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We propose a Multiple Imputation Random Lasso (MIRL) method
to select important variables and to predict the outcome for an epi-
demiological study of Eating and Activity in Teens in the presence of
missing data. In this study, 80% of individuals have at least one vari-
able missing. Therefore, using variable selection methods developed
for complete data after listwise deletion substantially reduces pre-
diction power. Recent work on prediction models in the presence of
incomplete data cannot adequately account for large numbers of vari-
ables with arbitrary missing patterns. We propose MIRL to combine
penalized regression techniques with multiple imputation and stabil-
ity selection. Extensive simulation studies are conducted to compare
MIRL with several alternatives. MIRL outperforms other methods
in high-dimensional scenarios in terms of both reduced prediction er-
ror and improved variable selection performance, and it has greater
advantage when the correlation among variables is high and missing
proportion is high. MIRL is shown to have improved performance
when comparing with other applicable methods when applied to the
study of Eating and Activity in Teens for the boys and girls sepa-
rately, and to a subgroup of low social economic status (SES) Asian
boys who are at high risk of developing obesity.

1. Motivating Example. In large epidemiological studies, accurately predicting out-
comes and selecting variables important for explaining the outcomes are two main research
goals. One commonly encountered complication in these studies is missing data due to
subjects’ loss to follow up or non-responses. It is not straightforward to handle missing
data when performing variable selection since most existing variable selection approaches
require complete data.

Our motivating study is the Eating and Activity in Teens (Project EAT) with a focus of
identifying risk and protective factors for adolescent obesity (Neumark-Sztainer et al., 2012;
Larson et al., 2013). A primary research goal is to identify the most important household,
family, peer, school, and neighborhood environmental characteristics predicting a teenagers’
weight status in order to provide recommendations for potential prevention strategies. A
strength of Project EAT is the breadth of potential predictors of weight status collected
on 2793 7th and 10th grade teens from 20 schools in Minneapolis/St. Paul school districts.
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Weight status was obtained by direct measurements of height and weight. Predictors were
obtained from self-reported questionnaires from teens themselves as well as from peers
(i.e., derived from friendship nominations) and parents (i.e. from a separate questionnaire
sent home to parents). School administrators were surveyed to obtain variables about food
and physical activity policies at schools. Potential predictors describing the neighborhood
built environment (e.g. density of fast food restaurants) were measured using information
from Geographic Information System (GIS) centered at the home residence of each teen.
In total there are 62 predictor variables across the different context which are of interest
to examine in terms of their relationship with weight status. This multi-contextual source
design is consistent with recent research paradigms for obesity which view it as impacted
by not only individual behaviors but also social and physical contexts (Frerichs, Perin and
Huang, 2012).

Several risk factors for children’s body mass index (bmi) z-score including higher parental
weight status and peer weight status and lack of safety were identified in Neumark-Sztainer
et al. (2012) and Larson et al. (2013). For instance, high social economic status is a protec-
tive factor. Some family behavior covariates associated with children’s weight status may
be reactive to weight status rather than causes of it. For example, when the bmi scores of
children are high, parents may apply higher restrictions of high-calorie food and impose
less pressure to eat.

One challenge in analyzing the Project EAT data is that since many measures were col-
lected with different instruments, 81% of individuals have at least one variable missing data
(only 523 of 2793 teenagers had all 62 predictors). We present some of the most frequent
missing patterns in Table 1 for 9 variables shown to be important from the analyses by
various methods. The proportion of missing for each data source is different (e.g. 15− 20%
missing from the parent survey, 40− 44% missing from peer surveys, 2− 10% missing from
GIS variables). The missingness is non-monotone, i.e., does not satisfy monotone miss-
ingness: for variables (X1, · · · , Xp), Xj on an individual is missing implies all subsequent
variables Xk is missing for k > j; and there are a total of 247 distinct complex patterns
for all 46 variables with missing entries, which makes it complicated to model missingness.
Another challenge is that many predictors are moderately or highly correlated which makes
it difficult to separate their effects. The candidate predictors in Project EAT are naturally
classified into family, peer, school and neighborhood measures. The variables within each
class can be highly correlated because students in the same neighborhood tend to go to
the same school, and share the same peer groups.

Our goal is to develop a method to perform variable selection for studies similar to
Project EAT where the number of predictors is large, some predictors are highly correlated,
and there is substantial missingness with complicated arbitrary missing data patterns.

2. Review of Variable Selection Methods in the Presence of Missing Data.
The most common practice for dealing with missing data is listwise deletion where any
observation missing at least one variable is removed from the analysis and variable selection
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is applied to complete data. However, complete case analysis may cause bias when missing
completely at random (MCAR) assumption is not satisfied and will often cause severe loss
of information particularly for high-dimensional data involving non-monotone missing data
patterns. There are three main types of method to handle missing data. The first group
of methods specify the joint distribution of the variables with and without missing data
and compute the observed data marginal likelihood by integrating over the missing data
distribution and performing variable selection by adapting likelihood-based information
criteria developed for complete data (Garcia, Ibrahim and Zhu, 2010a,b; Ibrahim et al.,
2011; Claeskens and Consentino, 2008; Laird and Ware, 1982; Shen and Chen, 2012).
However, none of these methods are easily applicable to our motivating example, Project
EAT, where the number of variables with missing data is large and missing data patterns
are complicated. It maybe computationally intractable to specify a forty-six-dimensional
missing data distribution (both continuous and categorical variables with missing entries)
and integrate with respect to this distribution. In addition, these methods are not applicable
when the number of variables p exceeds the number of observations n, which is the case
for the subgroup analysis of Project EAT data.

A second approach to handle missing data in a variable selection setting is through
inverse probability weighting. Johnson, Lin and Zeng (2008) introduced/ a general variable
selection method based on penalized weighted estimating equations. However this approach
is only applicable to monotone missing pattern, whereas the project EAT data has a large
number of missing data patterns that are non-monotone and the probability of complete
data for some subgroup of subjects are close to zero. Thus the inverse probability weighting
methods are not applicable.

A third group of methods based on multiple imputation are flexible to deal with non-
monotone and complex missing patterns, thus applicable to our motivating example. A
traditional way of conducting multiple imputation analysis is to conduct linear regression
for each imputation and combine inferences by Rubin’s Rule (Rubin, 1987). Wood, White
and Royston (2008) recommended applying classical variable selection methods such as
stepwise selection where at each step, the inclusion and exclusion criterion for a variable
were based on overall least square estimators with standard errors computed from Rubin’s
Rule (Rubin, 1987). Chen and Wang (2013) proposed to apply the group lasso penalty
to merged data sets of all imputations, treating the same variable from different imputa-
tions as a group. The advantages of techniques based on multiple imputation include the
convenience of implementation by using standard software modules and the feasibility for
high-dimensional data with complex missing patterns. There are limitations for classical
variable selection method such as stepwise selection include over-fitting, difficulties to deal
with collinearity and relying on p-value based statistics which do not have the claimed
F -distribution (Tibshirani, 1996; Hurvich and Tsai, 1990; Derksen and Keselman, 1992).
Chen and Wang (2013) (CW) is a first attempt to combine multiple imputation and pe-
nalized predicting models. It is feasible for high dimensional cases with complex missing
structure, however, group lasso may be vulnerable to high correlation between variables,
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therefore we aim at developing an alternative way to combine the two.

3. Multiple Imputation Random Lasso (MIRL).

3.1. Rationale and algorithm. Here we develop a new method, Multiple Imputation
Random Lasso (MIRL), which combines multiple imputation and random lasso (Wang
et al., 2011). Random Lasso is shown to have advantages dealing with highly-correlated
predicting variables in variable selection and prediction (Wang et al., 2011). In a nutshell,
MIRL performs simultaneous parameter estimation and variable selection across bootstrap
samples of multiply imputed data sets. The final parameter estimates are aggregated across
samples and important variables are chosen and ranked according to stability selection cri-
terion (Meinshausen and Buhlmann, 2010). To accommodate highly correlated variables,
we incorporate similar strategy as random lasso (Wang et al., 2011) where for each boot-
strap sample, half of the variables are used for variable selection. The developed approach
can handle arbitrary non-monotone missing pattern under the missing at random (MAR)
assumption and accommodate p > n case. There are a few new features of MIRL. First,
MIRL extends random lasso to deal with data with missing entries by multiple imputation.
Second, it improves the hard thresholding in random lasso by stability selection to yield
higher prediction accuracy, better variable selection performance, and produce an impor-
tance ranking of the variables. The procedure shares some similarities with random forest
regression (Breiman, 2001) where multiple models are fitted and a final model is obtained
through aggregation.

