the limit as a — o0, using the same dash
patterns as in Figures 2 and 3. For o« > 1/2 and (81,82) = (Sn,Sg), (Sn»So—), and
(So+,Sg), Panel 2 graphs versus 1/a the number C = €g, s, (a) which minimizes the maw-
imum of As, (o, Cy/a) and As, (o, Cy/a). Similarly, Panel 3 plots the minimaz acceptance
rate As, s, (@) = As, (o, Cs, s, (@)Va) = As, (o, €s, s, (0)y/ar) versus 1/
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2. Rejection samplers on the original scale

Let G(r,0) be the Gamma distribution with shape parameter r and mean r/0,
that is, G(r,d) has density

r

) t"Lexp(—6t), t>0. (2.1)

g(t|r,0) :=

Here we consider rejection samplers for f(- |a,v) with Gamma instrumental
distributions. A computer study involving a broad range of a’s and 7’s suggests
that

f(tle,v) I(r) "
Mmooy {TUODY o (CTO I 5 o)) (22
Sup25>0 g(t | T, (5) Supt>0 QZ(OK,’Y) 67- exp(( ) VJ) ( )
is minimized by taking r = « when v < 0, whereas when v > 0, M is mini-
mized by taking § = 1. Accordingly, in what follows we will only consider those
situations; we will choose the remaining free parameter optimally.

Theorem 2.1. Let a > 0 and v € R be given. Define f by (1.1) and g by (2.1).
If v <0, then it holds for § € (0,00) that

T xp(v2/(1 -6
Mo (5) 1= supyso{ L1 (Q)SZF(’S/)%@ D ifo<s<n,
0,— : Pt>o0 g(t|a,6) . )Y S

(2.3)
Mo, (6) is uniquely minimized by taking § to be

2 4 2
+ 20 — /Y + 4o 4o
So(a,7) =7 T 2T o (2.4)

2a (V72 +da+ )

the minimum 1is

__ T(a)  rexp(1/d)\*
Mo, (e,7) := 2Z(o<,’y)ea< ) ) (2:5)

for 6 = do(a,6). If v >0, then it holds for r € (0,00) that

I'(r) (a—r\2e-r
(t|a,7)}: m( e ) , if 0<r <a,

/
Mo 4 (r) = SUPt>0{
9 00, if r>a,

GEs)
(2.6)
with the convention that 0° =1 if r = «; for r € (0, ), the function

1 - 210g((170)a> (2.7)

s(0) = a%log(M07+(9a)) - (%logf(r))

r=0«

is strictly increasing in 0 € (0,1) with s(0+) = —oo0 and s(1—) = oco; My 4+(r)
is uniquely minimized by taking r = r(a,7y) = Oa, where 0 = 6(«,7y) is the root
of the equation s() = 0.
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Proof. Suppose first that v < 0. Ignoring additive constants in ¢, the logarithm
of f(t|a,vy)/g(t|a,d) is

L(t) = (6 — 1)t — 2V/ty.

For § > 1, the function L(t) is unbounded above over (0, 0). For § € (0,1), the
derivative ALl
dLt) _ 6-1)— L
dt Vi
is decreasing in t € (0, 00) and equals 0 at tg = v%/(1—8)%. Thus f(t|a,v)/g(t |, )
is a maximum at ¢ = ¢¢ and (2.3) holds.

For § € (0,1), A(6) :=log(Mo,—(0)) has derivative
N (0) =7%/(1-0)* - a/s,
A'(9) is strictly increasing in § € (0, 1), and the quadratic equation A’(d) = 0 has

the root §g = do (e, v) given by (2.4). Therefore, My _(§) has a unique minimum
at &g. Since A’(5) = 0, we have v%/(1 — §) = a1 — &) /do; thus (2.5) holds.

Next suppose that v > 0. Here
L(t) == log(f(t| a,7)/g(t|r,1)) = C + (a —r)log(t) — 29Vt

for C =1log(I'(r)/(2Z(«,7))). For r > a, L(t) is unbounded above over (0,c0).
For r = a, sup,so L(t) = L(0—) = C. For r € (0, a),

a—r 1 v

2 2¢3/2°

a-—-r g 1"
= ——= and L"(t)=—
—-Z )
The equation L’'(t) = 0 has the unique root to = (o —r)%/4? and L”(ty) < 0, so
L(t) is a maximum at ¢ = t5. Thus (2.6) holds, with the usual convention that
0" = 1.

For 6 € (0, 1],

A(6) :=log(Mo 4 (0c)) = —log(2Z(c,7))+(log ') (0ar)+20(1—0) log ((1—6)c/e)

for ¢ = a/~. For 0 € (0, 1], the function A(6) is continuous in 6. For 6 € (0,1),
s(0) = éA’(G) = (logT)'(6a) — 2log((1 — 0)c),
s'(0) = a(logT)" (0a) + T4
Since (logT)”(r) > 0, see (2.89) in Andrews (1985), s is strictly increasing over

(0,1). Since s(0+) = —oo and s(1—) = oo, A(f) has a unique minimum at the
root 8 = 6(«, y) to the equation s(¢) = 0. O
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In what follows we let Ag(c,y) be the acceptance rate for the rejection sam-
pler with target density f(-|a,7) and instrumental distribution G(r,d) with

r=a, 5:50(06,’}/), 1f’y<07
r=a, d =1, ify=0, (2.8)
r=ab(a,y), 6 =1, ifv>0,

where 0 (v, y) and 0(«,y) are as specified in Theorem 2.1. Thus

2Z(a,y)e” o @
AO—(O‘77) T F(Oé) (exp(l/é)) ) if 7 < 07
Ag(e,7) = q 1, if v =0, (2.9)
2Z(a,y) ; ye \2Ma-r)
Aot (a,7) ::I‘((r))(a—r) , ify >0,

where 6 = dg(a,y) and r = 6(a, ). Note that

limdg(c,y) =1 =1im#(c,y) and lim Ag_(c,y) = Ag(a,0) = lim Ags(a, 7);
lim do(ar, 7) lin §(cr,7) lim Ao (a,7) = Ao(a, 0) = lim Ao+ (a, )

thus the case 7 = 0 can be regarded as a limiting form of the case v < 0, and
also of the case v > 0. Recall that Ag(«, Cy/av) is plotted versus C for selected
«’s in Figure 2. The plots suggest various properties of Ay — for example,
decay of Ag(a,Cy/a') as C increases in magnitude — which are developed in
Sections 5 and 6. For future reference, we’ll denote the rejection sampler for
v <0 by So— = Sp—(«,7), and the one for v > 0 by Sp; = So+(at,y). Sampler
So— has acceptance rate Ag—, and Sp; has acceptance rate Ag4. Panel 1 in
Figure 5 plots 6(a, Cy/a ) versus C for selected increasing «’s. The message
here is that for moderate to large o, (o, C'v/a') is small, except when C is
near 0. Panel 2 in the figure plots

7(a,7) == aexp(1/(2a) = I"(1)/2) x (1 - 0(a,7))

versus 7 for selected a’s tending to 0. The message here is that for small «,
7(c,7y) is about 7, whence 6(«, v) must be extremely close to 1 and for practical
purposes can be taken to be 1.

