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This paper presents the formulation and numerical solution of the dynamic load carrying capacity (DLCC) problem of 
flexible manipulators. For manipulators under the rigid body assumption, the major limiting factor in determining the 
maximum allowable load (load mass and load moment of inertia) for a prescribed dynamic trajectory (positions, 
velocities and accelerations) is the joint actuator capacity. But for a flexible robot, an additional constraint on allowable 
deformation at the end effector must he imposed because either lighter-weight links or operating at a higher speed could 
cause unacceptable fluctuations when moving along a trajectory. A Lagrangian assumed mode method was used to 
model the manipulator and load dynamics, including both joint and deflection motions. The deflection equations are 
then coupled with robot kinematics to solve for the generalized coordinates. A strategy to determine the DLCC subject 
to both constraints mentioned above is formulated where the end effector deflection constraint is specified in terms of a 
series of spherical bounds with a radius equal to the allowable deformation. A general computational procedure for the 
multiple-link case given arbitrary trajectories is described in detail. Symbolic derivation and simulation by using a 
PC-based symbolic language MATHEMATICA ~ was carried out for a two-link planer robot. The results confirmed 
the necessity of the dual constraints and showed that which constraint is more critical for a given robot and trajectory 
depends on the required tracking accuracy. 
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NOMENCLATURE q, 
joint transformation relates system i to system i-1 
position and orientation of the end effector (for deform- q/ 
able links) 
position and orientation of the end effector (for rigid R 
links) 
load coefficient due to actuator constraint 
load coefficient due to positional and rotational deforma- ri 
tion constraints Rj 
load coefficient in terms of positional deformation 
constraint Rjs  
load coefficient in terms of rotational deformation 
constraint Rp 
end point deflection with end effector mass Yi 
end point deflection without end effector mass Wi 
positional deformation of the end effector Wn, 
orientational deformation of the end effector V 
gravity vector expressed at the base coordinate frame z 
position of a point on link i wi~h respect to the base 
coordinates 
vector from a point fixed in link i with respect to Oixyz  #~ 

inertia matrix ( = [ [ Jjh] [ Jjhk] -]~ 
\ LEJh,d r~,,hd_]] 

Jacobian matrix of rigid body manipulators 
Jacobian matrix of flexible manipulators 
actuator inertia at base joint and joint i 
total kinetic energy of the robot/load system 
length of link i 
mass and moment  of inertial of end effector (planer case) 
mass concentrated at joint i 
number  of modes used to describe the deflection of link i 
number  of links 
joint variable of the hth joint  
deflection variable (amplitude) of the kth model of link h 

vectors of generalized coordinates for rigid body manipu- 
lators 
vectors of generalized coordinates for flexible manipula- 
tors 
vector of remaining dynamics and external forcing terms 
( = J R  1 , R :  . . . .  R h . . . .  Rn, R I t , R I 2  . . . . .  Rt,,~,,R2t . . . .  
R2m 2 . . . .  Rht . . . .  Rhm. . . .  , R.~,.] r 
vector locating the centre of mass of link i 
dynamics from the joint  equation j, excluding second 
derivatives of the generalized coordinates 
dynamics from the deflection equation if, excluding 
second derivatives of the generalized coordinates 
allowable deflection bound for a desired trajectory 
deflection of link i at I i 
transformation from the base to the ith link 
equal to W., when deformation is equal to zero 
total potential energy of the robot/ load system 
vector of generalized coordinates ([ql,  q2 . . . .  qh . . . .  qN, 
q11, q12 • • . ,  ql,.,, q21 . . . .  q2,n2 " • •, qhl • - •, qh,,,. •. •, q...] r) 
spatial variable along link i 
rotational deformation of link i at l i 
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INTRODUCTION 
The load carrying capacity of a robot manipulator is 
often defined as the maximum payload that the 
manipulator can repeatedly lift in its fully extended 
configuration. But to determine the dynamic load 
carrying capacity (DLCC) of a robot must take into 
consideration the inertia effect of the load along a 
desired trajectory (positions, velocities and acceler- 
ations) as well as the manipulator dynamics. It has 
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been shown that, if the rigid body assumption is used, 
the DLCC of a manipulator  is primarily constrained 
by the joint actuator torque characteristics.l°'11 Wang 
and Ravanil ~ presented a method based on superposi- 
tion of the dynamics of the load and the manipulator,  
where typical speed-torque characteristics for DC 
motors were assumed and an allowable load is 
calculated for each of the m points digitized along the 
trajectory. The maximum load is then the minimum 
value of these allowable loads. The robot will be able to 
carry an object and move along the trajectory as long 
as its mass and moment  of inertia are not greater than 
the "maximum load" for that trajectory. Thomas et 
al. 10 have used the concept of DLCC as a design 
criteria for sizing the actuators for robot manipulators. 

