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Optimal Process Planning for
Laser Forming of Doubly Curved
Shapes
There has been a considerable amount of work carried out on two-dimensional
forming. In order to advance the process further for industrial applications, however,
necessary to consider more general cases and especially their process planning a
This paper presents an optimal approach to laser scanning paths and heating con
determination for laser forming of doubly curved shapes. Important features of the
proach include the strain field calculation based on principal curvature formulation
minimal strain optimization, and scanning paths and heating condition (laser power
scanning velocity) determination by combining analytical and practical constraints.
overall methodology is presented first, followed by more detailed descriptions of each
of the approach. Two distinctive types of doubly curved shape, pillow and saddle s
are focused on and the effectiveness of the proposed approach is validated by fo
experiments.@DOI: 10.1115/1.1643077#
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1 Introduction
Compared with conventional forming techniques, laser form

~LF! of sheet metal does not require hard tooling or exter
forces and hence, can increase process flexibility and reduce
cost of the forming process when low-to medium-volume prod
tion or prototyping is concerned. It therefore has potential ap
cations in aerospace, shipbuilding and other industries. Signifi
progress has been made in analyzing and predicting LF proce
of sheet metal. To apply the LF process to real world proble
however, the inverse problem needs to be addressed, that
design process parameters~laser scanning paths and heating co
dition in terms of laser power and scanning velocity! given a
desired shape. For general three-dimensional shapes, determ
laser scanning paths and heating condition is not obvious s
their relationship to the shapes is complicated.

Ueda et al.@1# investigated the development of a computer-a
process planning system for plate bending by line heating. T
computed the strains using large deformation elastic finite elem
method~FEM! and decomposed strains into in-plane and bend
components. They then chose regions with large in-plane str
as heating zones and selected heating direction normal to the
cipal strain. Their work in line heating provides relevant inform
tion for the LF process design. However, their approach to hea
path determination is not well explained. Furthermore, they
not deal with how to determine the heating condition.

Jang and Moon@2# developed an algorithm to determine hea
ing lines for plate forming by line heating method. They fir
calculated the lines of curvature of a prescribed surface and ev
ated the points of extreme principal curvature along the lin
They then classified and grouped them based on their princ
directions and distances between. The heating lines are obta
by linear regressions on the grouped points. However, this me
only used straight heating lines, which are inappropriate for m
complicated shapes. Also, it did not address the heating cond
determination.

Yu and Patrikalakis@3# presented algorithms for optimal deve
opment of a smooth continuous curved surface into a pla
shape. The development process is modeled by in plane s
from the curved surface to its planar development. The distri
tion of the appropriate minimum strain field is obtained by solvi
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a constrained nonlinear programming problem. The optimal
veloped planar shape is obtained by solving an unconstrained
linear programming problem, which is based on the strain dis
bution from previous step. The algorithms presented
illuminating; however, they do not provide an explicit method
how to determine laser paths nor on how to determine hea
conditions.

Given the understanding that analytical or numerical solutio
to the inverse problem may be less fruitful, heuristic approac
have been attempted. A genetic algorithm~GA! based approach
which is an adaptive heuristic search algorithm premised on
evolutionary ideas of natural selection and genetic, was propo
by Shimizu @4# as an optimization engine to solve the inver
problem of the LF process. In his study, a set of arbitrarily cho
heat process conditions for a dome shape was encoded into st
of binary bits, which evolve over generations following the na
ral selection scheme. One of the important process parame
heating path positions, was assumed given. To apply GA, i
necessary to specify crossover rate and mutation rate but
selection suffers from lack of rigorous criteria.

Focusing on a class of shapes, Liu and Yao@5# proposed a
response surface methodology based optimization method fo
process design. The propagation of error technique is built into
design process as an additional response to be optimized via
sirability function and hence make the design robust. To the sa
end, Cheng and Yao@6# proposed a genetic algorithm in LF pro
cess design. This approach uses several analytical equations
on theoretical analysis and experiment/numerical training to p
dict the geometry change occurring in the straight-line LF. Bo
methods were successful for a class of shapes; however, the
not directly applicable to general 3D shapes.