MIRL has four steps. In the first step, multiple imputation is performed to generate
several sets of imputed data. In the second step, bootstrap samples are obtained for each
imputed data set and an importance measure is created for each variable. In the third step,
lasso-ols estimates are produced for bootstrapped data sets where variables are sampled
from importance measures. In the fourth step, final estimators are obtained through ag-
gregation and use stability selection to get a final sparse model. The MIRL algorithm is
presented below and illustrated by a flowchart in Figure 1.

MIRL algorithm:

Start with a sample of n observations and p predictors with missing entries. As an
example, we consider the linear model Y = β0 + Xβ + ε, where Y denotes a continuous
response variable, X is a n × p design matrix, and ε is the random error. The parameter
of interest is β = (β1, β2, . . . , βp).

1. Let m denote the number of imputations. Impute the sample m times and standardize
all variables to have mean 0 and variance 1.

2. For each imputed data set, generate B bootstrap samples and compute importance
measures of predictors as follows:
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(a) For the b1th bootstrap sample in the ith imputation, b1 ∈ {1, . . . , B}, apply

lasso-OLS to obtain estimates β̂
(b1)
ij for βj , where i = 1, . . . ,m and j = 1, . . . , p.

(b) Compute the importance measure of variable xj by

Ij = (mB)−1|
m∑
i=1

B∑
b1=1

β̂
(b1)
ij |.

3. Compute the initial MIRL estimates:

(a) For the b2th bootstrap sample, randomly select dp/2e candidate variables with
selection probability of xj proportional to its importance measure Ij . Let Λ
be a grid of K exponential decaying sequence of tuning parameters λ’s, apply

lasso-OLS to obtain estimates β̂
(b2)
ijλ for βj , j = 1, . . . , p and λ ∈ Λ.

(b) Average the m×B coefficients to get the initial MIRL estimate

β̂initj = (mB)−1
m∑
i=1

B∑
b2=1

β̂
(b2)
ijλib2

,

where λib2 is the tuning parameter chosen by cross validation and β
(b2)
ijλib2

= 0 if
varaible j is not sampled.

4. Compute selection probability and MIRL estimates:

(a) Calculate the empirical probability

Π̂λ
j = (mB)−1

m∑
i=1

B∑
b2=1

I{β̂(b2)
ijλ 6= 0}.

(b) Selection probability is given by maxλ∈Λ Π̂λ
j .

(c) The important variables are those in the stable variable set:

(1) Ŝstable = {j : max
λ∈Λ

Π̂λ
j ≥ πthr},

and the probability threshold πthr is chosen by cross validation with 1-standard-
error rule.

(d) The final MIRL estimates are defined as

β̂j = β̂initj × I{j ∈ Ŝstable}.
The lasso-OLS estimator (Efron et al., 2004; Belloni and Chernozhukov, 2013) in the second
and third step of the algorithm is a two-step procedure. First, we compute the lasso esti-
mator β̂ = arg min ‖y−Xβ‖22 + λ‖β‖1, where the tuning parameter λ is chosen from cross
validation. Next, the lasso-OLS estimator is the ordinary least squares (OLS) estimator
obtained by regressing the outcome on the subset of variables chosen by lasso. Belloni and
Chernozhukov (2013) showed that lasso-OLS has the advantage of smaller bias compared
to the original lasso.
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3.2. Implementation details. We now describe some details on the implementation of
the algorithm in each step. In Step 1, multiple imputation is performed. Under the MAR
assumption, we impute data through the multivariate imputation by chained equations
(MICE) (Azur et al., 2011). As initial values, MICE imputes every missing value of a
variable by the mean of observed values or a simple random draw from the data. Next,
missing values on one particular variable are imputed by the predicted values from a suit-
able regression where the predictors are all other variables. Cycling through each of the
variables with missing constitutes one cycle. Several cycles are repeated and the final im-
putations are retained as one imputed data set. The number of cycles can be specified
by the researcher. Lastly, the entire imputation process is repeated to generate multiple
imputed data sets. The imputation regression models are provided for continuous data
(predictive mean matching, normal), binary data (logistic regression), unordered categori-
cal data (polytomous logistic regression) and ordered categorical data (proportional odds).
For non-ignorable missing data, there are also some procedures for multiple imputation.
We refer the readers to Glynn, Laird and Rubin (1993) and Siddique and Belin (2008) for
details.

In Step 2, bootstrap samples are generated for each imputed data and an importance
measure is created for each predictor variable. Specifically, for each bootstrap sample, lasso-
OLS is applied where the tuning parameter is selected by cross validation. A measure of
importance for each covariate is calculated as the absolute value of the average of coefficients
across bootstrap samples and imputations.

In Step 3, for each imputed data, MIRL applies lasso-OLS where half of the variables
are randomly selected with probability proportional to the importance measures obtained
from Step 2, and lasso-OLS is applied. We explored other choices of number of variables
to sample in numerical study, and found the result was insensitive to choices p/2 or p/3.
Next, the initial MIRL estimators are obtained by averaging random lasso coefficients
across bootstrap samples and imputations.

The initial MIRL estimators, however, are not sparse. As long as a predictor is selected
at least once in a bootstrap sample, the corresponding coefficient will not be zero. A
natural approach to yield sparse model is through thresholding. The original random lasso
algorithm (Wang et al., 2011) introduced a threshold of tn = 1/n, that is, consider a variable
xj to be selected in the final model only when the corresponding averaged coefficient satisfies

|β̂j | > tn. This threshold may produce sparse model for situations where p � n. However
for some epidemiological applications where p < n, it sets only a few coefficients to zero.
For incomplete data, it is also difficult to determine whether n should be the sample size of
the complete case data or the original data, or some value in between. In contrast, MIRL
provides a systematic way to choose the threshold.

In Step 4 , MIRL ranks the variables and determines the informative ones by stability
selection (Meinshausen and Buhlmann, 2010). The central idea of stability selection is
to refit the model on bootstrap sampled data sets and choose variables that are most
frequently selected across the refitted models. It is sufficiently general to be applicable to
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many selection algorithms, and shown to achieve consistent variable selection using lasso
penalty under weak assumptions on the design matrix (Meinshausen and Buhlmann, 2010).
Note the empirical selection probabilities in (1) involves πthr as a predetermined threshold
probability to be selected. Here, we use 4-fold cross validation with an one-standard-error
rule to choose selection probability threshold πthr. That is, we obtain the threshold that
minimizes the mean squared prediction error (MSPE), and set πthr as the largest threshold
whose MSPE does not exceed one standard deviation band of the minimizer. The empirical
selection probabilities, maxλ∈Λ Π̂λ

j , are natural measures of the importance of variables.
For example, if determining the top 10 most important variables is desirable, instead of
calculating πthr, one can choose the top 10 variables with the highest selection probabilities.

4. Simulation Studies.

4.1. Simulation design. We conduct extensive simulations to compare MIRL with al-
ternatives including listwise deletion least squares regression (LDLS), listwise deletion lasso
(LDlasso), multiple imputation with least squares regression (MILS) combined by Rubin’s
Rule, MIRL without stability selection (MIRL−). LDLS is the least squares estimation for
listwise deleted data after setting the coefficients not significant at 5% level to be 0; MILS
is the least squares estimation for multiply imputed data setting the combined coefficients
not significant at 5% level by Rubin’s rule to be 0; LDlasso is applying lasso to listwise
deleted data with tuning parameter chosen by cross validation; MIRL− is the multiple
imputed random lasso without stability selection, that is, MIRL− uses a hard threshold
and sets the coefficients to be 0 if the absolute values of coefficients are less than 1

n where
n is the total sample size.

We simulated 100 data sets of size 400 from the linear model, Y = Xβ+ ε, where X is a
n by p matrix of multivariate normal random variables with a pairwise correlation of ρ, and
ε ∼ N (0, In). The first 10 variables have non-zero coefficients as (0.1, 0.2, 0.3, 0.4, 0.5,
−0.1, −0.2, −0.3, −0.4, −0.5), and the others are noise variables. Each data set is sepa-
rated into a training set and a testing set with 200 observations each.