With the ever increasing demands on higher produc- 
tivities, using existing robots at higher speeds and 
designing robots with lighter weights have been 
recognized as viable solutions. However, in either case 
the assumption of rigidity is challenged. Inevitable link 
deflections and oscillations at a higher speed under- 
mine the theoretical foundation of the rigid body 
kinematics and dynamics. The limitations of the rigid 
link assumption in the formulation and analysis of 
flexible manipulator  dynamics were investigated ex- 
tensively, resulting in a number of formulations.t 4.9 
Recursive or non-recursive Lagrangian assumed 
mode,2 4 generalized Newton-Euler ,  9 and Lagran- 
gian using Rayleigh-Ritz x methods are examples. As 
noted by Rakhsha and Goldenberg, 8 the effect of 
flexibility appears as an internal disturbance torque 
acting on the rigid body motion of the sytem, as seen 
from the dynamic equations of a flexible robot. 

If one removes the rigid body assumption, the 
DLCC determined under the actuator constraint 
alone ~ x will normally be too large. Because the DLCC 
so determined is adequate for the size of actuators, but 
does not guarantee how precisely the robot can track 
the given trajectory under such a load, the resultant 
end effector deflection or oscillation at a higher speed 
may prove too large to accept for applications 
requiring precision tracking. Therefore, an additional 
constraint must be imposed when the D L C C  is to be 
determined for flexible manipulators. The constraint 
should account for the main difference between rigid 
and flexible manipulators. 

This paper presents a new method to determine the 
DLCC for flexible manipulators,  subject to both  

actuator and end effector deflection constraints. First, 
the recursive Lagrangian assumed mode method 2 was 
modified to accommodate  the load dynamics, which 
together with kinematic equations are necessary to 
determine the D L C C .  A strategy of determining the 
DLCC subject to both constraints is then described, 
where a series of spherical bounds centred at the 
desired trajectory is used in the end effector oscillation 
constraint while a typical DC motor  speed torque 
characteristics curve is used in the actuator constraint. 
The dependence of both the magnitude and frequency 
characteristics of the end effector oscillation on load is 

accounted for. A general computational procedure |s 
presented for the DLCC of multiple-link manipulators 
for any given dynamic trajectory. Finally, a numerical 
example involving a two-link flexible manipulator 
using the method is presented and the results are 
discussed. 

L A G R A N G I A N  A S S U M E D  M O D E  
M O D E L L I N G  I N C O R P O R A T I N G  L O A D  

D Y N A M I C S  
To determine the DLCC for flexible manipulators,  
proper modelling of manipulator  and load dynamics is 
a prerequisite. The method employed here largely 
follows that of Ref. 2, except that the dynamic effects of 
load at the end effector as well as the mass at joints to 
account for actuatory and gearing inertia were added. 
The deformation of the robot links is assumed to be a 
general one about  the link neutral axis, denoted by 
x = # .  It is assumed that end effector deflection is 
primarily caused by link deflection or oscillation al 
higher speeds, and links are slender beams. After its 
kinematics is set up, the kinetic energy K and potential 
energy V of the manipulator  and load system can be 
expressed as follows: 

K =  ~ Tr {khT} dm 
i = 1  

1 (,71il \/t?lh "r\ ) 
+ ~  Jo T r )  ~ "1 }/~--'-L~ !. 