This study presents an optimal process planning strategy to
termine scanning paths and heating condition for laser forming
general doubly curved shapes. The overall methodology is
sented first, followed by more step-by-step descriptions of
proposed strategy. Two distinctive types of doubly curved s
faces, pillow and saddle shape are studied and the overall m
odology is validated by experiments.

2 Problem Description
Sheet metal concerned in forming including laser forming

mostly of the type of thin plates, that is, it has the ratio of
,w/h,100, whereh is plate thickness andw is a typical planar
dimension of a plate@7#. The locus of points that lie at equa
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distances from two faces of a plate defines a middle surface.
paper is concerned with thin plates and therefore the analys
strains can be reduced to the analysis of their middle surface o
This study is not limited to small deflections. When the deform
tion is small, the middle surface is neutral and otherwise there
strains on the middle surface.

An arbitrary surface is not characterized globally, but only
local points. That is only a local shape can be known and
determined by the derivatives of the surface vector. The natur
the local shape is classified into four cases according to the Ga
ian curvature and coefficients of second fundamental form~L, M
and N! at the point~see Section 3 for more details!. They are
elliptic case, which has a positive Gaussian curvature, hyperb
case, which has a negative Gaussian curvature, parabolic
which has zero Gaussian curvature andL21M21N2Þ0, and pla-
nar case, which has zero Gaussian curvature andL5M5N50.

In engineering applications, surfaces are often classified as
gly and doubly curved surfaces. A singly curved surface has z
Gaussian curvature at all points, like the parabolic case, and th
fore can be formed by bending strain only. A doubly curved s
face has non-zero Gaussian curvature, like the elliptic case an
hyperbolic case, and generally requires both in-plane and ben
strains to form. Surfaces of many engineering structures are c
monly fabricated as doubly curved shapes to fulfill functional
quirements such as hydrodynamic, aesthetic, or structural. Fo
ample, a large portion of the shell plates of ship hulls or airpla
fuselages are doubly curved surfaces. This paper is conce
with doubly curved surfaces. For thin plates, in-plane strain
usually much larger than the bending strain and therefore only
former is considered in this paper.

Two distinctive doubly curved surfaces are chosen as des
shapes in this study. They are a pillow shape, which has pos
Gaussian curvature over the entire surface, and a saddle
which has negative Gaussian curvature over the entire sur
Both surfaces are given in the form of Bezier surface. Points o
Bezier surface are given by the following equation@8#

r ~u,v !5(
i 50

m

(
i 50

n

r i j Bi ,m~u!Bj ,n~v ! u,vP@0,1# (1)

where r i j is the i j th control point,Bi ,n(u)5C(n,i )ui(12u)n2 i ,
andC(n,i ) is the binomial coefficientC(n,i )5n!/ i !(n21)!.

For a bicubic Bezier patch, sixteen points are required to de
mine a surface patch, the point on the surface patch can be
pressed in the matrix form@8#,

r ~u,v !5@~12u!3 3u~12u!2 3u2~12u! u3#QF ~12v !3

3v~12v !2

3v2~12v !

v3
G
(2)

whereQ is a 4 by 4 matrix containing the sixteen control point
r i j . The control points for the pillow shape are:

~0,0,0!, ~0,1/3,0.025!, ~0,2/3,0.025!, ~0,1,0!
~1/3,0,3.0.042!, ~1/3,1/3,0.08!, ~1/3,2/3,0.08!, ~1/3,1,0.042!
~2/3,0,0.042!, ~2/3,1/3,0.08!, ~2/3,2/3,0.08!, ~2/3,1,0.042!
~1,0,0!, ~1,1/3,0.025!, ~1,2/3,0.025!, ~1,1,0!

For the saddle shape, the control points are:
~0,0,0.042!, ~0,1/3,0.017!, ~0,2/3,20.017!, ~0,1,20.042!
~1/3,0,3.0.017!, ~1/3,1/3,0.008!, ~1/3,2/3,20.008!, ~1/3,1,

20.017!
~2/3,0,20.017!, ~2/3,1/3,20.008!, ~2/3,2/3,0.008!, ~2/3,1,

0.017!
~1,0,20.042!, ~1,1/3,20.017!, ~1,2/3,0.017!, ~1,1,0.042!

