REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS

Ying Liu

Department of Biostatistics, Columbia University

Summer Intern at Research and CMC Biostats, Sanofi, Boston

August 26, 2015

OUTLINE

Introduction

- Study Goal
- Multiple Testing and Meta Analysis
- Copula Mixture Model

Proposed Method: A Bayesian Classification Approach

- Mixed Effect Model for Data Generation
- Proposed Method: Mixture Gaussian Model for T-statistics
- 3 Simulation Results
- 4 Real Data Analysis

OUTLINE

Introduction

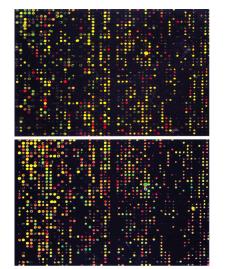
- Study Goal
- Multiple Testing and Meta Analysis
- Copula Mixture Model

2 Proposed Method: A Bayesian Classification Approach

- Mixed Effect Model for Data Generation
- Proposed Method: Mixture Gaussian Model for T-statistics
- 3 Simulation Results
- Real Data Analysis

MOTIVATION: HIGH-THROUGHPUT ARRAY ANALYSIS

Finding differentially expressed Genes in normal and disease biological processes in high-throughput array data.



PROBLEM TO SOLVE: REPRODUCIBILITY

Finding Genes that are differentially expressed in 2 Studies for the same disease.

- Comparable Array Type
- Two human studies
- Animal and Human studies: finding the genes that differentially expressed in both animal and human.

REPRODUCIBILITY

- Reproducibility is one of the main principles of the scientific method.
- Reproducibility is the ability of an entire experiment or study to be duplicated.
- "By repeating the same experiment over and over again, the certainty of fact will emerge."- Robert Boyle
- Robust and reliable findings across studies.
- Begley, C. G.; Ellis, L. M. (2012). "Drug development: Raise standards for preclinical cancer research". Nature 2012

Journal impact factor	Number of articles	Mean number of citations of non-reproduced articles	Mean number of citations of reproduced articles	
>20	21	248 (range 3-800)	231 (range 82-519)	
5–19	32	169 (range 6-1,909)	13 (range 3-24)	

Preclinical research generates many secondary publications, even when results cannot be reproduced.

Results from ten-year retrospective analysis of experiments performed prospectively. The term 'non-reproduced' was assigned on the basis of findings not being sufficiently robust to drive a drug-development programme.

MULTIPLE TESTING SOLUTIONS

- *H*₀: There is no association between gene and disease.
- Test H_0 for tens of thousands of genes.
- need to consider Multiple testing

Hypothesis	Accept Null	Reject Null
Null True	TN	FP
Alternative True	FN	TP

FWER

- 'Family-wise error rate': the probability of rejecting at least one of the true *H*₀
- FWER= *P*(*FP* ≥ 1)
- Example: Bonferroni
- Limitations: too stringent for high throughput data.

SINGLE ARRAY MULTIPLE TESTING SOLUTIONS

Hypothesis	Accept Null	Reject Null
Null True	TN	FP
Alternative True	FN	TP

• FDR 'false discovery rate': the proportion of incorrect rejections out of all the rejections.

• FDR=
$$E\left(\frac{FP}{max((FP+TP),1)}\right)$$

- Benjamini Hochberg Procedure (1995): controling the FDR $\leq \alpha$.
- $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(m)}$ are ordered p-values. Let $k = \max\{1 \leq i \leq m : P_{(i)} \leq i\alpha/m\}.$
- Reject hypothesis corresponding to $P_{(i)}$ for i = 1, ..., k.