! @, ) \ @ , / / , ,  . . . .  ,> i 

+ ,=,£ Tr Zt-[[~:)[.-~[-)(.,=,,, 

1 1 ,hhT  -t- i i ~(Ft : l i  | 
J 

(li  

m~ m, 

,,=- £ £ Z Z i21 
i = 1  i - I  k 1 / = 1  

where the first term of the kinetic energy is identical to 
Ref. 2 while the rest of the terms are different in order to 
account for the load effect M,  and joint mass effect M i, 
for i=  1 to n - l .  By using Lagrange's equations of 
motion, the dynamic equations of a flexible manipula- 
tor are obtained with generalized coordinates qh and 
qhk' The resultant system of equations can be organized 
in matrix form as 

h 1 h = l k - I  

for joint j and 

:£ £ ,4) 
h = l  h - 1  k = l  

for m o d e f o f  link j, or, in a combined matrix form, 

J ~ =  R (5) 
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where the elements of J and R are slightly different 
from that given in Ref. 2. For instance, the coefficients 
Ci, C~j and Cok take the form 

C~= 1/2 [1, #~, O, O]r[1, #i, O, O] dm 

+ 1/2Mi[1, la~, O, o]r[1, #i, O, O]~.,=z,~ (6a) 

~0 i Cij = 1/2 [1,/,ti, 0, 0] T[0, Xij , Yij, 7qj] dm 

+ 1/2Mill, #i, 0, 0] r[0, xij , Yij, Zij'](l~i=li) (6b) 

(Def.)i "". 

RI' ~ ; i Given trajectory 

j+l 

.*'j'- 1 ~ nef,- No load deflection 
Def., - Add end effector mass 
Dell - Full load deflection 
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~0 i Cij k = 1/2 [0, xij , Yij, zij] T[0, Xij, Yij, Zij] dm 

+ 1/2Mi[O, xij,  Yij, zij] T[ O, Xij, Yij, Zij](#i=li) 

(6c) 

Sijk = 1 / 2 ~ ) [ 0 ,  xij, Yij, Zij] T 

(6d) 

Other minor differences are in the dynamic equation, 
where the coefficient Ijf~k becomes 

Ijfnk = 2 Tr {WjM~fWnDnk w r  + JjSijk} (7) 

and in the recursive equation where the recursive 
expression JF h should be JF h = J~h+ 1At+ 1. 

DLCC FOR A GIVEN TRAJECTORY 
Given a trajectory (positions, velocities and acceler- 
ations), the DLCC of a flexible manipulator is defined 
as the maximum load (mass and moment of inertia) 
that the manipulator can carry in executing the 
trajectory with an acceptable tracking accuracy. The 
tracking accuracy is emphasized because we deal with 
flexible robots. In particular, this is dealt with by 
introducing a constraint on end effector deflection, in 
addition to the joint torque capacity constraint often 
imposed alone for rigid manipulators. This is necessary 
because deflection of the robot at its end effector can 
cause excessive deviations from the given trajectory, 
even though the joint torque constraint is not violated. 

End effector deflection constraint 
Deflection at the end effector could be attributed to 
both static and dynamic factors, such as link flexibility, 
joint clearance, manipulator and load inertia. These 
factors are configuration or motion-dependent; there- 
fore, the DLCC varies from place to place on a given 
trajectory. A constraint should be imposed in such a 
way that the worst case, which corresponds to the least 
DLCC, is used to determine the maximum load. 

A given trajectory is first digitized into m points. No 

Fig. 1. Spherical boundary of end effector deflections. 

load defection, (Defn) j, and defection with added end 
effector mass, (Defe) j, are calculated forj = 1, 2 . . . . .  m, 
using the computational procedure outlined in the next 
section. As seen in Fig. 1, the additional mass at the 
end effector changes both the magnitude and the 
direction of the deflection. But as long as the magni- 
tude of the deflection is less than or equal to an 
allowable value, the robot is considered to be still 
capable of executing the given trajectory. In other 
words, only the magnitude of the deflections (Def,)j 
and (Defe)j need be of concern in this context. This 
prompted the use of a spherical boundary of radius Rp 
as the end effector deflection constraint and the sphere 
is centred at the desired position on the given 
trajectory. Although (Def~) i and (Defe)j are generally 
vectors of different directions, the magnitude increase 
due to the added mass at the end effector is linearly 
related to the mass. 5 Therefore, the difference between 
the allowable deflection and the magnitude of the 
defection with added end effector mass at point j 

Rp - (Defe) j (8) 

can be regarded as the remaining amount of end 
effector deflector which can still be accommodated at 
point j of the given trajectory. It is this remaining 
amount that indicates how much load can be carried 
through the point j without violating the deflection 
constraint. 