3. Rejection samplers on the square-root scale

Recall from (1.6) that

1 _
hiz|a,y) = Zlo) 2 exp(—2? — 2yx)

for > 0 (and for z = 0 when « > 1/2). Let

T — )2
( u))

1
AN _
oz |p,o0%) = — exp( 552 (3.1
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Fic 5. The rejection sampler So+ (e, 7y) uses a Gamma instrumental distribution with shape
parameter r = af(a, vy ); see (2.8). Panel 1 graphs 0(a, C\/a) versus C for a=1/2, 1, 2, 4,
8, and in the limit as o — co; see (5.28). Panel 2 graphs 7(c, ) := acexp(1/(2a) =1V (1)/2) x
(1 — 9(0477)) versus v for a=1/2%,1/22,...,1/25, and 0, with 7(0,7) := limg o 7(,v) =".

be the density of the normal distribution A'(y, %) with mean y and variance o2.

The next theorem considers rejection samplers with target h( - | v,y) and normal
instrumental distributions. Since the ratio

R(z) = Rz | a, v, 1, 0%) = W (3.2)

is unbounded above over (0, c0) for a < 1/2, this approach requires « > 1/2. For
such a’s, the following theorem says that the optimal choice of the parameters
of the instrumental normal distribution are y = m and o2 = 1/2, where m is the
mode of h(-|a, 7). In particular, the target h(-|a,7) and the matching normal
have the same mode.

For o > 1/2, the mode of h(-|a,7) is

= m(en ) = VAP Hda -2 200 — 1 | (33)
> EESVaEw =y
which is the positive root of the quadratic equation
q(x) =0 where q(z):= —%% log(h(z|a,7)) =2+~ — 20;; ! (3.4)
For o = 1/2, the mode is
m=m(1/2,7) =~ = max(—7,0). (3.5)

For oo < 1/2, the mode is at 0. Note that m(«, ) is a decreasing function of ~.
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Theorem 3.1. Let a > 1/2 and v € R be given. Define h by (1.6), ¢ by (3.1),
m by (3.3) and (3.5), put

hz|a,7)

oz |p,0?) (36)

MN(:U’7 02) ‘= SUPg>0

and set 03 :=1/2. Then My (u,0?) is uniquely minimized by taking yu = m and
o = 0g. Moreover,

h(m|a,y) _ yam**~lexp(—m?® — 2ym)
p(m|m,aq) Z(, )

My (m,o8) = (3.7)

with the convention that m?*~! =1 when o = 1/2 and m = 0.

Proof. First consider My (m,o2). Suppose o > 1/2. The ratio R(x) in (3.2) is
then proportional to

22 Lexp(—a? — 2y + (x — m)?).
Hence, the maximum of R(z) is attained at the value of = that maximizes
L(z) = (2a — 1)log(z) — 2 — 2yz + (x — m)*
Since o > 1/2, the derivative

200 — 1 20 — 1
L'(z)= ozx —2x—2y+42(x—m) = ax —2v—2m

is decreasing in z € (0, 00) and zero at z = m; recall (3.4). Therefore, My (m, 03) =
R(m).

The same conclusion holds when « = 1/2; since then

0, if v <0,
L () = ~2(y+m) = o2
—27, ify>0.
Thus when v < 0, L(x) is constant and has a maximum at = —y = m, whereas

when v > 0, L(x) is decreasing in x and has a maximum at z = 0 = m.

Now consider general p and o2. If 02 < 1/2, then Mpr(p,0?) = oo. If 02 >
1/2,

h(m|a,y) _ h(m|a,y)  @(m|m,af)

MN M702 > =
002 o)~ mlm.od) * olm [ o?) .
= Myr(m, o) x (i) exp(M) > Mpr(m, 02).
o oo 202 - o
The final inequality is strict unless ¢ = gg and p = m. O
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The next theorem considers rejection samplers for A(-|«a,v) with Gamma
instrumental distributions. A computer study involving a broad range of a’s
and §’s suggests that in this setting the best choice of the shape parameter r
for the Gamma distribution is 2«, regardless of the value of . Accordingly, the
following theorem just deals with the case r = 2a.. Here we don’t need to require
a>1/2.

Theorem 3.2. Let a > 0 and v € R be given. Define h by (1.6) and g by (2.1).
Then

_ hzla,y) — TRa) 1 (fexp((2—7)?), if o>~y
Mg (8) := sup,~, g(z|2a,0)  Z(a,7) 520 ({1, otherwise
(3.9)

18 uniquely mazximized by taking § to be

4
Si(ay) =7+ VPt da= (3.10)
VY2 +da—y

Note that it always the case that d1(a,7)/2 > v. Also, when a > 1/2; the
instrumental distribution G(2a,d;(c, 7)) has mode (2a — 1)/8; (e, ), which is
smaller than the mode of the target h(-|c«,~y), recall (3.3), but only slightly so
when « is large.

Proof. The ratio

Malo) T (ot~ espl-(e - (5]

is obviously maximized over x € [0, 00) by taking x to be xg := 9 —~y if zy > 0,
and otherwise 0. Therefore (3.9) holds:

L(6) :=log(Mg(6)) = C — 2alog(8) + [(6—7) V 0]2
for C =log(I'(2a)/Z(ct,)). To make the best choice of § € (0,00), put

Le(8) := C — 2alog(d) + (6/2 — 7).
Since

LL(6) = —2a/6 +6/2 — v, (3.11)

L, (0) is uniquely minimized over (0, c0) by taking ¢ to be the root d; := &1 (e, )
of the equation L, (§) = 0. We claim that § = ¢; also uniquely minimizes L(J).
That’s obvious when v < 0, since then L = L,. When v > 0 it holds because
L(5) = Le(6) for § > 2+ while for § < 2y we have L(d) > L(2y) = Le¢(27) >
Lo(01). O

In the light of Theorems 3.1 and 3.2, we have two rejection samplers for
h(-|a,~) with instrumental distributions N'(m,1/2) and G(2«, ), respectively,
where m = m(a, ) is given by (3.3) and (3.5) and 6 = 01 (av, y) is given by (3.10).
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For future reference, we’ll denote these rejection samplers by Sy = Sy(a, )
and Sg = Sg(«, ), respectively. The corresponding acceptance rates are

Z(,7)

and
Z(a, 52 Z(a, 52
Aglary) = 22 _ Za) (3.13)

I'(2a) exp((5/2 — 7)2) I'(2a) exp((?a/é)z) ’

the second equality in (3.13) holding because L,(§) = 0; recall (3.11). The
Gamma sampler Sg is available for all & > 0, but the normal sampler Sy only
for a > 1/2. Figure 3 graphs Ay and Ag in the same manner that A is graphed
in Figure 2. We observe that for all & > 1/2, Axr(a, ) is uniformly of practically
useful size when v < 0 and the same is true for Ag(a, ) when v > 0.

4. Combining the rejection samplers

Consider the two rejection samplers Syr and Sg for making a draw from h.
We may combine these two samplers, using in any particular instance the one
with the larger acceptance rate. As Figure 3 suggests, and the analysis in the
following section confirms, for any fixed o > 1/2, as C runs from —oo to oo
the acceptance rate for Spy(a,Cy/a) decreases from 1 to 0, while the rate
for Sg(a, Cv/ar) increases from 0 to 1. Therefore there is a cut-point €xr g(a)
such that Sy (o, Cv/a) is more efficient than Sg(a, Cyv/a) for C < €x g(a),
while the opposite holds for C' > € g(a). The cut-point € g(«) is the unique
solution to the equation

L= An (o, Cy/a) I'(2a) exp((20/6)?) (4.1)
- Ag(a,Cya)  /rm2e-lexp(—m2 — 2mCy/a) 62« '

where m = m(a,7y) and 6 = 01 (v, y); recall (3.3) and (3.10). This equation does
not have a closed form solution, but it is easily solved numerically. The values
of €x g(a) are plotted versus 1/a for @ > 1/2 in Panel 2 of Figure 4, which
shows that as a runs from 1/2 to co, €z g(a) increases from about —0.47 to 0.
The combined sampler, call it Sarvg, has acceptance rate

AN(O&,O\/&), lfCS Q:N,g(a)a

Agla,OVa), 0> Cygla).