These two shapes are shown in Figs. 1 and 2, respectively
noticed in Fig. 1, the adjacent sides of the pillow shape are
identical, with the one along theu direction curves slightly higher
The saddle shape in Fig. 2 bends up at a pair of opposite cor
and down at the other pair.
2 Õ Vol. 126, FEBRUARY 2004
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Figure 3 outlines the overall strategy of process planning in t
paper. The strategy consists of three stages. In stage one, the
cipal curvature directions are calculated based on the first
second fundamental form coefficients of a given doubly curv
surface. Once the desired surface is given, the principal curva
directions can be determined. The desired doubly curved sur
is then developed into a planar shape to obtain the required s
field. This part is modeled by in-plane strain along the princip
curvature direction from the doubly curved surface to its plan
development. The distribution of the minimum strain field is o
tained by solving a constrained nonlinear optimization proble
Based on the strain field and the coefficients of the first fun
mental form of the curved surface, the initial planar shape
obtained by solving an unconstrained nonlinear optimizat
problem.

In stage two, the planning of laser paths is carried out on
planar developed surface and perpendicular to the principal
vature directions solved from the stage one. Since the stra
along the principal curvatures are perpendicular to each other,
no shear strain is considered, they can be regarded as the prin
strains. Furthermore, it is well known that in a laser forming pr
cess, the largest compressive strains are generated perpend
to the scanning path. Therefore, the laser path should be pla
perpendicular to the principal curvature directions. Segmenta
along the heating paths is performed and heating condition is

Fig. 1 Desired pillow shape „also note the shape along the
u -direction curves higher than that along the v -direction …

Fig. 2 Desired saddle shape
Transactions of the ASME
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termined in the final stage. The required strain between adja
scanning paths is first lumped together, and a database, whi
obtained from finite element method concerning the relations
between principal strains and laser power levels and scanning
locities, is then consulted. The three stages are described in
details in the following three sections.

3 Determination of Strain Field
In geometric modeling, shapes are commonly expressed

terms of parametric equations because the shapes of most ob
are intrinsically independent of any coordinate system; the cu
and surfaces are often nonplanar and bounded in some sens
cannot be represented by an ordinary nonparametric function;
a parametric representation is easier for the study on the l
properties.

A parametric representation of a surface can be denotedr
5r (u,v) where (u,v)P@0,1# forms a parametric space. Its parti
derivatives at pointP on the surface are represented byru

5]r /]u, r v5]r /]v, ruu5]2r /]u2, r vv5]2r /]v2, and ruv
5]2r /]u]v. A surface is uniquely determined by the first an
second fundamental forms, which are local invariant quantit
The first fundamental form is a measure of the amount of mo
ment of a surface at pointP in the parameter space and is defin
as @9#

I 5dr•dr5Edu212Fdudv1Gdv2 (3)

where

E5ru•ru , F5ru•r v and G5r v•r v (4)

It’s a homogeneous function of second degree indu anddv with
coefficientsE, F andG. The second fundamental form measur
the change in normal vectordN and the change of surface positio
dr at a surface point at (u,v) as a function of a small movemen
(du,dv) in the parameter space and is defined as.

II 52dr•dN5Ldu212Mdudv1Ndv2 (5)

where L52ru•Nu , M5(21/2)(ru•Nv1r v•Nu), and N52r v
•Nv are the second fundamental coefficients, andNu5]N/]u and
Nv5]N/]v.