What further complicates the problem is the fact that 
a load not only affects the magnitude of deflection but 
also its frequency, which is evident from Figs 2 and 3. 
As seen in Fig. 2, for an arbitrary trajectory the full 
load case gives a larger deflection and lower fluctuating 
rate than the no-load case and the case with added end 
effector mass. This can be better observed from the 
hand coordinate system in Fig. 3. When the full load 
case exhibits about two and a half oscillations, the 
other cases exhibit about three and three and a half, 
respectively. Therefore, it is necessary to introduce the 
concept of a load coefficient (Cp)i for point j, j = 1, 2, 
. . . .  m, as follows: 

R p -  (Def~)j (9a) 
(Cp)j = max {Defe} - max {Def~} 
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Joint actuator torque constraint 
The joint actuator torque constraint is formulated 

No loadd~nectio, based on the typical torque-speed characteristics of 
A d d  e n d  e f fec to r  m a s s  
Full load deflection DE motors as follows. 1 ~ whilc other actuation systcms 

. .... . can be dealt with similarly: 

u:, +~=k~ k-i !lia) 
I 

• , . . t . . °  i . . - ; , .  
." ° °*. I ':.° • ° . . . .  .. 

-5 ! i 
1 2 

Time (s) 
Fig. 2. Dependence of deflection magnitude and frequency on load. 

r("m) 

2 

1 

- x ( m a )  -f 
(b) Add  end effector mass  

7 
~ .  x(~'~) 

2 4 6 

(a) No load 

,(~) 
1 7 . 5  

15 

1 2 . 5  

10 

7 . 5 '  

5, 

2 . 5  

. . . .  x ( m O  
5 1 0 1 6  20 25 30 

(c) Ful l  load 

Fig. 3. Dependence of deflection magnitude and frequency on load 
viewed in hand coordinate system. 

where 

max{Defe} =max{(Def~)l ,  (Def~)2 . . . . .  (Def.)m} (9b) 

max{Def,} = max{(Def,) , ,  (Def.) 2 . . . . .  (Def,),,}. (9c) 

The rotational deflections can be similarly represented 
in terms of vectors, and their magnitudes be compared 
to a spherical boundary of radius R, specified in a hand 
coordinate system. A load coefficient for rotation (G)j 
similar to Eq. (8) can be defined for each point j, 
j =  1, 2 . . . . .  m. Finally, a load coefficient satisfying 
both positional and rotational deflection constraints is 
obtained as follows: 

(Cp,)j=min{(Cp)i, (G)i} j = l ,  2 . . . . .  m. (10) 

u:, ' =  -k~ k2~ i lbl 

where k 1=%, k2=%/w 0, r~ is the stall torque, w o is 
maximum no-load of the motor,  and g,+) and u:, ' a r e  
the upper and lower bounds of the allowable torque. 
Using the computational procedure outlined in the 
next section, the ith joint torque due to a n-link 
manipulator dynamics and the added end effector 
mass, (r<,)~, i=  1, 2 . . . . .  n, can be computed for each 
point of the given trajectory. Together with the upper 
and lower bounds computed using Eqs ( l l a )  and 
( l lb) ,  the upper and lower bounds on torques 
available for load can be expressed: 

7~(i+)=(U),~' ))i " ('C,,)i (12a) 

/~ ~--(u:, ')~ (W)~. il2b) 

The maximum allowable torque at joint i is then equal 
to 

('G)i=max'[r~i < ', "?i ~}. (12c) 

Equations (12a) and (12b) remain valid for flexible 
manipulators because the linearity between the tbrce F 
acting on the end effector (a load can be modelled as an 
inertial force on the tip) and the corresponding joint 
torques ~ is preserved if small deformations arc 
assumed. This can be shown by using the virtual work 
principle. The virtual work done by F and ~ is given by 