ANVQ(O‘?C\/&) = {

Apnvg(a, Cy/a) is smallest at C' = €x g(a). Panel 3 in Figure 4 graphs the
worst case acceptance rate Ay g(a) = Apnvg(a, Cn gla)y/a) versus 1/a for
a > 1/2. The plot shows that as « runs from 1/2 to oo, 2 g(a) increases from
a minimum of about 0.68 at & = 1/2 to about 0.71 at o = oco. In fact, it follows
from (5.5) and (5.12) below that €xrg(co—) = 0 and Ay g(co—) = 1/v/2. As
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Figure 3 shows, Sxrvg is very efficient for moderate and large C’s; in particular,
Apnvg(a, Cy/a) > 0.957 for all |C| > 3 and all o > 1/2.

The rejection samplers Sp— and Sp for f on the original scale perform well
for the parameter values for which Saryg performs least well. It is natural then
to combine these three samplers (squaring a draw from Syrvg to get back to
the original scale), using whichever is the more efficient. As Panel 1 in Figure 4
suggests, and the analysis in the following section confirms, for any fixed o >
1/2, the most efficient combination of our various rejection samplers uses

AL ool
o— (o, Cy/au . N0
So+ (o, Cy/ax) for C'in {0 ;Coyg(a)] ’ (4.3)

Sg(a, Cy/ar) Cot,g(a),00)

where € o_ () is the unique solution C' to the equation

_ Ax(a,CVa)
b= AO_(OL,C\/a) (44)

for C' < 0, and similarly €4 g(«) is the unique solution to the equation

AO+ (av C\/a)
Agla,Cv/a) (4.5)

for C > 0. As with (4.1), these equations are easily solved numerically, without
having to evaluate Z (o, C'v/a ). Panel 2 in Figure 4 plots €xr o— (o) and €4 g(a)
versus 1/a for o > 1/2; the plot shows that €aro_(a) is close to —0.7 and
Co+,¢(e) is close to 0.7, for all . Denote the combined rejection sampler (4.3)
by Sarvgvo- Its acceptance rate is

1=

_ JAn(a,CVa) V Ag_ (o, Cy/ax), for C <0,
Axvgvola, CVa) = {Ag(a,C’\/a) V Aoy (a,Cy/a), for C > 0. (4.6)

Panel 3 in Figure 4 plots the worst case acceptance rates

Q[N,O—(a) ‘= ming <o AN\/Q\/O(OG C\/a) = Apnvgvo (047 Q:N,O—(a)\/a)v (4-7)
Ao+ .g(a) = mingsg Anvgvo(a, Cva) = Axvgvo (oz, ¢0+7g(a)\/a) (4.8)

versus 1/a for o > 1/2. We see that Syrvgvo is always at least 80% efficient, and
at least 81.7% efﬁcient for large ov. That €y (00—) = —1/v/2 = —€p4 g(c0—)
and 20— ( = /2/3 = Aoy g(co—) follow from (5.5), (5.12), and (5.36)
below. As Panel 1 in Figure 4 shows, Sarvgvo is very efficient for |C] small or
moderate; in particular Axrvgvo(a, C\/a) > 0.95 for |C| < 0.2 and for |C] > 3,
for all a > 1/2.
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Remark 4.1. Suppose &1 and S, are two rejection samplers for the same target
density t. For ¢ = 1 and 2, let ; be the instrumental distribution for S;, let p; be
the probability with which S; accepts a draw from r;, and let v; be the average
time necessary to make such a draw. Assuming that draws are independent and
identically distributed, the average time it takes S; to produce a draw from ¢ is
then p; := v;/p;. The sampler S; is more efficient than S when p; < po, that
is, when the p-ratio p;/ps exceeds the v-ratio v4/vs. The preceding discussion
tacitly assumed that for our various rejection samplers the v-ratios were unity.
If speed tests on a computer show that this assumption is seriously wrong, it
could be worthwhile adjusting the cut-points €xr g, €ar0—, and €y4 g to make
the p-ratios coincide with the corresponding v-ratios, thereby minimizing the
expected time for the combined rejection sampler to produce a draw.

5. Analysis of the acceptance rates

We now study the acceptance rates Ag(a,v), An(a,7), and Ag(a, ), in reverse
order. For real numbers C, put

C+VC?+4 1

Since b'(C) = (14 C/V/C?+4)/2 > 0, as C runs from —oo to oo, b increases

from 0 to oo, B decreases from 1 to 0, and the quantity
L(C):=b/B=bb2+1=+v/1-B

in the limiting results (5.5), (5.12), and (5.22) below increases from 0 to 1. Since

b*> —bC — 1 =0, we have C = b — 1/b. In addition,

H(—C) = — B(—C)=1- B(C), and L(—C) = /B(C) = /T = L2(0).

b(C)’
(5.2)

b=b(C): (5.1)

5.1. Gamma rejection sampler on the square-root scale

Theorem 5.1. Fora > 0 andy € R, let Ag(«,7y) be the acceptance rate defined
by (3.13) with § = 61(v,y) given by (3.10). Let b = b(C) and B = B(C) be as
in (5.1).
(i) For C € R,
Wa

Ag(a,Cya) = E(exp(—ﬁ>) (5.3)
for
_ ‘/2(1 — 2«

V2a

where Vay, is a random variable with a G(2a, 1) distribution.

We

imsart-ejs ver. 2011/12/06 file: extgamma.tex date: November 4, 2013



Y. Liu et al./Rejection Sampling for an Extended Gamma Distribution 18

(ii) For each fized o, Ag(a, Cy/at) is strictly increasing in C € R, tends to 0
as C' | —oo, and tends to 1 as C 1 oo.
(11i) For each fized C,
lima_se0 Ag(a, Cyv/a) = bVB. (5.5)
(iv) Suppose a =1/2. For C € R,
Ag(o,Cva) = V2rbe?271P[ 2 > C], (5.6)
where Z is a standard normal random variable.

Proof. (i) Recall that § = d1(a,v) =~ + /7% + 4. By (3.13),

Aglay,y) = ZF<(a2’03)620‘ exp(—(2a)2/52)

_ 1 = a1 2 2a (9)2/82
=~ Ta) /wzom exp(—a” — 2yz) 6°“ exp(—(2a)?/67) dx

B 1 et 20(2a + 07) (v —2a)?
~@=v/9 T(2q) /,,:0” P (‘ 52 )eXp(_ 52 )d”

1 = a1 (v —2a)?
= (by 8%/2-16-20=0) T3, / U ea() exp(—T) dv
(‘/20( - 20[)2
= E(exp(—T))‘
Now use the fact that for v = C/a,

§=(C+VC?+4)a=2b/o. (5.7)

(ii) This follows from (5.3), the way b(C) varies with C, and the monotone
convergence theorem.