COMBINING P-VALUE FROM MULTIPLE STUDIES: REVIEW OF META ANALYSIS METHODS

Fisher's Combined Probability Test:

- p-values from study 1 and 2 for gene g: p₁, p₂
- For each gene g, $\chi_g^2 = -2(\log p_1 + \log p_2)$.
- *H*₀: no association in both studies
- The combined p-value is $P(\chi_g^2 > \chi^2(4))$

A similar approach: Stouffer's Z score: $Z = \frac{\sum_{i=1}^{K} \Phi^{-1}(1-p_{ki})}{\sqrt{K}} \sim \mathcal{N}(0, 1)$

DIFFERENCE BETWEEN REPRODUCIBILITY ANALYSIS AND META ANALYSIS

'Replicability Analysis for Genome-wide Association Studies', Ruth Heller and Daniel Yekutieli *AOAS* 2014

- Meta-analysis (as in Fisher's combined t-test): discover the associations that are present in at least one study
- Replicability (reproducibility) analysis: discover replicated associations in both studies

MULTI-DIMENSIONAL REPRODUCIBLE MULTIPLE TESTING PROBLEMS

Partial Conjunction Approach (Benjamini & Heller (2008,2009))

- Rejecting Null H₀^{2/2}(g): there is significant replicated associations in both studies
- Partial conjunction null H₀^{2/2}(g): there is no association in ANY one of the two studies.
- When p-value across studies are independent, partial conjunction Fisher p-values
 p^{2/2}(g) = P(χ₂² ≥ −2 log p_{max}(g))
- The Stouffer's Z score in this case is Φ⁻¹(1 p_{max}), same p-value as in Fisher's.
- Use the BH procedure on the partial conjunction p-values

SUMMARIZE: STUDY GOAL

Finding differentially expressed gene patterns among patients and control in multiple studies.

- Find and prioritize genes that are both
 - Differentially expressed between patients and controls
 - Reproducible across studies
- Need to consider
 - Multiple Testing Problem
 - Replicability Analysis

COPULA MIXTURE MODEL: AN EXISTING APPROACH

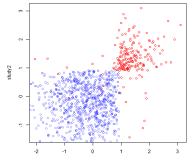
- 'Measuring Reproducibility of High-throughput Experiments' AOAS Quanhua Li, et.al. 2011.
- (*X*₁, *X*₂) could be pair of significance score: for example p-values
- The empirical marginal distribution function $\hat{F}_{1i} = \frac{1}{1+n} \sum_{j} I(X_{1j} \le X_{1i}), \hat{F}_{2i} = \frac{1}{1+n} \sum_{j} I(X_{2j} \le X_{2i}),$ satisfies uniform distribution.
- (Z_{1i}, Z_{2i}) = (φ⁻¹(F̂_{1i}), φ⁻¹(F̂_{2i})) follows a mixture normal distribution.

COPULA MIXTURE MODEL

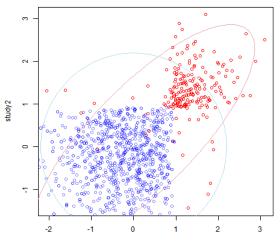
$$p(Z_1, Z_2) = \pi_1 \mathcal{N}((a, b); \Sigma_1) + \pi_2 \mathcal{N}((0, 0), \Sigma_2)$$

Here we assume there are two clusters of genes.

$$\Sigma_1 = \begin{bmatrix} \sigma_1^2 & \sigma_1^2 \rho \\ \sigma_1^2 \rho & \sigma_1^2 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} \sigma_2^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}, \pi_1 + \pi_2 = 1.$$



We can get the maximum likelihood estimation from EM algorithm similar to proposed method



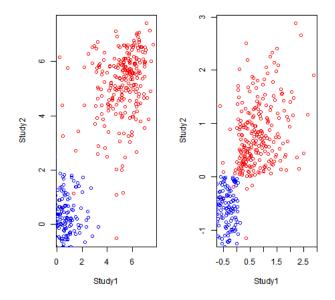
study1

COPULA MIXTURE MODEL: PICK GENES

- The local irreproducible discovery rate: $idr(z_{i,1}, z_{i,2}) = P(i \in \text{Irreproducible group}|z_{i,1}, z_{i,2}) = \frac{\pi_2 f_2}{\pi_1 f_1 + \pi_2 f_2}$
- Rejection Region: $R_{\gamma} = \{(z_{i,1}, z_{i,2}) : idr(z_{i,1}, z_{i,2}) < \gamma\}$