6 w = (  r 6qr+~ T 6 q r - F  r Ap 

= r T 6qr + rT 3qr--  FYJr •qr 

- F r J :  6q/. ( t3) 

where 6q,, and 6q: are the infinitesimal changes of the 
generalized coordinates corresponding to joint 
rotations and link deflections, respectively, Jr and J r  
are the Jacobians corresponding to joint rotations and 
link deflections, respectively, and Ap is the infinitesimal 
translation and rotation at the end effector. With 
further simplifications, one can obtain 

6 . ' : [ , r  F T J , , r - F I " J / ] [ 6 q ' ]  LDqrd = [ ' d -  FrJo] [6qo ] 

(14) 

where Jo = [ J , J s ] ,  and q0 = [q,qy]" 
In order for Eq. (14) to vanish for arbitrary 6qo, we 

must have 

(15> 

For the same reason given for Eq. (9), a load coefficient 
complying with the actuator torque constraint can be 
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calculated for each point j, j = 1, 2 . . . . .  m, of a given 
trajectory as follows: 

( c , ) j = m i n { m a x { ~ e ~ m a x { z , } ,  i=1  . . . . .  n} (16a) 

where % is the no-load torque and 

max{%}=max{(%)l, (%)2 . . . . .  (%).} (16b) 

max{z,}=max{(z.) 1, (%)2 . . . . .  (z.)s}. (16c) 

Determination of  maximum load 
To guarantee that both the end effector deflection and 
joint torque capacity constraints are satisfied at each of 
the m digitized points of a given trajectory, a load 
coefficient c can be found from (cp~)j and (cQ)j, each of 
which is associated with a constraint, as follows: 

c=min{(Cp,)j, (Ca) j , j = l  . . . . .  m}. (17a) 

Then, the maximum mass for this trajectory is 

mlo.d = cm e (17b) 

and the maximum principle moment of inertia of the 
load is 

[/load] = C[Ie] (17C) 

where m e and I/el are end effector mass and moment of 
inertia, respectively. The maximum load is then 
specified by the values of both mload and [/toad]" AS long 
as the actual mass and moment of the inertia of the load 
are not greater than the "maximum load" for that 
trajectory, the actuators are adequate to execute the 
trajectory within the allowable end effector deflection. 

I Discretize a Given Trajectory to m Points [ 
I 

I 

tompute Jaeobian and Assemble Kinematic Equation 20.b I 

I Sole   " o'mhlo  quation I 

I Couple F-xluatiom 20.b and Ddlee~on Equation 4 

Solve Them Without End Effeetor M a s s  and With End 
F_,ffeetot Mass to Find All Cmnecalised Coordinates  

Calculate Ddn, & Def e Using Equations 3 and 23 %, 

Calculate Load Coefficient Ufing 
Equations 10, 16, and 17.a 

Fig. 4. Computational procedure. 
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COMPUTATIONAL PROCEDURE 
The computational produce for determining the 
DLCC is outlined and also flow-charted in Fig. 4. The 
manipulator Jacobians associated with joint rotations 
and ink deflections, J ,  and Jy, are calculated first. The 
infinitesimal translation and rotation of the end 
effector, dX e and dq~ e, and their derivatives are 
expressed as 

dp=[dXedOe'1 r and l~=[VeCbe] r. (18) 

On the other hand, dp can be written in terms of the 
differential changes in joint variables as well as the 
differential changes in displacements at the free end of 
the end link due to link deformations as 

d p = J  r d q , + J f  dq: and p = J , / i , + J : / i : .  (19) 

By differentiating once more, one obtains 

ii = J,/], + J//~s + Jill, + Jf/i S (20a) 

or  

Jr ii, + J A y  = i i - Jill, - JAy"  (20b) 

The above kinematic expression is essential but not 
adequate for solving all the generalized coordinates by 
given p, O and ii. To obtain precise solutions for 

generalized coordinates, Eq. (21) must be solved 
simultaneously with the deflection equations [Eq. (4)1, 
with and without end effector mass. The equations, 
however, are highly coupled and nonlinear. Further- 
more, they are so lengthy that it is extremely difficult, if 
not impossible, to expand them manually even for a 
lower degree of freedom manipulator with a lower 
number of modes assumed. By using a symbolic 
derivation language, such as MATHEMATICA ® 
described in the next section, symbolic derivation and 
deductions can be carried out automatically before the 
equations are numerically solved such that relatively 
insignificant terms such as second-order deformations 
may be examined and subsequently neglected with 
relative ease. 