(iii) Recall that here « tends to oo while C' (and so also b and B) remains fixed.
By the central limit theorem, W, converges in distribution to Z ~ AN(0,1) as
a — co. Since Z2 ~ G(1/2,1/2) and since G ~ G(r, \) has moment generating
function E(e!%) = 1/(1 —t/\)" for t < ),

lima 00 Ag(a, Cy/a) = E[exp(—27%/(2b%))] = (1 +2/(121)2))1/2 - \/1[171,2
(5.8)

(iv) Suppose o = 1/2. Then Vs, has a standard exponential distribution, so
by (5.3),

Ag(a,Cy/a) = /000 exp(—v) exp(— (w= 1)2) dv

2b2
2/6_ o U—(l—bz) 2 2/
= 1/0 eXp(‘%) dy =V2rbe"* ' P[Z > C;
at the last step we used (b> —1)/b=0b—1/b=C. O
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5.2. Normal rejection sampler on the square-root scale

The next theorem gives properties of Axr(c,y) analogous to those for Ag(a, ) in
the preceding one. We get a nice correspondence between properties by taking v
to be of the form —C\/a — 1/2 below, in place of Cy/a in Theorem 5.1; this
correspondence also links Theorems 6.1 and 6.2 below.

Theorem 5.2. For a > 1/2 and v € R, let Ay (a,7) be the acceptance rate
defined by (3.12) with m = m(ca, ) given by (3.3) and (3.5). Set ae = ao() :=
a—1/2, and let Z be a standard normal random variable. Let b = b(C) and
B = B(C) be as in (5.1).

(i) Fora>1/2 and C € R,

An(a, —Cy/ag) = E(v(cZ)) (5.9)
where
2 1 _ 1
7= 2m?(a, —Cy/ae ) 204 b2 (5-10)
and
v(z) = (u(z))%“ with u(z) := ((1 + 2) exp(—z))l(_lm)(z). (5.11)

(ii) For each fized oo > 1/2, An(a, —C\/aq ) is strictly increasing in C € R,
tends to 0 as C'| —oo, and tends to 1 as C' 1 co.
(iii) For each fized C € R,

lima_y 00 Ap(ar, —Cv/ar) = limg 00 Apr(e, —C/ary ) = bVB. (5.12)
(iv) Suppose a =1/2. For C € R,
An(a,Cva) =exp((CT)¥2)P[Z > C] (5.13)

where CT := max(C,0). The rate Ax(a, Cy/a) is strictly decreasing in C, tends
to 1 as C — —oo and tends to 0 as C — oo.

Proof. (i) Writing Z(«, ) as an integral, we have

oo 1 T\ 2a—1
A = — (= e 242 dx. 14
wa) = [ = (2)7 ep(ea? 2w el +2ym) do. (514)

Making the substitution = mz + m and then using that 2m? +2ym = 2a — 1
by (3.4), we obtain that

= om 2a-1 2,2 2
ANa,vz/ — 1+ =z exp(—m“z" — 2m°z — 2ymz) dz
@) = [ T2 e )
= /oo [(1+ z)e_ﬂm_l AU exp(—m?*2*) dz = E(v(cZ)) (5.15)
1 VT
for 02 = 1/(2m?). Now use the fact that for v = —C\/aa,

YtV t4a -2 C+vC?+4
B 2 Ve

A = Vs b(C). (5.16)

m
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(ii) The function v(z) is increasing in z for z € (—1,0] and decreasing in z for
z € [0, 00); moreover v(0) = 1 and lim|,|_, o v(z) = 0. As C runs from —oo0 to oo,
b = b(C) increases from 0 to oo so o decreases from oo to 0; by the monotone
convergence theorem, E (U(O’Z )) increases from 0 to 1.

(iii) Recall that here & — oo while C' (and so also b and B) remains fixed. Note
that
log(u(z)) = —=2%/2+2%3 — 2Y4 + - (5.17)

for |z| < 1. Thus, as a — oo,
log(v(0Z)) = 2as log(u(0Z)) = —ae 0°Z* (1 + 0(1)) — —Z7%/(2b°);

by the dominated convergence theorem, E(U(O’Z)) — E(eXp(—ZQ/bQ)) = bV/B,
as in (5.8).

(iv) Suppose a = 1/2 and v € R. The technique of completing the square gives

Z(a,y) = /000 exp(—2% — 2yz) dz = Vre' P[Z > V2]

Since m = m(a,y) =77,

Z(a,”) {P[Z>\/§7]7 if v <0,

Avlay) = o= Z(a, )/, ify>0.

mexp(—m?2 — 2ym)
The right-hand side above is clearly strictly decreasing in v with limits of 1
and 0 at Foo. To get (iv) as stated, take v = Cy/a = C/v/2. O

5.3. Gamma rejection sampler on the original scale: v < 0
Now we turn to Ag_. The following theorem allows properties of Ag_ to be
deduced from those of Ag. Recall that Ap_ applies only to negative +’s.

Theorem 5.3. For a> 0 and v <0, let Ao—(c,7) and Ag(w,y) be defined by
(2.9) and (3.13), respectively. For each fized o, one has

AO,(OZ,’)/) = o(a) := F(20é) i *
Ag(oy) =2 (1) (5.18)

for all v < 0. Moreover, p(a) is a strictly increasing function of a such that
limgjop(@) =1 and limapeo p(a) = V2. (5.19)

Proof. In the following argument, suppose v = Cy/a for C' < 0. By (2.9) and
(2.4),
2Z(a,v)e”

s o
Ag_(a,y) = I(a) (exp(lo/(SO))
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where
4o 4 9

2 5 =0
(VA2 +4a+1y) (VC2+4+1C|)

for b = b(C') as in (5.1); at the last step, we used the fact that b(C) = 1/b(|C|).
By (3.13) with v = C'y/a and formula (5.7) for §; (o, C\/ax),

Z(ozgy) o o b2 o
I'(2a) o (exp(1/b2)) : (5.20)

Ag (av ’Y) =

If follows that (5.18) holds. To show that p(«) is strictly increasing in «, we use
the fact that

W(r) = d% log(T'(r)) = log(r) — %E(p(%)) (5.21a)
where

V~G(1,1) and p(t):=1- (1— 1

t et—1

) is strictly increasing in ¢;

(5.21b)

confer formulas (2.67) and (2.68) in Andrews (1985). This implies that

Vv

% log(p(ar)) = 2[W(20) ~log(2a)] — [¥(a) ~log(ar)] = éE g (E)‘p(%)] > 0.

That p(a) — 1 as « } 0 follows from the identity 7T'(r) = T'(r + 1), and that
pla) = V2 as a 1 oo follows from Stirling’s formula. O

Here are some consequences of the theorem. First, since p(a) > 1 for all
a > 0, for v < 0 the Gamma rejection sampler on the original scale always
outperforms the one on the square-root scale. Second, as « increases to 0o, p(«)
increases to /2, so Ag(a,0) = 1/p(a) decreases to 1/A/2, as one sees in Figure 3;
moreover by (5.5),

lime o0 Ao (@, CV/a) = V26(C) /B(C) (5.22)

for all C' < 0. Third, for each fixed o, Ag_(a,7y) is strictly increasing in vy €
(—00,0), with limits 0 and 1 at —oo and 0, respectively.

5.4. Gamma rejection sampler on the original scale: v > 0

Finally we take up Ag;. Recall that Ao, only applies to positive 4’s. By (2.9),

2Z(a,Cy/a Ce 2a(1-04(C))
Ao (o, C/a) = 220V )

6. 00) \Va(=5:0) 529

where 0,(C) := 6(a,~) for v = C'\/a is the unique solution to the equation

3q(0) = —21log(C) (5.24)
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with
5a(0) := (logT") (6ar) — log(ar) — 21og(1 — 6) (5.25)
for 6 € (0,1). Also for 0 € (0,1), set
Seo(0) :=log(0) — 21log(1 — 0). (5.26)

Theorem 5.4. For o > 0 and C > 0, let Aot (o, C\/ax) be the acceptance rate
defined in (5.23) and let 0,(C) be the root of the equation (5.24) with s4(0)
given by (5.25). Let s (0) be defined by (5.26). Let b= b(C) and B = B(C) be
as in (5.1).