COPULA MIXTURE MODEL: LIMITATIONS

- The significance scores omit the directions of effects. Pick genes with small p-value in both studies but different effect signs.
- The model assumes only small proportion of genes are significant; when a large proportion of p-values are small, the significant p-values could have medium/ large rank and cannot be differentiated from others.
- It could pick largest p-values (in the real data analysis)



ALTERNATIVE METHOD: RANK PROD

- 'A bioconductor package for detecting differentially expressed genes in meta-analysis.' Hong, F., et.al. (2006) Bioinformatics.
- R package 'RankProd'
- Taking the FC ratio for each pair of measurements between patient and control group
- Taking the geometric average of FCs
- Permute the FCs w.r.t. gene ID and get the empirical distribution
- Choose genes by threshold of empirical pfp (percentage of false prediction)

Limitations :Heavy computational burden.

OUTLINE

1 Introduction

- Study Goal
- Multiple Testing and Meta Analysis
- Copula Mixture Model

Proposed Method: A Bayesian Classification Approach

- Mixed Effect Model for Data Generation
- Proposed Method: Mixture Gaussian Model for T-statistics
- 3 Simulation Results
- Real Data Analysis

GOAL

- Bayesian Classification Approach
- Only pick genes with same directions of effect in both studies: t-statistics
- Can deal with all proportions of true associations: original scale (not empirical distribution)

Simpler model works better!!

MODELING GENE EXPRESSION DATA IN MULTIPLE STUDIES: ASSUMPTIONS FOR PROPOSED METHOD

For gene g, study i, group k (k=1 disease k=0 control), and observation j, $x_{gikj} \sim \mathcal{N}(\mu_{gik}, \sigma_{err}^2)$ is gene abundance measurements after log transformation.

$$\mu_{gik} = \mu + \alpha_g + \beta_i + (\alpha\beta)_{gi} + \delta I(k=1) + \gamma_g I(k=1) + (\gamma\beta)_{gi} I(k=1)$$

- μ is overall mean
- α_g is main effect of gene g, β_i is main effect of study i, (αβ)_{gi} is the gene-study interaction
- δ fixed effect of group difference
- γ_g is effect of gene on the group difference; (γβ)_{gi} is the gene-study interaction of the group difference.

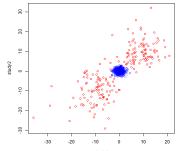
SIMULATION SETTINGS

- We are most interested in the group difference between patient and control. $\mu_{gi1} \mu_{gi0} = \gamma + (\gamma\beta)_{gi}$.
- Assume γ_g and $(\gamma\beta)_{gi}$ are normal distributed.
- Two groups:
 - Significant and Reproducible: $\gamma \sim \mathcal{N}(\mu_{\gamma}, \sigma_{\gamma}^2)$ or $\mathcal{N}(-\mu_{\gamma}, 0.5)$ and $(\gamma\beta) \sim \mathcal{N}(0, \sigma^2)$
 - Irreproducible (non-significant): $\gamma = 0$ and $(\gamma \beta) = 0$.

DISTRIBUTION OF T-STATISTICS

$$T_{gi} = \frac{\bar{X}_{gi1} - \bar{X}_{gi0}}{\frac{1}{m}\sqrt{\hat{S}_{gi1}^2 + \hat{S}_{gi0}^2}}$$

Where $X_{gi1j} = \alpha_g + \beta_i + (\alpha\beta)_{gi} + \gamma_g + (\gamma\beta)_{gi} + e_{gi1j}$ and $X_{gi0j} = \alpha_g + \beta_i + (\alpha\beta)_{gi} + e_{gi0j}.$
 $\bar{X}_{gi1} - \bar{X}_{gi0} = \gamma_g + (\gamma\beta)_{gi} + \sum e_{gi1j}/m - \sum e_{gi0j}/m$