After all the generalized coordinates are determined 
by numerically solving the nonlinear and coupled 
system of equations represented by Eqs (4) and (2) 
simultaneously, the next step is to compute rotational 
and translational deflections at the end effector, which 
are needed in determining the load coefficients associ- 
ated with the end effector deflection constraint (Cp,)j for 
j = 1,2 . . . .  , m [Eq. (10)]. The position and orientation 
of the end effector assuming flexible links are given as 

Bz=W.A.+I  (21) 
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while for rigid links the end effector position and 
rotation are given as follows: 

B = W ,  rA ,+  , (22) 

such that deformation at the end effector is 

De f=  B f -  B~ = ( W . -  W.r)A. + 1 (23) 

and the elements of the Def matrix can be shown as 

Robotics & Computer-Integrated Manufacturing • Volume 10, Number 4, 1993 

1 0 'r ] (24) 
D e f =  D e f p D e f  R ' 

In order to calculate the load coefficients associated 
with the joint capacity constraint (%)j for j  = 1,2 . . . . .  
m [Eq. (16)], joint equations [Eq. (3)] are used to 
obtain z,, and %, given all the generalized coordinates 
calculated above. Finally, a load coefficient satisfying 
both constraints c is calculated [Eq. (17a)] and the 
maximum load for the given trajectory is determined in 
terms of mlo~d and [-/load] by using Eqs (17b) and (17c). 
The procedure outlined here is applicable to any 
number of degree of freedom manipulator, any number 
of deflection modes assumed, and arbitrary trajector- 
ies. 

S I M U L A T I O N  RESULTS AND DISCUSSIONS 
Simulation conditions 
A simulation study was carried out to further investi- 
gate the validity and effectiveness of the method and 
computational procedure presented above. Comput- 
ing the DLCC of a given trajectory is presented for a 
two-link flexible manipulator shown in Fig. 5. Only 
link flexibilities are considered while joint compliances 
are neglected. The bending deflections of links are 
approximated with simply supported mode shape for 
each link. Mode shapes are chosen from analytical 
solution of a Euler-Bernoulli beam eigenfunction 
analysis. Gravity effect was ignored in this case study in 
order to isolate the dynamic flexibility effects. The 
following system of equations can be assembled 

(i) Kinematic equations 

Jrl l{]l + Jr12{]2 + J f t  t{]~l + Jf12 {]21 = Rti (25a)  

421{]1-}-Jr22q2"[-Jfll {]11 -}-Jf12{]21 = J r 2  ( 2 5 b )  

• ." 0 ~ 1 2  I"2' I 2 ' ~  - ..~ '- .............................. ~iDeft 

"" Load mload 8~ l loaa 
/ T Yl)?qt,j Ytd End-effector mass m e 

/ ~p Ii, El 

Fig. 5. Two-link flexible manipulator model. 
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Fig. 7. Desired and actual trajectories against deflection bounds 
(m~o~d =0.5 kg, under actuator constraint only). 

where the expression of rigid body Jacobian Jr and 
flexible Jacobian J :  are given in Appendix 1. 
(it) Dynamic equations based on Lagrangian assumed 

mode method: 
(a) Joint equations 

jIl{]l +J12O2+Jlll{]lI +J121~al=RI (26a) 

,12/h +J22{]=+J211ql,+J2,242,=R2 (26bi 

(b) Deflection equations 

1111{]1 + I i 1 2 { ] 2 + 1 1 1 1  l q l t  +11121{]21 = R l l  {27a) 
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121141 -t-121242+12111411 +12121{/'21 =R21 .(27h) 

The numerical values used in the simulation are listed 
in the Appendix 2. 

Symbolic derivation language 
The much greater complexity of flexible manipulator 
dynamics literally forbids any practical manual sym- 
bolic derivations. Therefore, the advantages promised 
by symbolic manipulation programs are even desirable 
for flexible manipulators. The symbolic derivation of 
flexible manipulator dynamics was reported by Cetin- 
kunt and Book 3'4 who have written a symbolic 
manipulation program based on SMP and simulated 
with a VAX-11/750 minicomputer. 