We consider 24 scenarios including 2 missing data schemes (MCAR or MAR), 2 missing
proportions (50% or 75%), 3 sizes of non-informative variables (p = 25, 50, 100), and 2 pair-
wise correlations (ρ = 0.2, 0.6). Specifically, MAR data are generated as follows: covariates
X1 and X6 are complete, outcome Y , and covariates X5, X10 are missing with probabilities
{1 + exp(−X6 + 2.5)}−1, {1 + exp(−X1 −X6 + 2)}−1 and {1 + exp(X1 + 0.5X6 + 2)}−1,
respectively. The other variables are missing completely at random and the missing prob-
ability is set such that overall the proportion of samples with missing entries on at least
one variable is approximately 50% or 75%.

The goal is to evaluate MIRL’s ability in predicting the outcome and its variable selection
properties. The MSPE is used as a measure of prediction ability and Matthews Correlation
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Coefficient (MCC) proposed in Matthews (1975), defined as following,

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
,

is considered as a measure of overall variable selection performance. Here TP, TN, FP and
FN stand for true positive, true negative, false positive and false negative, respectively.

4.2. Simulation results. We present simulation results in Figures 2 and 3. Firstly, the
simulations demonstrate that stability selection enhances MIRL’s ability in variable selec-
tion. MIRL− selects many noise variables, which may decrease the prediction accuracy.
The MCC of MIRL− is much smaller than that of MIRL in almost all scenarios, which
shows that the stability selection step substantially improves the variable selection ability
of MIRL compared to the hard threshold used in the random lasso. As for the prediction
performance, MIRL has slightly larger MSPE than MIRL− for some scenarios with p = 25,
although these differences are within the one standard error band. As the number of noise
variable increases, MIRL shows more significant advantages. For MCAR 50% and 75% with
pairwise correlation 0.2 and p = 100 scenario, MIRL has significantly smaller MSPE than
MIRL− as presented in Figure 2 (a) and (b).

Secondly, the simulations show that the multiple imputation step makes better use of the
available information than listwise deletion. MILS and MIRL are much better than LDLS
in both MSPE and MCC in all scenarios. LDLS is not feasible when p is large and missing
proportion is large because the sample size after listwise deletion is less than the number
of variables. LDlasso outperforms MIRL in the MAR scenario when p = 100, pairwise
correlation 0.6 and missing proportion 50%. In this scenario, there is high correlation
between all the informative variables and noise variables. MIRL selects more noise variables
than LDlasso due to their correlation with important variables. When none or not all of the
noise variables are highly correlated with influential variables, MIRL is expected to show
clear advantage. To demonstrate this, we run additional simulation and present results in
Figure 4. The three scenarios are all MAR and the common missing proportion is 50%,
the common pairwise correlation is 0.6. The number of variables is fixed to be 100 with
different numbers of noise variables correlated with informative ones, 0, 40, 90, respectively.
We observe that when decreasing the number of noise variables correlated with informative
ones, MCC increases for MIRL and decreases for LDlasso. For example, when there is no
noise variable correlated with informative variables, the MCC of LDlasso is 0.126, which is
34.1% for MIRL. In the new scenarios, the MSPE of the two methods are not significantly
different.

Thirdly, MILS is MIRL’s closest competitor, and MIRL has comparative advantage over
MILS when the number of variables is large and the correlation between variables are
large. MIRL is significantly better than MILS in both MSPE and MCC when p = 100. For
smaller number of variables, i.e. p = 50, MSPE of MIRL and MILS are not significantly
different when pairwise correlation is 0.2, but MIRL has significantly smaller MSPE than
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MILS when the pairwise correlation is 0.6. Moreover, the increase of pairwise correlation
does not affect the predictive ability of MIRL much, but it increases MSPE for MILS. For
example, in Figure 2 (a), for MCAR 50% scenario with p = 50 and pairwise correlation 0.2,
MSPE is 1.208 for MIRL and 1.205 for MILS; when pairwise correlation is 0.6, MSPE is
1.226 for MIRL and 1.372 for MILS. In addition, for multiple imputation based methods,
MSPE and MCC are not significantly different between two missing proportions 50% and
75% with the other parameters fixed. Changing the missing data scheme from MCAR to
MAR increases MSPE and decreases MCC; but this does not affect the ranking of methods.

4.3. Simulation summary. Compared with other existing methods, MIRL shows ad-
vantages when the data have high proportion of missing and highly correlated influential
variables. In addition, in contrast to alternative choices, MIRL has the advantage in scal-
ing up to high-dimensional data with large n and p: MIRL uses a parallel algorithm such
that it can be easily distributed in parallel to multiple computing cores and the results are
summarized in the end. Additional simulation results of comparisons with other existing
methods are provided in Appendix A.

5. Data Analyses of Project EAT.

5.1. Main analyses. Here we present analyses of the proposed MIRL and other methods
identifying risk and protective factors for adolescent obesity in Project Eat. Because of
the non-monotone and complicated missing structure, large number of missing variables,
diverse types of variables, the application of Johnson et al. (2008) and Garcia et al. (2011)
is difficult. Hence, we compared MIRL with LDLS, MILS and CW. The analysis of Project
EAT data were stratified by gender for comparability with prior work (Larson et al., 2013).
Our proposed method and competitors were applied to select the most important of the 62
multi-contextual environmental predictors of BMI z-score among 1307 teenage boys and
1486 teenage girls separately. The estimated coefficient are provided in Table 2 for boys
and Table 3 for girls.

The MSPE are based on 500 replications with training and testing sets of equal sizes.
The MSPEs of LDLS, MILS, CW, and MIRL are 1.2762(se = 0.0015), 1.2274(se =
0.0021), 1.2291(se = 0.0022), and 1.2248(se = 0.0021) for boys; and 0.8447(se = 0.0015),
0.8422(se = 0.0015), 0.8354(se = 0.0015), and 0.8393(se = 0.0015) for girls. LDLS yields
the largest MSPE, MILS is the second largest for both gender. MIRL has smaller MSPE
than CW for boys and slightly larger for girls. The empirical selection probability of MIRL
naturally provides a ranking of the variable importance as shown in Table 2. The rank-
ing does not rely on a single tuning parameter from one model fit and thus it reduces
sensitivity of the model selection to the tuning parameter. The chosen variable set is there-
fore more stable than those selected based on a single model. Cross validation with the
one-standard-error rule chose selection probability threshold as 0.9 for both genders.

MIRL selected 9 variables for boys. In addition to Hispanic, Native American, and Asian
boys having significantly higher BMI z-score, it showed that high social economic status is
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a protective factor, higher parental weight status and weight of same gender friends were
risk factors. As shown in the original Project EAT investigation (Neumark-Sztainer et al.,
2012; Larson et al., 2013), we found some reactive factors, such as more unhealthy food at
home and higher parental pressure to eat are associated with lower BMI z-score and higher
parental restriction of high-calorie food is associated with higher BMI z-score.

MIRL also picked 9 variables for girls. It picked 3 new variables compared with boys,
which are family meal frequency, safety during the night and day as well as parental role
modeling of food choices. Fewer family meal frequency , lack of safety for day and night,
and poorer parental role modeling for food choice are selected as risk factors for higher
BMI. The common influential risk factors chosen by MIRL for both genders include social
economic class, parental weight status, parental pressure to eat, parental restriction of high-
calorie food, home unhealthy food availability, and weight status of same gender friend.
The estimated effect direction and magnitude are close to boys’ estimates.

Consistent with the previous simulation results, MILS performed similarly with MIRL,
since p = 62 is only a small fraction of n = 1307. For boys, in addition to the 9 variables
picked by MIRL, MILS also identified age and family meal frequency to be significantly
associated with lower BMI z-score at level 0.05. The two additional variables chosen by
MILS have > 80% selection probability estimated by MIRL. For girls, MILS also selected
9 variables very close to MIRL selected, except it selected the variable encouragement to
eat healthy foods (selection probability 89.6% by MIRL) , and missed the variable weight
status same gender friends. MIRL was able to identify weight status same gender friends
for both boys and girls while MILS would have missed that for girls. MILS also selected few
variables with large selection probabilities from MIRL but not above the threshold 90%.