otudy1

NORMAL APPROXIMATION FOR T-STATISTICS

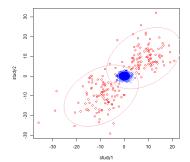
- Irreproducible group: *T* ∼ t(2*m* − 2), *E*(*T*) = 0, *Var*(*T*) = 1.125.
- Reproducible group, $T \sim \frac{\mathcal{N}(M,V)}{\sqrt{\chi^2(2m-2)/(2m-2)}}$ $M = \text{effectsize}\sqrt{\frac{m}{2\sigma_e^2}}, V = (\sigma_{\gamma\beta}^2 + \sigma_{\gamma}^2 + 2\sigma_e^2/m)\frac{m}{2\sigma_e^2}$
- T statistics is approximately normal distribution when df is large. In our simulation setting, the mean is $M = 4\sqrt{5} \approx 8.94$, the variance is $V = 20(0.3 + s^2) \approx 3.3^2, 5.1^2$.
- The coefficients of our proposed method are $a = b = 8.94, c = d = -8.94. \sigma_1^2 = 3.3^2/5.1^2, \rho = 0.2/0.13, \sigma_2^2 = 1.125$

PROPOSED METHOD: GAUSSIAN MIXTURE MODEL

$$p(X, Y) = \pi_1 \mathcal{N}((a, b); \Sigma_1) + \pi_2 \mathcal{N}((c, d), \Sigma_2) + \pi_3 \mathcal{N}((0, 0), \Sigma_3))$$

Here we assume there are three clusters of genes.

$$\Sigma_{1} = \Sigma_{2} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}^{2}\rho \\ \sigma_{1}^{2}\rho & \sigma_{1}^{2} \end{bmatrix}, \Sigma_{3} = \begin{bmatrix} \sigma_{2}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}, \pi_{1} + \pi_{2} + \pi_{3} = 1.$$



ALTERNATIVE VIEW: LATENT VARIABLES

Latent variables (Z₁, Z₂, Z₃): (1,0,0) first class; (0,1,0) second class; (0,0,1) third class.

•
$$P(Z_k = 1) = \pi_k$$

 $P(x, y) = \sum_z P(x, y|z)P(z) = \sum_k \pi_k \mathcal{N}((x, y)|\mu_k, \Sigma_k)$

- Responsibility of class k for observation (x, y) is $\gamma(z_k) = P(z_k = 1 | (x, y)) = \frac{\pi_k \mathcal{N}((x, y) | \mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}((x, y) | \mu_k, \Sigma_k)}$
- The posterior expectation of gene g belongs to category k

PROPOSED METHOD: A BAYESIAN CLASSIFICATION APPROACH PROPOSED METHOD: MIXTURE GAUSSIAN MODEL FOR T-STATISTICS

EM ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATIONS

- Initialize $\{a, b, c, d, \sigma_1^2, \sigma_2^2, \rho, \pi_1, \pi_2, \pi_3\}$ and evaluate log-likelihood
- Expectation-step: Evaluate responsibilities
 γ_i(z_k) = p(z_k = 1|(x_i, y_i)) using the current parameters.
 (The posterior expectation of gene g belongs to category k)
- Maximization-step: Update parameters: maximum likelihood estimators given the current responsibilities
- Evaluate log-likelihood log P(X, Y|π, μ, Σ) and check for convergence (go to E-step)