Fig. 3 Outline of the process planning scheme
Journal of Manufacturing Science and Engineering
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Let r5r (u(s),v(s)) be a curveC on the surface through poin
P, wheres represents the arc length.kn is the vector projection of
the curvature vectork of the curveC at pointP onto the normalN
at P, i.e., kn5(k"N)N5knN, wherekn is known as the norma
curvature of the surface atP and is expressed in terms of the fir
and second fundamental form, namely,

kn5
Ldu212Mdudv1Ndv2

Edu212Fdudv1Gdv2 5
II

I
(6)

3.1 Principal Curvatures. Principal directions are the two
perpendicular directions at which the valuekn take on maximum
and minimum values, and the corresponding normal curvatu
kmin andkmax, are the principal curvatures. The value of princip
curvatures and principal directions at a pointP on a surface can be
obtained by taking derivative of Eq.~6! with respect tol
5dv/du and letting it equal to zero, that is,

~FN2MG!l21~EN2LG!l1~EM2LF !50 (7)

wherel is a principal direction atP. Substitutingl into Eq. ~6!
yields

~EG2F2!kn
22~EN1GL22FM !kn1~LN2M2!50 (8)

Gaussian curvature is the product of the roots of Eq.~8!, kmin and
kmax that is

K5kminkmax5
LN2M2

EG2F2 (9)

The Gaussian curvatureK can also be expressed in terms ofE, F,
andG and their derivatives~Eq. ~A1! in Appendix!. For a doubly
curved surface, the Gaussian curvature is not equal to zero at
at some points on the surface, while a singly curved surface
planar surface, the Gaussian curvature is zero everywhere on
surface. A curve on a surface whose tangent at each point is a
a principal direction is called a line of curvature. It follows that
curve is a line of curvature if and only if at each point the dire
tion of its tangent satisfies Eq.~7! for some pathr5r (u,v).

3.2 Strain Field for Planar Development. Assume the
strain field due to changing from a given curved surface to
planar shape is represented by«s(u,v) and « t(u,v) where (s,t)
denote the principal curvature directions. Knowing that the str
field can be expressed by the intrinsic geometric properties of
surfaces and that flattening a curved surface can yield mult
solutions of«s(u,v) and « t(u,v), an optimization approach is
appropriate to solve the problem. An approach based on min
zation of the total strain energy after adding the strain field to
given doubly curved surface, which maps to a planar shape
which Gaussian curvatureKps is zero everywhere@4#, is ex-
pressed as

min E E
D
$~«s!21~« t!2%uru3r vududv

5min E E
D
$~«s!21~« t!2%AEG2F2dudv

(10)

subject toKps50, «s(u,v)>0 and« t(u,v)>0. (u,v)PD andD
is the parametric space.

In the above objective function,AEG2F2dudv is the area of a
small region bounded bydu anddv. The physical meaning of the
objective function therefore is to minimize the total strain ener
along the principal curvature directions over the entire surf
area. For the constraintKps50, Eq.~A1! will be used by replacing
e, f, andg for E, F, andG, wheree, f, andg are the first funda-
mental form coefficients of the developed planar surfaceR(u,v)
~Fig. 4! and defined as
FEBRUARY 2004, Vol. 126 Õ 3
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e5Ru•Ru , f 5Ru•Rv , and g5Rv•Rv (11)

It is more convenient to use the form shown in Eq.~A1! than in
Eq. ~9! because only the first fundamental form coefficients a
their derivatives are needed. The relationships betweene, f, andg
and the given curved surface parameters as well as the unkno
«s(u,v) and« t(u,v) are briefly derived in Eq.~A2! to ~A6!.

The non-negativity constraints«s(u,v)>0 and« t(u,v)>0 are
imposed for the following reason. During a laser forming proce
it is known that the strains generated to form a planar shape
curved surface are mostly compressive, that is,es(u,v)<0, and
et(u,v)<0. As a result, the strains required to develop the curv
surface to its planar shape are tensile, that is,«s(u,v)>0 and
« t(u,v)>0.

Equation~10!, representing a constrained nonlinear optimiz
tion problem, is discretized by using the trapezoidal rule of in
gration and central difference method for partial derivatives in
constraints~Eq. ~A7!!. If the spaceD is discretized intom by n
grid points, there are 2mn decision variables« i j

s and « i j
t , i

51,2, . . . ,m, and j 51,2, . . . ,n. NAG e04ucf routine @10#,
which implements a sequential quadratic programming met
~SQP! is used to solve the constrained nonlinear optimizat
problem. The results are shown in Figs. 5 and 6 for the pillow a
saddle cases, respectively. The length of the bars represent
magnitude and the orientation of the bars the direction of
strains.