This work used MATHEMATICA" '  for symbolic 
derivation, numerical solution, as well as DLCC 
determination. 6'7 It was chosen mainly because of its 
versatile symbolic manipulation capabilities, such as 
symbolic simplification of polynomials and rational 
expressions, linearization of trigonometric functions, 
automated evaluation of the relative significance of 
terms and subsequently, neglecting the less significant 
terms, and symbolic integration and differentiation• 12 
It has an integrated graphics environment and can 
communicate at a high level with other programs using 
the MathLink communication standard. 

Results and discussion 
Various desired trajectories were simulated and a 
simple one is prescribed in its parametric form as 
follows: 

.\,l(t)=L--at 2. and vd(t)=L+ht: f28i 

where L is the link length of both links, a = 0.1, h -: 0.01. 
and t ranges from 0 to 3 sec. Velocities and acceler- 
ations are obtained by differentiating the trajectory. 
The initial conditions for all the generalized coordi- 
nates were taken to be zero except that q2(0J equals to 
9ft. The relative simplicity is meant to expose the 
features of the method without loss of generality. The 
trajectory was digitized to 64 points• 

First, only the joint actuator torque constraint was 
imposed in determining the DLCC and a load 
m,o,d =0.5 kg was found to be the maximum load that 
the given actuators can carry in executing the trajec- 
tory, while the load moment of inertia l~o~d was not 
presented for simplicity. Figure 6 shows the time- 
varying torques required to execute the trajectory 
against the upper and lower bounds of the available 
torques which depend on the.joint velocities, It is seen 
that the load so determined uses joint I to its maximum 
extent at about 1.2 sec while joint 2's bounds are llOt 
reached during the course. This indicates that the load 
determined by using the method is based on lhc 
"weakest" joint actuator, as it should be. However. 
when the actual trajectory is plotted in terms of the 
base coordinates with the prescribed upper and lower 
bounds Rp: 10 mm in Fig. 7, it is apparent that 1he 
desired tracking accuracy cannot be achieved with 
nho~d : 0.5 kg because part of the actual trajectory is 
outside of the lower bounds. This clearly demonstrates 
the need to impose an additional constraint on end 
effector deflections when the DLCC is determined for 
flexible manipulators. 

Both constraints were then imposed in determining 
the DLCC for the same robot, trajectory, and end 
effector deflection requirements. Again only the mass 
portion of the DLCC was calculated for simplicity, A 
load m,oaa=0.341 kg was found to be the maximum 
load that can be carried in executing the trajectory 
while not violating either of the constraints. The dotted 
lines in Fig. 8 denote the changes in joint angles and 
their rate when this load is carried to execute the 
trajectory, while these in Fig. 9 denote the changes in 
link mode shapes and their rate. Shown in Fig. 10 is the 
magnitude of the end effector deflection with such a 
load compared to the imposed upper and lower 
bounds. It is seen that all the magnitudes remain within 
the bounds because the load was determined subject to 
both constraints. The actual trajectory is further 
plotted in terms of the base coordinates in Fig. 11~ 
which again shows it is within the bounds. 

CONCLUSIONS 
The main objective of this investigation is to formulate 
the DLCC and to determine the "maximum load" for 
flexible manipulators given a dynamic trajectory. This 
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was achieved by subjecting the manipula tor  to dual 
constraints,  that  is, ac tuator  capacity and end effector 
deformation constraints,  when the maximum load is 
determined. Simulation results show that,  if only the 
first constraint  is imposed for flexible manipulators  as 
for rigid body  manipulators ,  the load so determined 
may result in substantial deflections at the end effector 
when it moves through the prescribed dynamic  trajec- 
tory. In order to be able to control  the end effector 
tracking precision, adding the second constraint  is 
necessary. Whether  the first or second constraint  is 
more strict depends on the required tracking accuracy. 
In the simulation results presented in this paper, the 
second one is more  strict. This work also shows that 
dealing with flexible manipula tor  dynamics  and deter- 
mining their D L C C  in particular greatly benefited 
from using a symbolic derivation language. 

REFERENCES 
1. Asada, H., Ma, Z.-D., Tokumaru, H.: Inverse dynamics 

of flexible robot arms: modeling and computation for 
trajectory control. Trans. A S M E  J. dyn. Systems Meas. 
Control 112: 177-185, 1990. 