For both genders, CW selected all variables chosen by MIRL, as well as 10 additional
variables for each gender. The variables it chose for girls were the top 19 ranked by MIRL
with the lowest selection probability 79.6%. For boys, the chosen set consists of top 14
variables ranked by MIRL, as well as a few variables with lower selection probabilities,
such as household food insecurity (55%) and black ethnicity group (53.7%).

LDLS identified 3 common variables for both genders, including parental pressure to
eat, parental weight status and weight status of same sex friends which are also selected
by MIRL. It missed the other variables chosen by MIRL, MILS and CW, and selected
parental role modeling of food choices for boys, which is not picked by any other method
and with low selection probability from MIRL (31.1%). LDLS chose parental restriction of
high-calorie food for girls which is a common risk factor picked by other methods. These
analyses suggested that loss of information due to listwise deletion reduces the power to
identify some potentially important variables.

The magnitudes of the coefficients obtained directly from MIRL, MILS and CW can
be different for some variables. One reason is that MIRL’s coefficients are averaged across
bootstrapped samples including zero for the variables either not sampled in step 3 or
shrunk to 0 when applying lasso regression. Thus although we expect these coefficients to
be consistent asymptotically, for finite sample, the shrinkage effect for the magnitude of
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covariates might be evident. The same phenomenon was observed for random lasso (Wang
et al., 2011). One way to mitigate the difference is to refit the model using the selected
variables as suggested in CW. We present the refitted coefficients in Table 2 and 3 for
MIRL, MILS and LDLS, where we can see that the coefficients for the chosen variables
have the same signs, and MIRL and MILS results are close since they chose similar sets of
variables. LDLS chose less number of variables. The difference of the magnitudes for the
refitted variables are due to collinearity of covariates.

5.2. Subgroup analyses. Next, we compare the methods in a targeted subsample pre-
viously identified as at high risk of being overweight (Larson et al., 2013). One strength
of Project EAT is its ethnically diverse sample including: 19% non-Hispanic White, 29%
Black, 17% Hispanic, 20% Asian, 4% Native Americans, and 11% Mixed/Other as well as
a large proportion of low-income adolescents. Hence, in addition to identifying risk and
protective factors for the whole population, it is feasible to identify risk factors among spe-
cific at-risk ethnic population so that interventions can be targeted. Asian teenage boys in
Minneapolis/St. Paul were found to have the largest secular increases in overweight status
going from 30% overweight in 1999 to 50% in 2010 (Neumark-Sztainer et al., 2012). Thus
it is of interest to consider specifically risk and protective factors within the sub-sample of
n = 99 low social economic status (SES) Asian boys.

There were only 20 subjects with complete data which is less than the number of pre-
dictors. We excluded SES, ethnicity indicators and 6 variables, which are degenerated in
this analysis. We compared MIRL, MILS, and CW where only MIRL identified an im-
portant predictor. For MIRL, cross validation chose 90% as the threshold, and parental
weight status was identified with selection probability 91.2%. All other variables have se-
lection probability lower than 80%. Parental weight status is a strong predictor from a
behavioral genetics perspective (Kral and Faith, 2009) and it is also picked in the larger
sample analysis by all available methods. For MILS, the p-value of parental weight status
is 0.5188. Table B1 in the appendix presents coefficients from MIRL and MILS for the top
10 variables with highest ranking in MIRL. The analysis for this subgroup demonstrates
MIRL’s advantages when the variable number p is relatively large compared to the sample
size n: MIRL detected some influential variables while MILS and CW detected none. These
results are consistent with our simulation results where MIRL shows greater comparative
advantages over MILS and other methods in the cases with larger p and smaller n.

6. Conclusion and Discussion. Here we propose a procedure to address missing
data issue in variable selection for high-dimensional data through multiple imputation.
When the number of variables with missing is large, alternative methods to adjust for
missingness (e.g., likelihood-based methods through EM algorithm or inverse probabil-
ity weighting) become difficult or infeasible. Our simulation results show that for low-
dimensional case (e.g., p = 25, n = 200), the least squares regression for multiply imputed
data (MILS) can outperform more sophisticated lasso-based variable selection methods.
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However, when the dimension increases, the advantage of lasso-based methods can be sub-
stantial. Regarding the influence of missing, the efficiency loss in terms of MSPE for a
complete data analysis is considerable even when missing proportion is moderate (e.g.,
50% complete data left after listwise deletion).

MIRL is especially suitable for cases where the informative variables are likely to be
correlated and it performs adequately when the noise variables are correlated with the
informative ones. In this case, the bootstrap samples and random draw of variables ac-
cording to the importance measure enable variables highly correlated with the outcome to
have high selection probability and other noise variables to have low selection probability
despite their correlation with the informative ones. Another advantage of MIRL lies in its
flexibility in dealing with many missing data structures and variable selection techniques.
In the imputation step, other imputation approaches such as MCMC can replace MICE. In
the second step where penalized regression for each bootstrap sample is performed, other
methods such as regression with SCAD penalty (Fan and Li, 2001) and elastic net penalty
(Zou and Hastie, 2005) can be used instead of lasso. In addition, although we focus on
MIRL using linear model for continuous outcomes, it can be easily extended to generalized
linear models for categorical outcomes, Cox regression model for censored outcomes and
mixed effects models for longitudinal outcomes.

One extension of MIRL is to consider mixed effects models to allow random effects (e.g.,
class-specific random effects in Project EAT). Groll and Tutz (2014) proposed variable
selection method to introduce L1 penalty in mixed effects model. A possible solution is to
conduct variable selection with random effects for each bootstrapped samples of imputed
data, and combine coefficients from imputed data sets by taking the average. Further
investigations are needed to draw inference for combining the multiply imputed correlated
data or bootstrapped sample.

Lastly, since MIRL combines random lasso (Wang et al., 2011) and stability selection
(Meinshausen and Buhlmann, 2010) to analyze multiply imputed data, it is of interest
to consider whether theorems developed for stability selection can be applied. Since the
imputation is performed for the covariates in the deign matrix, the random errors are inde-
pendent when treating design matrix X as fixed in a regression problem. It is conjectured
that an adapted version of Theorem 2 in Meinshausen and Buhlmann (2010) can be used to
provide some insights for variable selection consistency of MIRL when the imputed design
matrices satisfy sparse eigenvalue Assumption 1 in Meinshausen and Buhlmann (2010).
However, rigorous theoretical investigation of MIRL is beyond the scope of this work.
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Fig 1. Flowchart of the MIRL Algorithm

Input: A sample of n observations with p predictor variables with possible
missing

Step 1. Impute the sample m times and standardize all variables

Step 2. For each imputed data set, generate B bootstrap samples
a) Compute lasso-OLS coefficients for each bootstrapped sample
b) Compute the importance measure for each of the p variables as the ab-
solute value of the simple average of the m×B coefficients

Step 3.
a) For each m × B dataset, randomly select p/2 variables with probability
proportional to importance measures; compute lasso-OLS coefficients for
p/2 variables and set the rest to be 0
b) Average m×B coefficients to get initial MIRL estimates

Step 4.
Compute empirical selection probabilities and chose probability threshold
by cross-validation, under which the MIRL estimates are set to be zero
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Table 1
Most Frequent (>=1%) Missing Patterns of Some Important Variables in Project EAT data (“X”

indicates non-missing and “.” indicates missing)

Variables % Missing Missing Patterns

Parental pressure to eat 18 X X . . X X X X X
Parental restriction of high-calorie food 18 X X . . X X X X .