Fig. 4 Doubly curved surface, its planar development and the
strain definition

Fig. 5 Strains along principal curvature directions on the pil-
low shape „the segment length represents the strain magnitude
and the segment orientation represents the strain direction …
4 Õ Vol. 126, FEBRUARY 2004
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3.3 Planar Developed Shape. After obtaining the strain
field (« i j

s and « i j
t ) at all grid points, the planar coordinate

(Xi j ,Yi j ) of the grid points corresponding to the planar develop
shape can be determined. This will give the size and profile of
planar developed shape, which are needed in cutting the pla
shape to form the desired curved surface.

The decision variables to be determined are the 2mn coordi-
nates of the grid pointsRi j 5(Xi j ,Yi j ), which are supposed to
satisfy Eq.~11!, wheree, f andg are determined based on (« i j

s and
« i j

t ) and other information of the desired curved surface~Eq.
~A6!!. As a result, Eq.~11! gives 3mn known conditions. To solve
this over-determined system of nonlinear polynomial equatio
the following unconstrained least square error minimization pro
lem is solved by using quasi-Newton method in NAG C routi
e04fcc.

min(
i 51

m

(
j 51

n

~Ru•Ruu i j 2ei j !
21~Ru•Rvu i j 2 f i j !

21~Rv•Rvu i j

2gi j !
2 (12)

whereRu and Rv are expressed in terms of (Xi j ,Yi j ) using the
finite difference method. The initial points of the minimizatio
problem are given by
(Xi j ,Yi j )5( i /m, j /n) where i 51, . . . . . . ,m; j 51, . . . . . .n.
The results are shown in Figs. 7 and 8 for the pillow and sad
cases, respectively.

3.4 Curved Surface Reconstruction. To validate the strain
field and planar shape development process, the coordinates o
given curved surfacer i j 5(xi j ,yi j ,zi j ) can be reconstructed by
solving the following least squares error minimization proble
@4#:

min(
i 51

m

(
j 51

n

~ru•ruu i j 2Ei j !
21~ru•r vu i j 2Fi j !

21~r v•r vu i j 2Gi j !
2

1~ruu•~ru3r v!u i j 2Li jAEi j Gi j 2Fi j
2 !21~ruv•~ru3r v!u i j

2Mi jAEi j Gi j 2Fi j
2 !21~r vv•~ru3r v!u i j 2Ni jAEi j Gi j 2Fi j

2 !2

(13)

whereEi j , Fii , andGi j are calculated based on theei j , f i j , and
gi j and the strain field (« i j

s and« i j
t ) using a discrete version of Eq

~A6!, and ei j , f i j , and gi j are computed based on the plan
coordinates (Xi j ,Yi j ) using a discrete version of Eq.~11!. The
results are shown in Figs. 9 and 10 for the pillow and sad

Fig. 6 Strains along principal curvature directions on the
saddle shape „the segment length represents the strain magni-
tude and the segment orientation represents the strain direc-
tion …
Transactions of the ASME
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cases, respectively. As seen, the reconstructed curved sur
agree with the given ones and the process of strain field and pl
developed surface determination is validated.

3.5 Strain Field Transformation. The strains«s(u,v) and
« t(u,v) are on the curved surface and to determine scanning p
on the planar developed surface, they need to be transformed
the planar surfacees(u,v) and et(u,v). Since «s(u,v) and
« t(u,v) represent the strains due to changing from curved surf
to its planar development, an infinitesimal lengthur sdsu changes
to (11«s)ur sdsu and ur tdtu changes to (11« t)ur tdtu ~Fig. 4!.
Therefore,

Fig. 7 Planar developed shape of the pillow case „distortion
from the original parametric space D: „u ,v …«†0,1‡ is magnified
by a factor of 5 for viewing clarity …