(1) For each fized o, 0, (C') is strictly decreasing in C' € (0, 00) withlimg g 0,(C) =
1 and limcqoo 0.(C)=0.
(ii) For each fized C, 0,(C) is strictly decreasing in c.
(i1i) The solution 0. (C) to the equation s (8) = —21log(C) is
0so(C) =1/0*> = B/(1—B) =1-C/b. (5.27)

(v) If o tends to oo, then 0,(C) converges to 0(C) at rate (1 — 6 (C)) x
O(1/«) uniformly for C bounded away from oo, in the sense that for each fixed
C() S (O7 OO),

04 (C) — 05 (C

(v) For each fized C,
limg—s 00 Aoy (o, /) = V2B. (5.29)

Proof. (i) In terms of the function s(6) in (2.7), so(8) = s(8) — 21log(C). By
Theorem 2.1, s,(6) is strictly increasing in § € (0, 1), with limg) s4(0) = —c0
and limgeo $(#) = 0o. The claims in (i) follow from this.

(i1) Write s4(0) as U(r) — log(r) + seo(#) where ¥(r) is the digamma function
(logT")'(r) and r = fa. Since ¥(r) — log(r) is strictly increasing in r by (5.21),
Sq(0) is strictly increasing in «. The claim in (ii) follows from this.

(iii) 000 (C) € (0,1) is the unique root 6 € (0,1) of the equation 0/(1 — 6)? =
1/C?. That root is 1/b? because 1 — 1/b*> = C/b.

(iv) From analysis, ¥(r) has the asymptotic expansion
U(r) =log(r) — 1/(2r) — 1/(12r%) + O(1/r*) (5.30)
as r — oo; confer (2.74) in Andrews (1985). Consequently as o — oo,
$a(8) = s0o(0) + O(1/ )

uniformly for 6 € (0,1) bounded away from 0. Equation (5.28) follows from this,
the identity

0= —2log(C) — (—210g(C)) = $a(0a(C)) — 55 (00 (C))
= [50(60(C)) ~ 50e (6a C)] + [5 (8a(©)) — 50 (0 (C))]
=[50 (6a(C)) = 550 (0a(C))] + (0a(C) = 0x0(C)) s (67)
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where 6* is some point between 6, (C) and 0. (C), and the inequality

o 2 2 2
= — > > .
)=t 2T 21500

(v) We will just sketch the argument; the algebraic manipulations were done by
computer. By (5.23),

log(Ao+(a, CVa)) = K — J(0a(C)) (5.31)

where
K :=1log(2Z(a, Cv/ax)),

J(8) = log[ () (W)MH)},

and 6 = 0,(C) is the root of the equation J'(#) = 0. We do not have a closed
form expression for 6,(C), but from (5.28) we know that 6,(C) = 0(C) +
O(1/a) as a — co. By Taylor’s theorem,

J(05(C)) = J(0a(C)) + 57" (0°) (00(C) — 0a(C))

for some point 0* between 6,(C) and 0, (C). It turns out that J”(6*) is of
order «, so

J(0a(C)) = J(0s(C)) + O(1/a) (5.32)

as a — 00. Now write J (6 (C)) as a linear combination of logarithms, approx-
imate log(I'(af(C))) using Stirling’s formula

log(I'(r)) = & log(27) + rlog(r) — r — 1 log(r) + O(1/r) asr — oo, (5.33)

use the fact that 0 = 0.,(C) is the root of the equation log(f) — 2log(f) =
—21log(C), and replace log(1 — 0(C)) by log(C) — log(b). The upshot is that
as a — 00,

J(0(C)) =log(D) + O(1/a) for D := V2ra® /2 =2 (MY52)b. (5.34)
By (5.20) and by (5.33) with r = 2«
K = log(\/@) +log(D) + o(1) (5.35)

as & — 00. (The o(1) in (5.35) is actually an O(1/«); see (6.14) below.) Together
with (5.31), (5.32), and (5.34), this gives (5.29). O
Panel 1 in Figure 5 illustrates parts (i)-(iv) of the theorem. Together with (5.22)
and (5.2), the identity (5.29) in part (v) implies that
lim Ag_ (o, —Cva) = V2b(—C)\/B(-C) = \/2B(C) = lim Ay, (o, Cy/a)

for C' > 0; Figure 2 illustrates this limiting symmetry about C = 0.
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6. Asymptotic expansions of the acceptance rates

This section gives asymptotic expansions for the acceptance rates Ag(a, C\/a),
Apn(a,Cy/a), and Agy (o, Cy/ar) as a — oo with C held fixed, and for the rates
Ag(a,Cy/a) and Ay (o, —Cy/a) as C' — oo with « held fixed. The expansions
sharpen the results from Section 5, and as we explain in more detail below, they
can yield trivial to evaluate and only slightly suboptimal bounds on the ratio
between target and instrumental distribution; recall the opening paragraph of
the introduction for the role of such bounds in rejection sampling.

6.1. Gamma rejection sampler on the square-root scale
Theorem 6.1. Let Ag be as in Theorem 5.1, and let b = b(C) and B = B(C)
be as in (5.1).

(i) The last assertion in part (ii) of Theorem 5.1 admits the following sharpen-
ing. Fiz o >0, put r = 2a, and for 7 =0,1,2,3 and C > 0 set

1

J

Agj(a,0)=3" a§.i() gz (6.1)
where . ;
aE,O(a) =1, aag(a) = g (3 + ;),
o v 1 s 130 120 (6.2)
Gga(0) = =5, afyla)i=— (154 =24 5.
Then for each j
R j(a,C) := Ag j(@,C) — Ag(a,CVa) = O(W) as C — o0,  (6.3)
Rg ;(a, C) is positive or negative according as j is even or odd. (6.4)

Moreover, for all a > 10,

i+ rg o = .50 rg o = 0.45
. Gg,0 y G2 s
Supc>o b?I 2|R§7j(a,0)| < raj with ,

g1 =41, rg;=0.63. (6.5)

(ii) Part (iii) of Theorem 5.1 admits the following sharpening. Fiz C € R. For
7=0,1,2, set

43,50, C) =bVB Y. ag,(C)/(20) (6.6)

with
ago(C) =1, (6.7a)
a3a(0) = ZO10B) (6.7)
(0 BON0B 37838382 + 29615 — 720) 670)
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For all « > 1/2, one has

0.06/(2a),  if j =0,
supoeg |AG ;(a, C) — Ag(a, CVa )| < 4 0.019/(200)2, if j =1, (6.8)
0.014/(2a)3, if j =2.

Proof. (i) Recall that here C' — oo while a remains fixed. (6.3) and (6.4) follow
from (5.3) and Lemma 6.1 below with Y = W2 Y = [0,00), F(y) = e Y, ¢ =
n =4, and § = 1/(2b%); since W, = (V, — r)/\/r with r = 2a and V. ~ G(r, 1),
one has E(Y) =1, E(Y?) = (3r +6)/r, E(Y?) = (15r% + 130r + 120)/r?, and
E(Y*) < 0o. A computer study gave the specific bounds in (6.5).