Asian 0 X X X X X X X X X
Parental weight status 21 X X . . . . X X X

Home unhealthy food availability 0 X X X X X X X X X
Hispanic 0 X X X X X X X X X

Social economical status 5 X X X X X X . . X
Weight status male friends 36 X . X . X . X . X

Native american 0 X X X X X X X X X
Missing Pattern Percentage (%) 48 26 9 5 2 2 1 1 1

∗: Marginal missing proportion for each variable.
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Table 2
Comparison of MIRL with MILS, LDLS and CW for Project EAT data (Boys)

Variables MIRL MILS LDLS CW
refit raw est. Prob refit raw est. p-value refit raw est. p-value

Parental pressure to eat -0.2664 -0.1779 1.0000 -0.2604 -0.2676 < 0.0001 -0.1830 -0.1108 < 0.0001 -0.2633
Parental restriction of high-calorie food 0.2166 0.2301 0.9980 0.2044 0.2001 < 0.0001 0 0.0303 0.0613 0.1804

Asian 0.1765 0.0843 0.9970 0.1727 0.1903 0.0001 0 0.2753 0.3189 0.1713
Parental weight status 0.2117 0.1662 0.9960 0.2044 0.1925 < 0.0001 0.2175 0.0269 0.0341 0.1922

Home unhealthy food availability -0.1058 -0.1313 0.9610 -0.1017 -0.0875 0.0115 0 -0.0229 0.4993 -0.0981
Hispanic 0.1361 0.0118 0.9595 0.1408 0.1312 0.0033 0 -0.1621 0.5623 0.1225

Social economical status -0.1090 -0.0787 0.9580 -0.1032 -0.0928 0.0187 0 -0.0200 0.7636 -0.0784
Weight status male friends 0.0861 0.0985 0.9470 0.0861 0.0844 0.0258 0.1116 0.5116 0.0106 0.0862

Native american 0.0911 0.0383 0.9180 0.0825 0.1021 0.0092 0 0.5176 0.2762 0.0813

During the night and day 0 0.0567 0.8605 0 0.0559 0.0968 0 -0.0211 0.9227 0.0690
Age 0 -0.0773 0.8230 -0.0774 -0.1281 0.0147 0 -0.0448 0.5384 -0.0753

Presence of convenience store in 800 m 0 -0.0539 0.8080 0 -0.1668 0.0503 0 -0.6854 0.1605 -0.0769
Family meal frequency 0 -0.0143 0.8065 -0.0589 -0.0701 0.0411 0 0.0117 0.7446 -0.0559

Park/recreation space (% of area) 0 -0.0373 0.7925 0 -0.0518 0.1471 0 -0.3328 0.0523 -0.0458
Encouragement to eat healthy foods 0 0.0144 0.7715 0 0.0721 0.0583 0 0.1106 0.2884 0

Presence of convenience store in 1200 m 0 0.0116 0.7640 0 0.0578 0.1062 0 -0.1481 0.6209 0.0563
Number of male friends in sample 0 0.0161 0.7310 0 0.0497 0.2322 0 0.1559 0.1703 0.0407
Sedentary behavior female friends 0 0.0043 0.6460 0 -0.0337 0.3895 0 0.0025 0.5103 0

During the night 0 -0.0167 0.6430 0 -0.0459 0.1724 0 -0.2547 0.1777 0
Moderate-to-vigorous PA female friends 0 -0.0087 0.6360 0 -0.0196 0.6340 0 -0.0133 0.4987 -0.0459
Parental time spent watching TV with 0 0.0305 0.6315 0 0.0352 0.3346 0 -0.0121 0.7611 0

Healthy food served at family meals 0 -0.0013 0.6045 0 -0.0447 0.2206 0 -0.0141 0.6569 0
Fast-food frequency male friends 0 0.0101 0.5815 0 0.0696 0.1346 0 0.0447 0.1848 0

Household food insecurity 0 0.0405 0.5500 0 0.0207 0.5901 0 0.2160 0.2115 0.0349
Limited variety of fruits and veges 0 -0.0425 0.5435 0 -0.0598 0.1744 0 -0.1286 0.3444 0

Black 0 -0.0210 0.5370 0 -0.0069 0.8864 0 -0.1754 0.5081 -0.0071
Weight status female friends 0 0.0167 0.5200 0 0.0309 0.4901 0 0.1742 0.3890 0

Friends’ support for PA 0 -0.0069 0.5095 0 -0.0265 0.4385 0 -0.0050 0.9018 0
Friends’ attitudes of eating healthy foods 0 0.0191 0.5080 0 0.0461 0.1860 0 0.0119 0.8967 0

. . .
Parental role modeling of food choices 0 0.0015 0.3110 0 -0.0225 0.5766 -0.0392 -0.0542 0.0487 0

. . .

Table 3
Comparison of MIRL with MILS, LDLS and CW for Project EAT data (girls)

Variables MIRL MILS LDLS CW
refit raw est. Prob refit raw est. p-value refit raw est. p-value

Social Economic Status -0.1037 -0.1206 1.0000 -0.1147 -0.0900 0.0022 0 -0.0700 0.1790 -0.0889
Parental pressure to eat -0.2079 -0.2528 1.0000 -0.2068 -0.2150 <0.0001 -0.1830 -0.1023 < 0.0001 -0.2065

Parental restriction of high-calorie food 0.2191 0.2679 1.0000 0.2165 0.2317 <0.0001 0.2313 0.0443 0.0004 0.2160
Parental weight status 0.1855 0.1646 1.0000 0.1987 0.1714 <0.0001 0.1994 0.0296 0.0065 0.1811

Home unhealthy food availability -0.1005 -0.1001 0.9960 -0.0888 -0.1060 0.0001 0 -0.0071 0.7479 -0.1007
Family meal frequency -0.0776 -0.0814 0.9880 -0.0882 -0.0843 0.0011 0 -0.0364 0.1480 -0.0802

Weight status female friends 0.0735 0.0183 0.9360 0 0.0534 0.1434 0.0799 0.3500 0.0282 0.0540
Safety during the night and day 0.0557 0.0470 0.9240 0.0518 0.0642 0.0161 0 0.2550 0.0922 0.0553

Parental role modeling of food choices -0.0410 -0.0211 0.9200 -0.0742 -0.0659 0.0311 0 -0.0105 0.6068 -0.0720

Hispanic 0 0.0338 0.8960 0 0.0478 0.1748 0 0.2774 0.2258 0.0497
Encouragement to eat healthy foods 0 0.0043 0.8960 0.0787 0.0822 0.0066 0 0.0964 0.2165 0.0818

Schools commitment to promoting PA 0 -0.0243 0.8960 0 -0.0299 0.7120 0 -0.1069 0.6960 -0.0605
Asian 0 -0.0458 0.8680 0 -0.0482 0.2300 0 0.1633 0.4959 -0.0507

Parental fast food intake 0 0.0280 0.8560 0 0.0414 0.1976 0 0.0242 0.6410 0.0372
Presence of convenience store in 1200 m 0 0.0306 0.8560 0 0.0520 0.0592 0 0.2049 0.3285 0.0314
Moderate-to-vigorous PA female friends 0 -0.0327 0.8440 0 -0.0522 0.0683 0 -0.0236 0.1632 -0.0383

Parental time spent supporting PA 0 0.0195 0.8080 0 0.0599 0.1410 0 0.0130 0.6853 0.0525
Weight status male friends 0 0.0276 0.8080 0 0.0368 0.2137 0 0.1555 0.3021 0.0447

Park/recreation space (% of area) 0 -0.0516 0.7960 0 -0.0360 0.1927 0 -0.0467 0.7186 -0.0356
Schools commitment to promoting healthy eating 0 -0.0143 0.7480 0 -0.1173 0.1330 0 0.0784 0.7962 0

TV during dinner 0 -0.0015 0.6760 0 0.0224 0.3769 0 0.0005 0.9931 0
Limited variety of available fruits and vegetables 0 -0.0129 0.6480 0 -0.0375 0.2462 0 0.0589 0.5608 0

Students allowed to drink during class 0 0.0182 0.6440 0 0.0244 0.7891 0 -0.1200 0.8501 0
Indoor campus PA facilities 0 -0.0042 0.6240 0 -0.0434 0.4623 0 -0.0819 0.4320 0

Home healthy food availability 0 -0.0141 0.6000 0 -0.0137 0.6533 0 -0.0299 0.2173 0
Distance to nearest gym/fitness center (m) 0 -0.0055 0.5880 0 0.0288 0.2899 0 0.0870 0.4931 0

Poor quality of fruits or vegetables 0 -0.0205 0.5520 0 -0.0237 0.4762 0 -0.0704 0.5297 0
Age 0 -0.0009 0.4520 0 -0.0516 0.2040 0 -0.0112 0.8407 0

Density of total crime incidents 0 0.0107 0.4440 0 0.0083 0.7629 0 0.0634 0.6367 0
Native American 0 0.0068 0.4240 0 0.0207 0.4669 0 -0.0210 0.9548 0

. . .
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Fig 2. Method Comparison for Prediction†

†There are some missing or off-chart points for LDLS because when number of variables is large and missing
proportion is big, where LDLS fails to give a reasonable estimator. Tables of exact numbers are omitted because of

limit on number of pages, can be provided upon request.
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Fig 3. Method Comparison for Variable Selection†