DETAILS MAXIMIZATION-STEP: UPDATING PARAMETER

$$\begin{aligned} a^{new} &= \frac{\sum_{i} \gamma_{i}(z_{1})x_{i}}{\sum_{i} \gamma_{i}(z_{1})}, b^{new} = \frac{\sum_{i} \gamma_{i}(z_{1})y_{i}}{\sum_{i} \gamma_{i}(z_{1})}, \\ c^{new} &= \frac{\sum_{i} \gamma_{i}(z_{2})x_{i}}{\sum_{i} \gamma_{i}(z_{2})}, d^{new} = \frac{\sum_{i} \gamma_{i}(z_{2})y_{i}}{\sum_{i} \gamma_{i}(z_{2})}, \pi_{k} = \sum_{i} \gamma_{i}(z_{k})/N \\ \sigma_{1}^{2} &= \frac{\sum_{i} (\gamma_{i}(z_{1})((x_{i}-a^{new})^{2}+(y_{i}-b^{new})^{2})+\gamma_{i}(z_{2})((x_{i}-c^{new})^{2}+(y_{i}-d^{new})^{2})}{2\sum_{i} \gamma_{i}(z_{1})+2\sum_{i} \gamma_{i}(z_{2})} \\ \rho &= \frac{\sum_{i} \gamma_{i}(z_{1})(x_{i}-a^{new})(y_{i}-b^{new})+\gamma_{i}(z_{2})(x_{i}-c^{new})(y_{i}-d^{new})}{\sigma_{1}^{2}(2\sum_{i} \gamma_{i}(z_{1})+2\sum_{i} \gamma_{i}(z_{2}))} \\ \sigma_{2}^{2} &= \frac{\sum_{i} \gamma_{i}(z_{3})(x_{i}^{2}+y^{2})}{2\sum_{i} \gamma_{i}(z_{3})} \end{aligned}$$

Averages weighted by the responsibility.

CLASSIFICATION RULES

- Classify according to the final responsibilities γ_i(z_k)'s: the posterior probability of gene i belongs to category k.
- The Rejection Region depending on λ is

$$R_{\lambda} = \{(x_i, y_i) : \gamma_i(z_1) + \gamma_i(z_2) > \lambda\}$$

Rejecting genes with large posterior prob. belong to class 1 and 2.

- $\lambda = 0.85, 0.9, 0.95$, more stringent as λ increases.
- Alternative: If the class 1 or 2 has the largest posterior prob.

$$R_{\max} = \{(x_i, y_i) : \max_k \gamma_i(z_k) = \gamma_i(z_2) \lor \gamma_i(z_1)\}$$

MEASUREMENT OF FALSE DISCOVERY

Irreproducible Discovery Rate: the rate of irreproducible genes in rejection region

 $P(ext{gene i is irreproducible} | i \in R_{\gamma}) = rac{P(ext{gene i is irreproducible}, i \in R_{\gamma})}{P(i \in R_{\gamma})}$

$$=rac{FP}{TP+FP}.$$

This can be computed empirically.

In analogy to False Discovery Rate: the rate of picking the irreproducible genes.

OUTLINE

1 Introduction

- Study Goal
- Multiple Testing and Meta Analysis
- Copula Mixture Model

2 Proposed Method: A Bayesian Classification Approach

- Mixed Effect Model for Data Generation
- Proposed Method: Mixture Gaussian Model for T-statistics
- Simulation Results
- Real Data Analysis

SIMULATION RESULTS

SIMULATION SETTINGS

- Considering 2 studies; each study has m = 10 subjects in each group (patient/control)
- Overall mean $\mu = 0$, group difference $\delta = 0$;
- Gene main effect $\alpha_g \sim \mathcal{N}(0, 1)$, study effect $\beta = 0.1$;
- Gene study interaction effect $(\alpha\beta)_g \sim \mathcal{N}(0, 0.5)$
- Gene effect on group difference γ
- Gene-study interaction of the group difference $(\gamma\beta)$
- Two groups:
 - Significant and Reproducible: $\gamma \sim \mathcal{N}(2, 0.5)$ or $\mathcal{N}(-2, 0.5)$ and $(\gamma\beta) \sim \mathcal{N}(0, s^2)$, $s \in (0.5, 1)$;
 - Irreproducible (non-significant): $\gamma = 0$ and $(\gamma \beta) = 0$.

MEASUREMENTS FOR COMPARISON OF METHODS

Methods to Compare: (subset presented):

- Proposed methods: $\gamma = 0.9, 0.95$, and pick by max.
- Copula Mixture Model. $\gamma = 0.7, 0.9$
- Benjaminni & Heller (2008,2009) with Fisher combined p-values, FDR $\alpha = 0.05$
- RankProd: with empirical FDR 0.05

Measurements of Performance:

- Misclassification Rate: (FP + FN)/p
- Irreproducible Identification Rate (False Discovery Rate): FP/(TP + FP)