(ii) Recall that here « tends to oo while C remains fixed. The density fuw, of
W, has an Edgeworth expansion Kolassa (2006)

1 Hg((E)

fir, ) = By(a) = plo)[1+ = 0 4]

<H4(m) n HG(x)) n

1 13 (6.9)

r3/2\ Hj(zx) for j =5,7,9 r2\ 6 480 72 1944

where r = 2a, ¢ is the density of Z ~ A(0,1), and Hy is the kth Hermite
polynomial, defined by p*) = (=1)*@H}. Since

(—1)*(2k — )" bv/B B*,  if £ = 2k is even,

0, otherwise,

E[Hy(Z)exp(—2%/(2b%))] = {
where (2k — 1)!l = (2k — 1) - (2k — 3) ---3 - 1, we get the asymptotic expansion
Agla,Ova) = B(-W2/@R) = [ i, (o) expl—a%/ (217))

- /_00 E,(x) exp(—2°/(2b%)) dw = bV'B [aé’O(C)—&—a&’l(C) Jr+al 5(C)/r+-- }

1 (linear combination of) 1 (HG(.T) 47Hg(x)  Hio(x) ng(x)> L

(6.10)

One can use the error bounds for the Edgeworth expansion to show that the
difference between Ag(a, Cy/a) and Ag ; (e, O) is order O(1/r/ 1) as r — oo,
uniformly in C. A computer study gave the specific bounds in (6.8). O

We used the following lemma in the proof of Theorem 6.1 and will call on it
again.

Lemma 6.1. Suppose that n is a positive integer, q is a finite number at least n,
Y is a random variable taking values in Y = [0, 00) or R such that E(|Y|?) < oo,
and F: Y — R is a function which has a finite nth derivative at 0, is bounded
on bounded intervals, and satisfies F(y) = O(|y|?) as |y| — co. Then

E(F(5Y)) = Z:; %5 +0(5™) (6.11)
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as 6 | 0. Moreover, if F™)(y) exists for all y € Y and has a constant sign s
throughout Y, and if either Y = [0,00) or Y =R and n is even, then the O term
in (6.11) has sign s.

Proof. Define R: Y — R by the equation

n—1 @) .
F) =3 0y R

=0

The assumptions on F imply that there exists a finite constant ¢ such that
|R(y)| < c(Jy|™ + |y|?) for all y € Y, whence

n—1 F(®) (O)E(yi)

E(FEY) -3 5

= |E(R(6Y))| < E(|R(sY)])
< c(@"E([Y[") + 8"E(]Y]") = O(3")

il

as d | 0. That establishes (6.11). For the final assertion of the lemma, use
Taylor’s theorem to represent R(y) as F™ (1)y"/n! for some number 7 between 0
and y. O

Here are some remarks on part (i) of Theorem 6.1. First, for C' large and «
bounded away from 0, part (i) implies that Ag(a, C'\/a) depends only slightly
on «; this is what one sees in Figure 3 even for C' as small as 2. Second, the
asymptotic expansion for Ag(a,Cv/a) as C — oo in (6.3) gives rise to an
asymptotic expansion for Z(a,v) as v — oo, as follows. Fix a. Given ~, set
C = v/, write b(C) as v*/\/a with v* := (v + /72 + 4« ) /2, write the &
in (3.10) as 2¢*, and then use (3.13) and (6.3) to get

Z(@7) (/) i=1 g ()’ 1

TN ) a = A , — AL (7) 12
T@a) /(77 ¢ sl =2~y +0ls) 61
as v — oo, for j = 1,2,3,4. The classical asymptotic development of Z(«, ) as
v — 00 uses

Q, 2204
r(zig /(;’3)20‘ =B {eXp(_ (‘2/7)2 )}
j—1 (2a [rise 2i]

where "¢ ¥l .= z(z+1)--- (z+k—1). It turns out that the expansion in (6.12)
is more accurate — typically considerably so — than the expansion in (6.13).
Indeed, numerical computations show that for given « and j, the ratio of the
O term in (6.12) to the one in (6.13) increases with . Thus the supremum of
those ratios equals their limit as v — oo, which is

i et (22

imsart-ejs ver. 2011/12/06 file: extgamma.tex date: November 4, 2013



Y. Liu et al./Rejection Sampling for an Extended Gamma Distribution 27

This quantity is less than 1 for j = 1,2,3,4 and o > 0; as @ — oo it asymptotes
to ((ij)/sz)/(aj/j!), which of course is small when « is large.

Here are some remarks bearing on part (ii) of Theorem 6.1. First, the linear
factor 9 — 10B in (6.7b) has a root at B = 9/10, corresponding to b = 1/3
and C = —22/3. So to first order in 1/, as « increases to oo, Ag(a, Cy/ax)
decreases down to byv/B for C' > —22/3, and otherwise increases up to bW B;
this is what one sees in Figure 3. Second, in order to implement the rejection
sampler Sg, one needs to compute the quantity M = 1/A := 1/Ag(a, Cy/a@).
Since, by (6.8), A > A® := Ag »(a, C) —0.014/(2c)3, one has M*® := 1/A®* > M.
By the opening paragraph of the introduction, one can use M*® in place of M;
doing so reduces the acceptance rate from A to A®, but that’s a negligible
decrease. The advantage is that it is trivial to compute M*®. A similar remark
applies to the asymptotic expansions we give for the other acceptance rates.
Third, by (5.20), for each fixed C' one has

Z(a,Cy/a) B .
I'(2«) (exp(l/b2)>a = Ag(a, CVa) = Ag 2(a, C) + O(l/aB) (6.14)

4o b2

as o — oo. We will use this in the proof of Theorem 6.3.

6.2. Normal rejection sampler on the square-root scale

Theorem 6.2. Let o, a,, and Ax be as in Theorem 5.2. For C € R, let b =
b(C) and B = B(C) be as in (5.1).

(i) The last assertion in part (ii) of Theorem 5.2 admits the following sharpen-
ing. Fiz o > 1/2, put r = 2a,, and for 5 =0,1,2,3 and C > 0 set

[e] J [e] 1
AN’]-(OQC) = Zi:O G‘N,i(a)ﬁ’ (615)
where, fori=0,1,2,3,
ayr (@) = ag ;(—as) (6.16)
with the ag ;’s as in (6.2). Then for each j
] o ]'
RS (0,C) i= Ay j(0,C) = Aw (s —CVa, ) = O( 575 ) (6.17)

as C' — o0o. Moreover,

o =-50, T, =0.33,

6.18
Tira =38, 1Rz =028 (6.18)

for all a > 5.
(ii) Part (iii) of Theorem 5.2 admits the following sharpening. Fiz C' € R. For
7 =0,1,2, set

A305(0,0) = WB 3 a3es(C)/(200)', (6.19)
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where

ajo(C) = a5 o(C), a1 (C) = —ag(C), and ajr»(C) = ag(C),

)

with the ag ;’s as in (6.7). For all « > 2, one has

0.06/(20.), ifj =0,
supger |A%r (0, C) — An (o, —C/a, )| < € 0.019/(20)?, if j =1, (6.21)
0.014/(20,)3, if j = 2.

Proof. (i) Recall that here C' — oo while a remains fixed. The claim in (6.17) fol-
lows from (5.9) and (6.11) with Y = Z, Y =R, F(y) = v(y), ¢ = n = 8, and
§ =0 =1/(v/2a4b). We got the derivatives of F at 0 via computer algebra and
then used E(Z%~1) = 0 and E(Z?%) = (2j — 1)!. A computer study gave the
specific bounds in (6.21).