†Tables of exact numbers are omitted because of limit on number of pages, can be provided upon request.
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(a) MSPE

(b) MCC

Fig 4. MAR scenario with p = 100, pairwise correlation 0.6 and missing proportion 50%
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APPENDIX A: FURTHER COMPARISONS WITH EXISTING LITERATURE

We compare MIRL with methods in Johnson et al. (2008), Garcia, Ibrahim and Zhu
(2010a), Chen and Wang (2013) (CW), and RRstep under Rubin’s rule (e.g., stepwise
regression with p-value computed based on Rubin’s rule standard error). We follow the
same simulation settings reported in Johnson et al. (2008) and Garcia et al. (2010a). The
results for the scenario in section 5.2 of Johnson et al. (2008) are presented in Table B7.
We can see that MIRL, RRstep and MILS show good performance in variable selection and
prediction in all four cases, and they outperform Johnson et al. (2008). MILS and RRstep
perform similarly in this scenario and using stepwise selection does not lead to better
results than one-step backward selection (MILS). The simulation results from section 4.1
in Garcia et al. (2008) are shown in Table B8. MIRL outperforms all its competitors in
terms of variable selection. RRstep and MILS also have high MCC for scenario 1 and 3. CW
gives good MSPE for scenario 2 but the MCC is small. In these simulation settings, CW
tends to select more variables, where gains a larger true positives at the cost of selecting
more noise variables.

Table B9 presents simulation results comparing MIRL with RRstep and CW for p > n
cases. The simulation settings contain two pairs of n and p: n = 50, p = 100 and n =
100, p = 200. The coefficients for x1, x2, . . . xp are β = (3, 1.5, 0, 0, 2, 0, . . . , 0), σ = 3, X1

and X2 missing at random depending on X3 to X8 and outcome, and about 30% of subjects
remain after listwise deletion. In this case, MIRL outperforms the other two methods in
terms of smaller prediction error, and has similar performance in terms of MCC.
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APPENDIX B: SIMULATION RESULTS

Table B1
Results for p = 25 with pairwise correlation 0.2

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 1.705(0.044) 0.371(0.016) 1.363(0.021) 5.97(0.119) 14.16(0.097) 0.603(0.012)
MILS 1.069(0.031) 0.154(0.008) 1.138(0.013) 7.38(0.095) 14.25(0.098) 0.725(0.012)

50% LD lasso cv 1.75(0.041) 0.289(0.014) 1.242(0.015) 8.4(0.147) 8.69(0.292) 0.437(0.017)
MIRLnoSS 1.489(0.03) 0.21(0.009) 1.18(0.014) 9.51(0.063) 4.37(0.157) 0.301(0.013)

MIRL 1.407(0.03) 0.262(0.011) 1.227(0.016) 6.02(0.122) 14.82(0.061) 0.673(0.01)
MCAR LDLS 3.086(0.073) 1.105(0.049) 1.969(0.044) 3.14(0.186) 14.3(0.104) 0.381(0.018)

MILS 1.119(0.032) 0.169(0.008) 1.153(0.012) 7.13(0.105) 14.32(0.091) 0.711(0.012)
25% LD lasso cv 2.576(0.067) 0.64(0.027) 1.518(0.026) 6.35(0.263) 9.76(0.367) 0.324(0.019)

MIRLnoSS 1.541(0.032) 0.223(0.009) 1.188(0.014) 9.45(0.067) 4.33(0.171) 0.288(0.014)
MIRL 1.473(0.035) 0.288(0.012) 1.243(0.015) 5.83(0.134) 14.82(0.052) 0.658(0.01)

LDLS 2.376(0.064) 0.701(0.032) 1.651(0.036) 4.4(0.16) 14.21(0.105) 0.474(0.016)
MILS 1.431(0.035) 0.241(0.01) 1.229(0.015) 7.39(0.121) 13.54(0.115) 0.663(0.015)

50% LD lasso cv 2.192(0.052) 0.434(0.019) 1.373(0.02) 7.63(0.171) 8.92(0.352) 0.372(0.021)
MAR MIRLnoSS 1.784(0.033) 0.302(0.011) 1.266(0.015) 9.41(0.065) 4.28(0.168) 0.283(0.014)

MIRL 1.654(0.036) 0.35(0.014) 1.31(0.016) 6.06(0.147) 14.62(0.09) 0.658(0.011)
LDLS 3.747(0.151) 1.716(0.168) 2.53(0.143) 2.37(0.166) 14.1(0.138) 0.294(0.021)
MILS 1.385(0.034) 0.234(0.01) 1.207(0.016) 7.33(0.129) 13.82(0.098) 0.681(0.015)

25% LD lasso cv 2.792(0.074) 0.773(0.034) 1.669(0.036) 5.76(0.279) 10.51(0.357) 0.315(0.022)
MIRLnoSS 1.805(0.033) 0.31(0.011) 1.263(0.016) 9.32(0.072) 4.27(0.167) 0.268(0.014)

MIRL 1.67(0.034) 0.358(0.013) 1.304(0.017) 5.84(0.143) 14.73(0.066) 0.65(0.01)
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Table B2
Results for p = 25 with pairwise correlation 0.6

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 2.418(0.06) 0.724(0.03) 1.514(0.037) 4.28(0.156) 14.31(0.088) 0.475(0.016)
MILS 1.536(0.037) 0.307(0.013) 1.203(0.017) 6.05(0.123) 14.38(0.089) 0.631(0.011)

50% LD lasso cv 2.27(0.052) 0.493(0.021) 1.224(0.015) 7.25(0.198) 9.72(0.313) 0.39(0.017)
MIRLnoSS 2.032(0.036) 0.39(0.014) 1.175(0.013) 9.34(0.076) 3.88(0.174) 0.243(0.016)

MIRL 1.912(0.04) 0.46(0.018) 1.219(0.014) 5.21(0.171) 14.46(0.123) 0.576(0.013)
MCAR LDLS 3.79(0.097) 1.694(0.09) 2.224(0.097) 1.87(0.147) 14.25(0.105) 0.248(0.017)

MILS 1.593(0.039) 0.337(0.014) 1.231(0.019) 5.8(0.123) 14.37(0.085) 0.609(0.012)
25% LD lasso cv 3.02(0.071) 0.928(0.033) 1.407(0.019) 4.47(0.296) 11.4(0.326) 0.262(0.022)

MIRLnoSS 2.104(0.038) 0.414(0.015) 1.186(0.012) 9.27(0.074) 3.58(0.161) 0.212(0.016)
MIRL 1.956(0.044) 0.483(0.02) 1.23(0.013) 4.97(0.181) 14.55(0.091) 0.569(0.014)

LDLS 3.207(0.065) 1.2(0.045) 1.942(0.076) 2.46(0.144) 14.32(0.089) 0.305(0.016)
MILS 2.056(0.047) 0.487(0.018) 1.308(0.02) 6.07(0.128) 13.28(0.121) 0.528(0.014)

50% LD lasso cv 2.741(0.064) 0.752(0.029) 1.365(0.017) 5.51(0.276) 10.77(0.36) 0.319(0.019)
MAR MIRLnoSS 2.227(0.037) 0.454(0.015) 1.222(0.013) 9.21(0.087) 3.95(0.19) 0.231(0.017)

MIRL 2.073(0.039) 0.517(0.018) 1.264(0.015) 5.38(0.171) 13.97(0.118) 0.537(0.014)
LDLS 4.125(0.176) 2.233(0.303) 2.735(0.402) 1.14(0.121) 14.23(0.114) 0.142(0.024)
MILS 2.003(0.044) 0.476(0.017) 1.328(0.024) 5.96(0.133) 13.57(0.112) 0.545(0.013)

25% LD lasso cv 3.176(0.113) 1.057(0.098) 1.539(0.075) 4.03(0.283) 11.44(0.337) 0.227(0.02)
MIRLnoSS 2.222(0.038) 0.453(0.015) 1.229(0.014) 9.18(0.086) 3.84(0.163) 0.222(0.016)

MIRL 2.06(0.04) 0.513(0.018) 1.272(0.016) 5.47(0.177) 14.02(0.114) 0.549(0.015)
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Table B3
Results for p = 50 with pairwise correlation 0.2