Fig. 8 Planar developed shape of the saddle case „distortion
from the original parametric space D: „u ,v …«†0,1‡ is magnified
by a factor of 5 for viewing clarity …
Journal of Manufacturing Science and Engineering
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uRsu5~11«s!ur su, and uRtu5~11« t!ur tu, (14)

wherer and R represent the given curved surface and its plan
development, respectively and (s,t) represent the principal curva
ture directions. Similarly,

ur su5~11es!uRsu, and ur tu5~11et!uRtu, (15)

Combining Eqs.~14! and ~15!, es(u,v) and et(u,v) can be ex-
pressed in terms of«s(u,v) and« t(u,v) as

es52
«s

11«s , and et52
« t

11« t (16)

As seen in Eq.~16! and discussed in Section 3.2,es(u,v) and
et(u,v) have opposite signs as«s(u,v) and« t(u,v). The results
are shown in Figs. 11 and 12 for the pillow and saddle cas
respectively.

4 Scanning Paths
After a strain field required to develop a desired curved sha

to its planar shape is determined, scanning paths are designed
well known that, in the laser forming process, the highest co
pressive strains occur in a direction perpendicular to a scann
path and in-plane within workpiece. Therefore a scanning p
should be perpendicular to the direction of the principal stra
Since the strains developed along the principal curvature dir
tions («s,« t) in the preceding section are perpendicular to ea
other and no shear strain is involved in the process, they can

Fig. 9 Comparison between desired and reconstructed
shapes of the pillow case „the difference between the two sur-
faces is multiplied by 5 for viewing clarity …

Fig. 10 Comparison between desired and reconstructed
shapes of the saddle case „the difference between the two sur-
faces is multiplied by 5 for viewing clarity …
FEBRUARY 2004, Vol. 126 Õ 5
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regarded as the in-plane principal strains, and therefore a scan
path should be perpendicular to the direction of the principal c
vature at every point on the path. In other words, a scanning p
is the same as a line of curvature, that is, a curve on a sur
whose tangent at each point is along a principal curvature di
tion of the surface.

For the laser forming based on the temperature gradient me
nism @11#, the target bends towards the heating source and

Fig. 11 Strains along the principal curvature directions on the
planar developed shape of the pillow case „the segment length
represents the strain magnitude and the segment orientation
represents the strain direction …

Fig. 12 Strains along the principal curvature directions on the
planar developed shape of the saddle case „the segment length
represents the strain magnitude and the segment orientation
represents the strain direction …
6 Õ Vol. 126, FEBRUARY 2004
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curvature generated is considered positive. To form a curved
face by laser forming is to superpose these positive curvature
the appropriate regions of the plate. If the Gaussian curvatu
along the lines of curvature are positive, the scanning paths sh
be placed on one side of the plate. If the Gaussian curvatures
negative, the scanning paths should be placed at both sides o
plate. Figure 13 shows that the principal curvatures are both ne
tive in the pillow shape, namely Gaussian curvatures are posi
all over the plate. As a result, all the laser paths should be p
tioned on one side of the plate. Fig. 14, however, shows a differ
scenario. For the saddle shape, each location on the plate has
positive and negative principal curvatures. Therefore, the la
paths should be positioned at both sides of the plate.

In determining the spacing of adjacent scanning paths, the
lowing guidelines are followed and the guidelines are included
the database shown in Fig. 1. In general, the smaller the spac
the more precise the desired shape can be formed. However
adjacent paths cannot be too close since they will no longer
independent with each other while independence is a requirem
assumed in determining the heating condition in the next sect
Fig. 15 shows that temperature and compressive plastic strain
do not go beyond the extent of laser beam size in laser form
and therefore the minimal spacing equals the laser beam radiu
addition, too small spacing implies more scanning and thus lon

Fig. 13 Magnitude of principal curvatures of the pillow shape
showing that all the principal curvatures have negative values

Fig. 14 Magnitude of principal curvatures of the saddle shape
showing that they have both positive and negative values
Transactions of the ASME
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time to form a part. The strain distribution over the entire pla
should also be considered in determining the spacing of adja
paths. The regions of a shape that has larger strains need t
scanned with denser paths. As a rule of thumb, spacing betw
two adjacent paths,Dpaths, should be equal to strain generated b
laser forming,« laser , multiplied by laser beam spot size,dlaser
and divided by the average principal strain over the spacing.
other consideration is where to not place a scanning path or w
to terminate a scanning path. If a region has strains smaller th
particular value of the maximum strain in the plate, say 5%,
scanning paths are placed there. Similarly, if the strain alon
scanning is smaller than a particular value, the scanning pat
terminated at that point.