(ii) Recall that here o — oo while C remains fixed. By (5.15) and (5.16),

An(a,—Cva,) = \/j%b /010 exp (200 w(2)) dz (6.22)

where
w(z) = log(u(z)) — b*2%/2

for u(z) as in (5.11). w(z) has the Taylor expansion
w(z) = —2%/(2B) + 2%/3 — 244 4 - -

about z = 0, and w(z) is strictly increasing in z for z € [—1,0] and strictly
decreasing in z for z € [0, 00). Laplace’s method (see, e.g., Section II.1 in Wong
(2001)) gives Ay (a, =Cy/a, ) = A}/ 5(, C) + O(1/(20e)?) as a — co0. A com-
puter study gave the explicit error bounds in (6.21). O

Part (i) of Theorem 6.2 has implications similar to those of part (i) of Theo-
rem 6.1. First, for large C' and « bounded away from 1/2, the acceptance rate
An (o, —C,/ag ) depends only slightly on a; the same is true, but somewhat less
so, for Apr(a, —C'v/av). Second, the asymptotic expansion for Ay (o, —Cv/a, ) as
C — oo in (6.17) gives rise to an asymptotic expansion for Z(«, —7) as v — 00,
as follows. Fix a > 1/2. Given v, set C' = v/+/a,, write b(C) as v*/y/a, here
with v* := (v 4+ /7% + 4 ) /2, write m(a, —7) as v* (see (3.3)), note that
¥* — v = ae /7", and then use (3.12) and (6.17) to get

Z(a> _’7)
\/7?(7*)211-67267(&-/7*)2

j-1 a&i(—a.)ai 1
=0 *21 ?j
(6.23)

— AN(OQ _’V) = Z
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as v — oo, for j = 1,2, 3,4. The classical asymptotic development of Z(c, —v)
as 7 — 00 uses

Al ) s

fall 2] 1

2 1
_ Z 0‘22%' it O(%» (6.24)

where 2l #l .= 2(z — 1)--.(z — k + 1). It turns out that for o > 12, the
expansion in (6.23) is more accurate — typically considerably so — than the
expansion in (6.24). Indeed, numerical computations show that for given j =

2,3,4 and « > 12, the magnitude of the ratio of the O term in (6.23) to the
one in (6.24) increases with 7. Thus the supremum of those ratios equals their
limit as v — oo, which is

aog,j(a.)af/<(2a;§£f;zl 7 )

This quantity is less than 1 for 7 = 1,2,3,4 and a > 5.12; as a — oo it
asymptotes to ((%7)/22j)/(aj/j!). The story is more complicated for o < 12,
because in that situation there are pairs (e, j) such that ag ;(—as) and/or
(20 )21 2] equals 0; the expansion in (6.23) can be considerably less accurate
than the one in (6.24), as well as considerably more accurate.

Here are some remarks on part (ii) of Theorem 6.2. Suppose a > 1/2.

Given C, € R, determine C' = C(a,C,) so that Cor/ao = —C\/ae; thus

—v/a/aes Cy. Then

An (o, Con/a) = An(a, —Cy/as ) (6.25)
= b(C)VBC) [1+ a3 1(C)/(204) + alro(€)/(200) + -
(6.26)

The uniform error bounds in (6.21) apply to the asymptotic expansion (6.26)
because C, and C are one-to-one functions of each other. However, one needs to
bear in mind that in (6.26), C depends on «a as well as C,,. Expanding the right-
hand side of (6.26) in powers of 1/« gives an asymptotic expansion analogous
to the one in (6.6) for Ag(a, C'v/a):

w0, Con/a) Zbo/Ba [a3e.0(Co) a5 1 (Co) /(20) + Sy 2(Co) /(20)7 +- -

(6.27)
where
agro(Cs) =1, (6.28a)
B,(10B2 — 21B
afr1(Cs) = o105, 5 °+6), (6.28D)
B2(1540B% — 5460B3 + 7041B2 — 3756 B, + 612
alro(Co) = o © ° 553 ° ° ) (6.28c¢)

imsart-ejs ver. 2011/12/06 file: extgamma.tex date: November 4, 2013



Y. Liu et al./Rejection Sampling for an Extended Gamma Distribution 30

with by = b,(Cs) := b(—C,) and B, = Bo(C,) := B(—C,). The expansion
(6.27) is not quite as accurate as (6.26): for o > 2, one has

s (Co) 0.146/(2a), if j =0,
supc, e |bov/Bo Y /?ZT; — An(a, Cov/a)| <4 0.078/(20)2, if j =1,
i=0 0.044/(20)3, if j = 2.
(6.29)
Nonetheless, (6.27) confirms some features one sees in Figure 3. First of all, there
is symmetry about C' = 0 in the limit: limy—y00 Apr(o, Cv/ax) = b(—=C)/B(-C) =
limg—00 Ag(a, =Cy/a). Second, the function ag ,(Cs) is positive for C to the
left of —0.67 and negative to the right of that point; thus at least to first or-
der, as a 1 00, An(a,Coy/a) decreases down to boy/B, for C, < —0.67 and
increases up to that limit for Cy, > —0.67.

6.3. Gamma rejection sampler on the original scale: v > 0
Theorem 6.3. Let 0,(C), Aor(a,Cva) sa(8), and s (0) be as in Theo-
rem 5.4. Let b =b(C) and B = B(C) be as in (5.1).

(i) Part (iv) of Theorem 5.4 admits the following sharpening. For j = 0,1,2,
set

Tja,C) =3 m(C)/(20)" (6.30)
with
70(C) :== 1/b?, (6.31a)
m(C) :=1-2B, (6.31D)
7(C) == —(1 — B)(1 — 2B)(1 — 6B?)/(6B). (6.31c)

For j =0,1,2 and for each fized Cy € (0,00), one has

=0(1/ad™h) (6.32)

0,(C) — aC‘
1— 0o

SUPp<c<Cy

as o — oo. In particular, for all a > 1/2,

0.73/(2a), if j =0,
| <4026/(200%, if j=1, (6.33)
0.53/(2a)%, if j =2.

0,(C) — Tj(a, C)
1- 000(0)

SUPp<c<1

(ii) Part (v) of Theorem 5.4 admits the following sharpening. For j = 0,1,2,
set

A, Sl \/EZ o @i )/ (2a) (6.34)
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with
a(.)—i-,O(C) =1, (635&)
ad; 1(C):==—=(B—1)(-1+2B)(5B* + 3B — 1)/(12B), (6.35b)

ady 5(C) == (=14 2B)(15B* — B—1)(B —1)*/(3B) + (agﬂ(C))z. (6.35¢)
For j =0,1,2 and for each fized Cy € (0,00), one has
A(.)Jr,j(a’ O) - A0+(Oé, O\/a)
1- 900(0)

|=o@/at)  (630)

SUPo<c<cy

as o — oo. In particular, for all « > 1/2,

0.074/(2), if 5 =0,
| <Q0205/(20)%, if =1, (6.3
0.132/(20)3, ifj = 2.

su ‘ A6+,j (aa C) - A0+(aa C\/&)
pO<C’§1 1 — Goo(c)

Proof. (i) This follows by an elaboration of the argument for part (iv) of The-
orem 5.4. (5.30) implies that as a := 1/(2a) tends to 0,

5a(0) = s00(0) — a/0 — a?/(30%) + O(a®) (6.38)

uniformly for  bounded away from 0. Formally, (6.32) follows from (6.38) via the
usual procedure for inverting an asymptotic expansion. The unboundedness of
the first, second, and third derivatives of s () for 6 near 1 turns out not to cause
any problems because in the error analysis, each time one of those derivatives
arises, it gets multiplied by a term which is on the order of the reciprocal of the
derivative. A computer study gave the specific bounds in (6.33).