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 2.742(0.087) 0.796(0.036) 1.721(0.039) 4.87(0.166) 37.83(0.206) 0.512(0.016)
MILS 1.403(0.036) 0.234(0.01) 1.205(0.015) 7.43(0.102) 38.22(0.135) 0.726(0.011)

50% LD lasso cv 2.408(0.07) 0.405(0.015) 1.332(0.021) 8.17(0.13) 27.39(0.626) 0.426(0.012)
MIRLnoSS 2.333(0.034) 0.293(0.009) 1.239(0.016) 9.6(0.053) 9.5(0.282) 0.197(0.008)

MIRL 1.424(0.031) 0.253(0.01) 1.208(0.016) 6.83(0.105) 39.29(0.13) 0.75(0.01)
MCAR LDLS 5.946(0.624) 6.475(1.443) 6.637(1.181) 0.875(0.215) 38.286(0.507) 0.175(0.042)

MILS 1.428(0.037) 0.245(0.011) 1.218(0.017) 7.16(0.104) 38.36(0.133) 0.714(0.011)
25% LD lasso cv 3.539(0.186) 0.985(0.082) 1.799(0.066) 5.38(0.261) 30.56(0.845) 0.307(0.017)

MIRLnoSS 2.366(0.034) 0.299(0.009) 1.238(0.015) 9.59(0.057) 9.01(0.263) 0.188(0.008)
MIRL 1.458(0.03) 0.266(0.01) 1.223(0.016) 6.59(0.114) 39.34(0.109) 0.734(0.01)

LDLS 4.179(0.238) 2.021(0.32) 2.837(0.258) 2.152(0.171) 38.152(0.239) 0.28(0.019)
MILS 2.203(0.07) 0.446(0.019) 1.424(0.021) 7.14(0.119) 35.49(0.267) 0.581(0.015)

50% LD lasso cv 2.879(0.091) 0.632(0.031) 1.536(0.028) 6.85(0.213) 29.41(0.677) 0.381(0.015)
MAR MIRLnoSS 2.799(0.041) 0.411(0.012) 1.37(0.016) 9.7(0.05) 8.16(0.269) 0.184(0.008)

MIRL 1.891(0.043) 0.382(0.013) 1.35(0.017) 6.67(0.144) 37.24(0.351) 0.642(0.013)
LDLS 5.303(1.752) 9.472(8.068) 10.149(7.689) 0(0) 40(0) NaN(NA)
MILS 2.087(0.057) 0.428(0.017) 1.366(0.019) 6.89(0.117) 36.28(0.206) 0.591(0.013)

25% LD lasso cv 3.63(0.113) 1.085(0.044) 1.916(0.041) 4.05(0.263) 32.29(0.737) 0.259(0.016)
MIRLnoSS 2.781(0.04) 0.409(0.012) 1.34(0.016) 9.71(0.054) 7.85(0.333) 0.178(0.009)

MIRL 1.893(0.041) 0.384(0.013) 1.321(0.016) 6.59(0.133) 37.28(0.344) 0.635(0.013)

Table B4
Results for p = 50 with pairwise correlation 0.6

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 3.746(0.119) 1.44(0.067) 2.072(0.084) 3.39(0.16) 37.71(0.211) 0.365(0.019)
MILS 2.043(0.055) 0.478(0.019) 1.372(0.031) 5.87(0.104) 37.99(0.162) 0.598(0.012)

50% LD lasso cv 2.843(0.069) 0.66(0.025) 1.269(0.016) 6.05(0.236) 31.07(0.616) 0.376(0.015)
MIRLnoSS 3.046(0.043) 0.504(0.015) 1.213(0.014) 9.45(0.066) 8.1(0.27) 0.156(0.008)

MIRL 2.13(0.044) 0.472(0.016) 1.226(0.015) 6.07(0.146) 37.14(0.316) 0.588(0.011)
MCAR LDLS 6.986(0.962) 9.495(2.528) 7.595(1.885) 0.607(0.178) 38.071(0.571) 0.059(0.035)

MILS 2.064(0.056) 0.496(0.02) 1.422(0.035) 5.62(0.099) 38.12(0.153) 0.586(0.011)
25% LD lasso cv 3.782(0.183) 1.245(0.103) 1.521(0.044) 3.65(0.274) 32.97(0.742) 0.249(0.017)

MIRLnoSS 3.099(0.045) 0.517(0.015) 1.218(0.014) 9.54(0.063) 8.01(0.281) 0.163(0.009)
MIRL 2.158(0.045) 0.48(0.015) 1.243(0.014) 6.09(0.141) 37.05(0.384) 0.592(0.013)

LDLS 5.375(0.316) 3.631(0.422) 3.238(0.278) 1.273(0.129) 38.071(0.277) 0.169(0.022)
MILS 3.287(0.094) 0.921(0.035) 1.667(0.042) 5.53(0.142) 34.92(0.242) 0.425(0.016)

50% LD lasso cv 3.298(0.089) 0.928(0.03) 1.409(0.017) 4.21(0.267) 33.23(0.625) 0.302(0.016)
MAR MIRLnoSS 3.609(0.05) 0.677(0.018) 1.307(0.014) 9.42(0.074) 7.36(0.272) 0.139(0.009)

MIRL 2.778(0.067) 0.651(0.021) 1.324(0.016) 6.32(0.169) 33.3(0.564) 0.462(0.015)
LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)
MILS 3.248(0.088) 0.914(0.034) 1.704(0.046) 5.36(0.138) 35.24(0.217) 0.421(0.015)

25% LD lasso cv 3.645(0.119) 1.22(0.052) 1.559(0.026) 2.26(0.253) 35.43(0.619) 0.187(0.021)
MIRLnoSS 3.594(0.052) 0.665(0.018) 1.296(0.015) 9.5(0.067) 6.7(0.313) 0.131(0.01)

MIRL 2.757(0.064) 0.645(0.021) 1.326(0.016) 6.22(0.174) 33.36(0.564) 0.455(0.015)
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Table B5
Results for p = 100 with pairwise correlation 0.2

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 6.662(0.946) 5.162(1.031) 6.018(1.106) 0.739(0.212) 86.283(1.332) 0.104(0.033)
MILS 2.466(0.078) 0.544(0.021) 1.526(0.029) 6.43(0.111) 85.39(0.307) 0.583(0.012)

50% LD lasso cv 2.754(0.077) 0.529(0.02) 1.428(0.021) 6.59(0.176) 75.89(0.864) 0.397(0.011)
MIRLnoSS 3.682(0.049) 0.418(0.011) 1.346(0.016) 9.49(0.063) 22.16(0.466) 0.141(0.005)

MIRL 1.745(0.041) 0.311(0.011) 1.273(0.015) 7.1(0.095) 87(0.302) 0.689(0.009)
MCAR LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)

MILS 2.374(0.075) 0.533(0.021) 1.517(0.028) 6.18(0.111) 86.05(0.282) 0.586(0.012)
25% LD lasso cv 3.551(0.105) 0.946(0.028) 1.794(0.032) 4.01(0.24) 79.11(1.04) 0.294(0.013)

MIRLnoSS 3.712(0.049) 0.429(0.012) 1.376(0.016) 9.49(0.064) 21.4(0.476) 0.136(0.005)
MIRL 1.761(0.044) 0.325(0.012) 1.299(0.016) 6.92(0.099) 87.23(0.373) 0.688(0.009)

LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)
MILS 6.023(0.204) 1.737(0.072) 2.535(0.071) 5.87(0.134) 75.02(0.645) 0.326(0.014)

50% LD lasso cv 3.239(0.112) 0.715(0.028) 1.582(0.03) 5.78(0.213) 76.11(1.118) 0.355(0.012)
MAR MIRLnoSS 5.026(0.066) 0.759(0.019) 1.602(0.02) 9.53(0.07) 16.78(0.443) 0.11(0.007)

MIRL 3.134(0.089) 0.683(0.021) 1.552(0.021) 6.32(0.17) 79.25(0.955) 0.456(0.015)
LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)
MILS 5.362(0.178) 1.596(0.065) 2.465(0.06) 5.35(0.14) 78.16(0.542) 0.334(0.014)

25% LD lasso cv 3.823(0.105) 1.195(0.032) 2.02(0.035) 2.6(0.244) 82.17(0.855) 0.206(0.017)
MIRLnoSS 4.958(0.061) 0.737(0.018) 1.64(0.022) 9.48(0.063) 16.41(0.407) 0.104(0.005)