SELECTED RESULT

$p = 5000, \sigma_{\gamma\beta} = 1$, based on 50 replications. Table: Misclassification Rate

Irrepro.	0.9	0.95	max	copula0.7	copula0.9	fisher0.05	RP0.05
60%	0.012	0.013	0.012	0.595	0.578	0.070	0.054
80%	0.008	0.008	0.008	0.053	0.176	0.041	0.015
90%	0.004	0.004	0.005	0.019	0.073	0.023	0.005
95%	0.002	0.002	0.003	0.008	0.017	0.013	0.002
99%	0.001	0.001	0.001	0.002	0.002	0.003	0.001

Table: False Discovery Rate

Irrepro.	0.9	0.95	max	copula0.7	copula0.9	fisher0.05	RP0.05
60%	0.003	0.002	0.010	0.600	0.596	0.001	0.000
80%	0.005	0.003	0.014	0.074	0.031	0.000	0.000
90%	0.006	0.004	0.019	0.008	0.003	0.000	0.000
95%	0.010	0.006	0.029	0.005	0.000	0.000	0.002
99%	0.025	0.017	0.075	0.041	0.003	0.000	0.019

SELECTED RESULT

p= 5000, $\sigma_{\gamma\beta}=$ 0.5

Table: Misclassification Rate

Irrepro.	0.9	0.95	max	copula0.7	copula0.9	fisher0.05	RP0.05
60%	0.005	0.006	0.006	0.589	0.568	0.020	0.028
80%	0.004	0.004	0.004	0.028	0.166	0.013	0.006
90%	0.002	0.002	0.003	0.008	0.058	0.008	0.002
95%	0.001	0.001	0.002	0.003	0.011	0.005	0.001
99%	0.001	0.000	0.001	0.001	0.001	0.002	0.000

Table: False Discovery Rate

Irrepro.	0.9	0.95	max	copula0.7	copula0.9	fisher0.05	RP0.05
60%	0.002	0.001	0.007	0.596	0.589	0.001	0.000
80%	0.003	0.002	0.010	0.057	0.024	0.000	0.000
90%	0.005	0.003	0.016	0.008	0.002	0.000	0.000
95%	0.008	0.006	0.026	0.008	0.001	0.000	0.002
99%	0.045	0.030	0.102	0.034	0.004	0.000	0.022

OUTLINE

1 Introduction

- Study Goal
- Multiple Testing and Meta Analysis
- Copula Mixture Model

2 Proposed Method: A Bayesian Classification Approach

- Mixed Effect Model for Data Generation
- Proposed Method: Mixture Gaussian Model for T-statistics
- 3 Simulation Results
- 4 Real Data Analysis

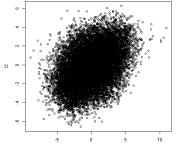
REAL DATA ANALYSIS

- Data from Gene Expression Omnibus Study 1: GSE28042 (Herazo-Maya JD,et al.Sci Transl Med 2013) Study 2: GSE33566 (Yang IV, et al. PLoS One 2012)
- Idiopathic Pulmonary Fibrosis vs Healthy Control
- Gene expression profiles of peripheral blood RNA
- Study 1: monocytes(PBMC); Study 2: whole blood cell (PBC)
- There are 17708 common genes in both studies.
- 75 patients and 16 controls for study 1; 93 patients and 30 controls for study 2.

RELAX THE MODEL ASSUMPTION:

T statistics are not in the same scale.

 $p(X, Y) = \pi_1 \mathcal{N}((a, b); \Sigma_1) + \pi_2 \mathcal{N}((c, d), \Sigma_2) + \pi_3 \mathcal{N}((0, 0), \Sigma_3))$ $\Sigma_1 = \Sigma_2 = \begin{bmatrix} \sigma_{11}^2 & \sigma_{11}\sigma_{12}\rho \\ \sigma_{11}\sigma_{12}\rho & \sigma_{12}^2 \end{bmatrix}, \Sigma_3 = \begin{bmatrix} \sigma_{21}^2 & 0 \\ 0 & \sigma_{22}^2 \end{bmatrix},$ $\pi_1 + \pi_2 + \pi_3 = 1.$



t1

PROPOSED METHOD

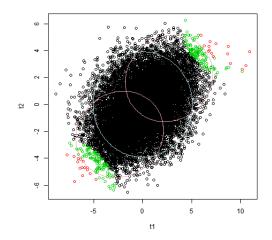


Figure: T-statistics of Proposed Method, green: picked by ldr 95%; picked by ldr 99%