2. Book, W. J.: Recursive lagrangian dynamics of flexible 
manipulator arm. Int. J. Robotics Res. 3(3): 87-101, 
1984. 

3. Cetinkunt, S., Book, W. J.: Symbol modelling and 
dynamic simulation of the robotic manipulators with 
compliant links and joints. Robotics 5(4): 301-310, 1989. 

4. Cetinkunt, S., Book, W. J.: Symbolic modelling of 
flexible manipulators. In Proceedings of 1987 IEEE 
International Conference on Robotics and Automation, 
Raleigh, NC, 31 March-3 April 1987, Vol. 3, 
pp. 2074-2080. 

5. Chen, J. S., Menq, C. H.: Experiments on the payload- 
adaptation of a flexible one-link manipulator with 
unknown payload. In Proceedings of lEEE International 
Conference on Robotics and Automation. 1990, 
pp. 1614-1619. 

6. Korayem, M. H., Yao, Y., Basu, A.: Load carrying 
capacity for a two-link planer-flexible arm. In Proceed° 
ings of  Thirteenth Canadian Congress of  Applied Mech- 
anics. 1991, Vol. 2, pp. 6644565. 

7. Korayem, M. H., Yao, Y., Basu, A.: Symbolic derivation 
and dynamic simulation of flexible manipulators. In 
Proceedings of  International Conference on Intelligent 
Control and Instrumentation, 18-21 February 1992. 

309 

8. Rakhsha, F., Goldenberg, A. A.: Dynamics modelling of 
a single-link flexible robot. In Proceedinos of  Inter- 
national IEEE Conference on Robotics and Automation. 
1985, pp. 984-989. 

9. Shabana, A. A.: Dynamics of flexible bodies using 
generalized Newton-Euler equation. Trans. A S M E  J. 
dyn. Systems Meas. Control 112: 496-503, 1990. 

10. Thomas, M., Yuan-Chou, H. C., Tesar, D.: Optimal 
actuator sizing for robotic manipulators based on local 
dynamic criteria. A S M E  J. Mech. Transn Automn Design 
107: 163-169, 1985. 

11. Wang, L. T., Ravani, B.: Dynamics load carrying 
capacity of mechanical manipulators--Part I: problem 
formulation. Trans ASME J. dyn. Systems Meas. 
Control 110: 46-52, 1988. 

12. Wolfram, S.: MATHEMATICA.  Reading, MA, 
Addison-Wesley. 1991. 

APPENDIX 1: THE EXPRESSION OF RIGID 
BODY JACOBIAN J, AND FLEXIBLE 

JACOBIAN JF FOR SIMULATION 
J, lt = -11 sin(ql)-Yl cos(qt)-(12-y2cpl) 

sin(qt +q2)- (12~bl + Y2)Cos(ql +q2) 
J,12 = -(12- y2~bl)sin(ql +q2)-(1251 + y2)cos(ql +q2) 
J,21 = -llcos(q~)-Yl sin(ql)- (12~bl +Y2) 

sin(q1 +q2) + (12 - Y2$1)c°s(ql +q2) 
• 1,22 = - (/251 +y2)sin(ql+q2)+(12-YE$l)cos(ql+q2) 
Jj11 = -sin(q1) 
Jf12 = -sin(q1 +q2)-q91 cos(q1 +q2) 
J:2 ~ = cos(q 1 ) 
Jr22 =c°s(ql +q2)-~bl sin(q1 +q2). 

APPENDIX 2. NUMERICAL VALUES FOR 
SIMULATION 

Parameter Value Unit 

Young's modulus E I = E 2 = 1.06 x 102 ' N / m  2 

Area moment of I t =12=9.9x 10 -12 m* 
inertia 
Link length L 1 =L 2 = 1.05 m 
Link linear mass ,u 1 =,u 2 =4.05 x 10- t kg/m 
density 
Actuator constants k 1 = 0.63 and k 2 = N-m and N-m/rad, 

0.18 respectively 
z~ = 0.63 N-m 
w o = 3.5 rad/sec 
q,(0)=0 and q2(0)= degrees 
90 
me=0.1 kg 

Stall torque 
No-load speed 
Initial joint angles 

Mass of end effector 