MIRL 3.015(0.082) 0.664(0.02) 1.579(0.023) 6.26(0.163) 80.18(0.848) 0.467(0.014)

Table B6
Results for p = 100 with pairwise correlation 0.6

Approx.% left
after listwise
deletion

L1 L2 MSPE TP TN MCC

LDLS 8.317(1.357) 8.944(1.951) 7.478(1.716) 0.63(0.187) 86.261(1.273) 0.079(0.032)
MILS 3.576(0.11) 1.136(0.044) 1.959(0.077) 4.64(0.128) 85.5(0.292) 0.444(0.013)

50% LD lasso cv 3.451(0.117) 0.836(0.028) 1.349(0.017) 4.74(0.256) 77.33(1.201) 0.323(0.014)
MIRLnoSS 4.814(0.063) 0.707(0.019) 1.299(0.015) 9.34(0.082) 18.38(0.43) 0.106(0.007)

MIRL 2.633(0.077) 0.571(0.019) 1.303(0.018) 6.02(0.146) 82.37(0.912) 0.506(0.013)
MCAR LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)

MILS 3.404(0.101) 1.095(0.043) 1.927(0.059) 4.34(0.124) 86.21(0.258) 0.444(0.013)
25% LD lasso cv 3.829(0.148) 1.193(0.048) 1.509(0.025) 2.29(0.241) 82.56(1.03) 0.209(0.018)

MIRLnoSS 4.827(0.063) 0.715(0.02) 1.316(0.016) 9.31(0.072) 17.86(0.439) 0.099(0.007)
MIRL 2.639(0.071) 0.587(0.02) 1.338(0.018) 5.97(0.138) 82.93(0.796) 0.505(0.013)

LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)
MILS 9.291(0.248) 3.574(0.122) 3.08(0.092) 4.4(0.162) 72.09(0.597) 0.18(0.013)

50% LD lasso cv 3.565(0.116) 0.991(0.032) 1.455(0.02) 3.39(0.266) 80.62(1.029) 0.259(0.016)
MAR MIRLnoSS 6.717(0.101) 1.243(0.033) 1.562(0.024) 9.5(0.064) 12.32(0.366) 0.076(0.007)

MIRL 4.969(0.119) 1.171(0.034) 1.562(0.025) 6.21(0.196) 66.46(1.295) 0.263(0.013)
LDLS NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA) NaN(NA)
MILS 8.231(0.235) 3.273(0.119) 3.177(0.161) 3.84(0.152) 75.92(0.527) 0.183(0.013)

25% LD lasso cv 4.046(0.165) 1.373(0.06) 1.625(0.033) 1.63(0.195) 83.52(0.927) 0.169(0.019)
MIRLnoSS 6.625(0.104) 1.22(0.034) 1.518(0.022) 9.51(0.063) 12.58(0.373) 0.079(0.007)

MIRL 4.957(0.137) 1.16(0.036) 1.531(0.025) 6.11(0.21) 64.59(1.637) 0.245(0.014)
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Table B7
Comparison for Johnson’s Scenario

L1 L2 MPSE TP TN MCC

MILS 0.52 0.07 1.07 5.65 3.81 0.90
LDlasso 0.97 0.16 1.15 5.98 1.73 0.62

Setting 1 MIRL 0.65 0.11 1.09 5.30 3.84 0.85
σ = 1 CW 0.59 0.07 1.06 5.99 2.75 0.75

RRstep 0.56 0.08 1.06 5.63 3.85 0.90
JohnLas 5.91 2.42 0.67

JohnALas 5.77 3.55 0.86

MILS 1.08 0.30 1.25 4.92 3.81 0.76
LDlasso 2.37 1.02 2.08 5.67 2.01 0.57

Setting 1 MIRL 1.28 0.40 1.31 4.75 3.87 0.76
σ = 2 CW 1.10 0.23 1.17 5.70 2.89 0.71

RRstep 1.13 0.28 1.19 5.07 3.79 0.78
JohnLas 4.88 3.70 0.72

JohnALas 5.60 2.54 0.61

MILS 0.29 0.04 1.03 3.00 6.67 0.94
LDlasso 0.87 0.16 1.14 3.00 3.48 0.52

Setting 2 MIRL 0.27 0.03 1.02 3.00 6.60 0.95
σ = 1 CW 0.48 0.06 1.04 3.00 4.95 0.66

RRstep 0.31 0.04 1.03 3.00 6.63 0.93
JohnLas 3.00 4.11 0.55

JohnALas 3.00 6.25 0.85

MILS 0.56 0.15 1.15 3.00 6.64 0.93
LDlasso 2.14 0.99 2.01 3.00 3.79 0.55

Setting 2 MIRL 0.50 0.10 1.12 3.00 6.69 0.95
σ = 2 CW 0.85 0.19 1.18 3.00 5.02 0.67

RRstep 0.54 0.12 1.13 3.00 6.72 0.95
JohnLas 2.98 4.56 0.59

JohnALas 2.98 6.08 0.81
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Table B8
Comparison for Garcia’s Scenario

L1 L2 MPSE TP TN MCC

MILS 1.04 0.58 1.67 2.98 4.87 0.97
LDlasso 1.57 0.59 1.56 3.00 2.24 0.54

n = 40 MIRL 1.21 0.65 1.77 2.98 4.83 0.98
σ = 1 CW 1.72 0.77 1.81 3.00 3.09 0.64

RRstep 1.31 0.72 1.75 2.96 4.80 0.95
GarciaAlasso 3.00 4.64 0.91
GarciaSCAD 3.00 4.64 0.91

MILS 3.75 6.26 6.67 2.07 4.76 0.73
LDlasso 5.20 6.32 7.31 2.74 2.65 0.50

n = 40 MIRL 3.82 5.55 6.31 2.24 4.71 0.80
σ = 3 CW 3.77 3.94 4.40 2.93 3.49 0.68

RRstep 4.26 6.60 5.53 2.24 4.65 0.71
GarciaAlasso 2.72 4.31 0.75
GarciaSCAD 2.67 4.53 0.79

MILS 0.87 0.38 1.33 2.99 4.76 0.95
LDlasso 1.30 0.39 1.34 3.00 2.48 0.62

n = 60 MIRL 0.86 0.31 1.29 2.99 4.98 0.99
σ = 1 CW 1.31 0.45 1.40 3.00 3.24 0.65

RRstep 1.00 0.40 1.33 2.99 4.76 0.94
GarciaAlasso 3.00 4.83 0.96
GarciaSCAD 3.00 4.86 0.96

Table B9
p > n case for 100 replications

Settings L1 L2 MPSE TP TN MCC

n = 50 MIRL 9.55 16.51 19.50 1.12 92.93 0.27
p = 100 RRstep 14.01 25.78 26.23 1.23 91.22 0.27

CW 35.94 42.04 42.15 2.65 43.32 0.13

n = 100 MIRL 10.03 13.59 15.67 1.74 187.48 0.31
p = 200 RRstep 18.36 25.04 24.71 1.62 182.22 0.25

CW 24.96 28.15 27.95 2.26 153.72 0.35

imsart-aoas ver. 2013/03/06 file: mirl_final.tex date: October 19, 2015



MULTIPLE IMPUTATION RANDOM LASSO 27

APPENDIX C: SUBGROUP ANALYSIS

Table B1
MIRL Selected Sequence of Important Variables Compared with MILS Selection for Boys

Variables MIRL MILS
raw est. Prob raw est. p-value

Parental weight status 0.0689 0.9115 0.2347 0.5188

Distance to nearest recreation center(m) -0.1039 0.7950 -0.2779 0.3471
Competitive food with policies -0.1286 0.7590 -0.3597 0.5438

Park/recreation space (% of area) -0.0035 0.7160 -0.0437 0.8842
Poor quality of fruits/vegetables 0.0386 0.7060 0.0038 0.9904

Friends’ attitudes of eating healthy foods 0.0359 0.7030 0.4056 0.1383
During the night -0.1511 0.6985 -0.2100 0.6564

TV during dinner -0.1696 0.6715 -0.4001 0.0751
Fast-food frequency male friends -0.0719 0.6630 -0.3674 0.3973

Number of male friends in sample 0.0344 0.6255 -0.0505 0.8755
Parental fast food intake 0.0382 0.5975 -0.0226 0.9333
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