_

Table: Top 10 genes picked by proposed method

	Proposed	t stat study 1	t stat study 2
1	FOS	10.92	3.94
2	BACH2	-7	-5.74
3	DUSP1	8.74	4.33
4	LRRN3	-6.13	-5.31
5	FCAR	7.47	4.53
6	NACC2	8.68	3.76
7	ABLIM1	-6.43	-4.74
8	ASGR2	6.85	4.67
9	GPR18	-6.21	-4.68
10	SRGN	10.57	2.9

COPULA MIXTURE : T STATISTICS

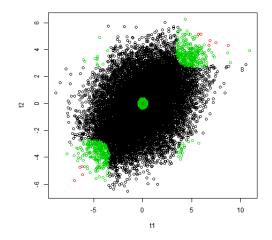


Figure: T-statistics of Copula Mixture Model, green: picked by ldr 50%; picked by ldr 70%

COPULA MIXTURE: Z SCORES

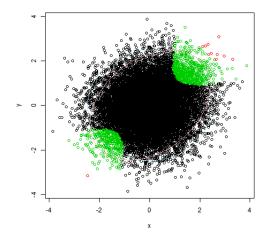


Figure: Z-score of Copula Mixture Model, green: picked by ldr 50%; picked by ldr 70%

	Copula	t stat study 1	t stat study 2
1	BACH2	-7	-5.74
2	LOC92659	0.02	0
3	FCAR	7.47	4.53
4	LRRN3	-6.13	-5.31
5	DUSP1	8.74	4.33
6	ASGR2	6.85	4.67
7	PHF21A	5.95	5.18
8	ABLIM1	-6.43	-4.74
9	SLC16A3	5.68	5.17
10	GPR18	-6.21	-4.68
-			

Table: Top 10 genes picked by Copula Mixture Model

FISHER BH

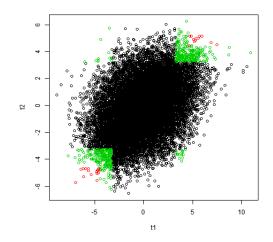


Figure: Z-score of Fisher BH Method, green: picked by FDR 95%; picked by FDR 99%

	Fisher	t stat study 1	t stat study 2
1	BACH2	-7	-5.74
2	LRRN3	-6.13	-5.31
3	PHF21A	5.95	5.18
4	SLC16A3	5.68	5.17
5	ТХК	-5.37	-5.12
6	TIMP2	5.54	4.99
7	QSOX1	5.37	4.99
8	NLRX1	5.05	4.93
9	LOC439949	-5.67	-4.85
10	PTPRE	5.31	4.84

Table: Top 10 genes picked by Fisher and BH

Table: Top 10 genes picked

	Proposed	Copula	Fisher
1	FOS	BACH2	BACH2
2	BACH2	LOC92659	LRRN3
3	DUSP1	FCAR	PHF21A
4	LRRN3	LRRN3	SLC16A3
5	FCAR	DUSP1	ТХК
6	NACC2	ASGR2	TIMP2
7	ABLIM1	PHF21A	QSOX1
8	ASGR2	ABLIM1	NLRX1
9	GPR18	SLC16A3	LOC439949
10	SRGN	GPR18	PTPRE

CONCLUSIONS AND DISCUSSION

Conclusion:

- We developed a Bayesian Classification for the t-statistics.
- Superior performance is demonstrated in simulation studies and real data analysis.

Discussion:

- The method can be extended to multiple (> 2) study case using Mixture Multivariate Normal Distribution
- Can be easily extended to adjust for covariates: age, gender, etc. Use the T statistics in the regression model for the disease group indicator variable.

Thank You!