(ii) This follows by an elaboration of the argument for part (v) of Theorem 5.4,
now using

log(I'(r)) = & log(2m)+rlog(r)—r—3 log(r)—i—l—;r—l—O(l/?ﬁ) as r — 0o. (6.39)
One first argues that J(0,) = J+0(a®) where J := J (o0 (C)+ari (C)+a?72(C))
with ¢ = 1/(2«a) and 71(C) and 75(C) as in (6.31b) and (6.31c). Then one
expands .J in a Taylor series about 00 (C); since the nth derivative of J is of
order « for n > 2, one needs to take the third order term in the Taylor expansion
into account to get the second order term for the expansion of J. Finally, one
combines the expansion of J with that for K coming from (6.14). A computer
study gave the specific numerical bounds in (6.37). O

In Panel 1 of Figure 5, 6,(C) appears to tend down to 0. (C) at rate 1/a;
that is what part (i) of the theorem predicts, since the function 71(C) in (6.31b)
is strictly positive. Part (ii) underlies something one sees in Figure 2. The func-
tion ag, ;(C) is negative for C' € (0,2/3) but with a minimum value of only
about —0.03, positive and increasing for C' > 2/3, and asymptotic to C?/12 as

imsart-ejs ver. 2011/12/06 file: extgamma.tex date: November 4, 2013



Y. Liu et al./Rejection Sampling for an Extended Gamma Distribution 32
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FIG 6. The left half of Panel 1 graphs Ao—(c, ) versus v for a = 1/3, 1/32, ..., 1/3% and

in the limit as o — 0; see (2.9) for the case a > 0 and (7.2) for the limiting case. Similarly,
the right half of Panel 1 graphs Ao+ (a,7y) (the downward sloping curves) and Ag(a,~y) (the
upward sloping curves) versus -y; see (2.9) and (3.13) for the case a > 0. Here the limits as
a — 0 are identically 1. Panel 2 graphs (1 — Ale, 'y))/oz versus v, for the same acceptance
curves as in the right half of Panel 1, using the same dash patterns; see (7.3) and (7.4) for
the limits as a — 0.

C — oo. Thus to first order, as « increases, Aoy (a, C\/a) effectively decreases
at rate 1/«, but ever more slowly the larger is C. It is important to bear in mind
that the asymptotic expansions (6.30) for 6,(C) and (6.34) for Agy(a, Cy/a)
are not uniform in C' € (0, 00). These expansions are based on Stirling’s approx-
imation to I'(r) for r = @ where for large C, 6 = 0,(C) tends to be small, on
the order 1/C?; therefore o needs to be at least a moderate multiple of C? in
order for the expansion to “kick in”.

7. Behavior of the rejection samplers when a < 1/2

Here we augment the analysis in the preceding two sections by exploring how
our various rejection samplers behave as « | 0. Throughout suppose that a €
(0,1/2). The sampler Sxr is not available in this situation, confer (3.2), but Sp_,
So+, and Sg are. Panel 1 in Figure 6 graphs the corresponding acceptance rates
Ap— (for v < 0) and Agy and Ag (for v > 0).

Throughout this paragraph, suppose 7 < 0. By Theorem 5.3, Ao_(a,’y)/
Ag(a,vy) = p(a) > 1. Accordingly, we have not displayed Ag in the left half of
Panel 1. Since lim, g p(c) = 1, the rates Ag_(a,v) and Ag(«,~y) behave the
same in the limit; according to (7.2) below, lim, o Ag— (o, v) = exp(—~?). The
situation for v < 0 is thus disappointing: Sy—(a,7) behaves adequately well
only for +’s between (say) —1 and 0.

Throughout this paragraph, suppose v > 0. The situation in this case is much
rosier. Indeed, the inequality Ag(a,v) > Ag(,0) = 1/p(a) implies that as a |
0, Ag(a,~) tends to 1 uniformly in . Moreover, as Panel 2 in Figure 6 shows,
for all o, Ag(c,7y) exceeds Aoy (a,7) except when v is less than (about) 3/8.
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One could use Spy(a,7y) for v < 3/8 and Sg(«,y) otherwise. Recall from the
discussion following (2.9) that for small o, say a < 1/32, the quantity M :=
1/Ao4(a,7) is effectively Mo 1 (a) =T(a)/(2Z(c,7)).

Theorem 7.1. (i) Let 2Z(«,~y) be the normalizing constant for the target den-
sity (1.1). For each v € R, 2Z(c,v) ~ T'(a) as o | 0; more precisely,

1 2Z () [ 1 —exp(—2yV1)
2% a(l - W) =J(y) .—/O exp(—t) ; dt. (7.1)

(i1) For v <0, let Ag_(c,7y) be defined by (2.9). One has
limg o Ao (v, y) = exp(—7?). (7.2)

(i1i) For v > 0, let Ag(a,vy) and Aoy(a,7y) be defined by (3.13) and (2.9),
respectively. One has

tmacso (F A0 = ) 4 1(1) ~ log(r?), (73)
nmaw(W) = J(v). (7.4)
Proof. (i) Since
Lo 2Z(@y)y_ 1 [*, _ L—exp(=2yV7)
a(l— (o) )_F(a—i—l)/o ty(t) dt for y(t) :=exp(—t) ;

and since [;°(1V t/4) ly(t)| dt < oo, (7.1) follows from the dominated conver-
gence theorem.

(ii) According to (2.9) and (2.4),

2Z(« ) o 4o
Ao (0, ) = F((O:)V) ea<eXp(1/5)) with 6§ = Noasmu
Since § ~ a/y? as a | 0, (7.2) follows from (7.1).
(iii) First note that for numbers ¢ and z,,, one has
limg g ——2 = & <= limayo logfa) - ¢ (7.5)
Now use (3.13) and (3.10) to write
Z(a,7) 52 2Z(a,y) T+ a) 52

Ag(a,y) = I'(2a) exp((2a/6)?) N I'(o) . (1 +2a) - exp((20/9)?)

with § = + /7% + 4o = 2y + O(«). By (7.1) and (7.5),

log(Ag(a,7)) = —aJ(v) + (logI')'(1) (e — 200) + 2arlog(27) + o(v);
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(7.3) follows from this and (7.5). Next, according to (2.9) and Theorem 2.1,

_ 2Z(a,y) . T(a) vye o \2a(1-9)
Ao+(07) = =505 X Tlad) (a(l —9))

where 6 = 0(a, ) is the root to the equation s(6) = 0. As a — 0,

Y
0~ {1/ 2)) ~ ()2

see Figure 5, so 1 — 6 — 0 extremely fast. Therefore,

log(Aot(a,7)) = log(2Z (e, 7)/T(a)) + o(a).

Now use (7.1) and (7.5). O

8. Conclusion

We proposed rejection samplers that generate draws from the distribution with
density f(-|c«,7), defined in (1.1). The first type of samplers, introduced in
Section 2, use Gamma instrumental distributions to target f(-|a,~y) directly.
However, this approach leads to practically useful acceptance rates only for small
to moderate values of v. We showed that this problem can be remedied by using
alternative samplers that operate on a square-root scale, targeting the distri-
bution with density h(-|c,7), defined in (1.6). These alternative samplers use
normal and Gamma distributions as instrumental distributions; recall Section 3.

Ultimately, we suggest combining all of the proposed samplers, as described
in detail in Section 4. To this end, we derived, for any fixed o > 1/2, a partition
of the real line, and the rejection sampler to be used is chosen based upon which
of the intervals contains the parameter . As pointed out in Remark 4.1, the
partition is obtained under the not entirely realistic assumption that generat-
ing draws from the different instrumental distributions comes at equal cost. If
the assumption is seriously wrong in the programming environment used, then
experimenting with adjusted partitions could be beneficial.

Finally, as mentioned in the introduction, the case o < 1/2 is not directly
relevant for the problem motivating our work. Nevertheless, the samplers with
Gamma instrumental distributions apply to this case and were analyzed in this
regime in Section 7.
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