Figures 16 and 17 show the scanning paths determined u
the above principles and guidelines in order to form the pillo
shape and saddle shape, respectively. The power and scan
speed shown will be explained in the next section. As seen fr
Fig. 16~only a quarter of the plate is shown due to symmetry!, the

Fig. 15 Typical simulation results showing temperature and
compressive plastic strain rise do not go beyond the extent of
laser beam size „beam diameter is 4 mm, scanning path at y
Ä0 mm, square 1010 steel plate of 80 by 80 by 0.89 mm … †5‡

Fig. 16 Optimal planning of laser paths „shown in line seg-
ments … and heating condition „power shown in watts and scan-
ning speed shown in numbers with unit of mm Õs… for the pillow
shape. A quarter of a 80 by 80 by 0.89 mm plate is shown due to
symmetry. Material is 1010 steel. Beam spot size is 6 mm.
Shown in background are strains.
Journal of Manufacturing Science and Engineering
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scanning paths are perpendicular to the principal curvature di
tions. This is also the case for Fig. 17 where the directions~shown
in Fig. 12! are not shown for viewing clarity. In the pillow cas
the regions around the mid edges have larger strains, while
gions at the corners and the center of the plate have sma
strains. Based on previous discussions, the laser paths shou
positioned denser around the mid edges of the plate. On the o
hand, in the saddle shape~only a quarter of paths are shown due
symmetry!, the strains are larger at the center of the plate a
become smaller towards the edges~Fig. 12!. Therefore, laser paths
should be denser at the center of the plate. Regions with str
less than 5% of the maximal strain of the plate, no paths
placed. A laser path terminates where the corresponding stra
less than 5% of the maximum strain along the path. As seen,
determination of the scanning paths involves certain practical c
siderations which are included in the database shown in Fig. 1
the solution is obviously not unique.

5 Heating Condition
The final stage of 3D laser forming design is to determine

heating condition. If the plate dimension and the laser spot s
are given, the heating condition that needs to be determined
cludes laser power and laser scanning velocity. In this study,
selected samples are 1010 steel coupons with dimension of 8
80 by 0.89 mm. Figure 18 shows principal minimum strain av
aged over a beam spot size as a function of laser power
scanning velocities determined via finite element analysis
single straight-line~independent! laser scanning of a plate with
the above material and dimension. Detailed FEM modeling
scription can be found in Liu and Yao@5#. This relationship is part
of the database shown in Fig. 3. As seen, there are many pos
combinations of power and velocity to realize a given strain. T
strategy to determine the heating condition is summarized bel

First, the in-plane strains along a scanning path determine
the section 4 are averaged and checked with Fig. 18 and a l
power level is chosen. This step is to ensure that the power le
chosen is readily available in the existing laser forming equ
ment. The laser power is kept constant for the laser path. The

Fig. 17 Optimal planning of laser paths „shown in lines … and
heating condition „power shown in watts and scanning speed
shown in numbers with unit of mm Õs… for the saddle shape.
Only a quarter of the paths Õcondition is shown due to symme-
try. Material is 1010 steel. Beam spot size is 6 mm. The dotted
line represents a scanning path on the opposite side of the
plate and other paths on the opposite side „similar to the ones
on the side shown … are not shown for viewing clarity.
FEBRUARY 2004, Vol. 126 Õ 7
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step is to determine the velocities along the path. In general,
strain distribution along the path is not uniformly distribute
therefore the velocity ideally should vary with the strain along t
path. Practically, a laser path is broken into several segment
that in each segment the strain variation is not larger than, say
of the maximum strain along the path. A constant velocity is p
scribed for each segment based on the average strain of the
ment, predetermined laser power, and the existing relations
shown in Fig. 18. The average strain of the segment is obtaine
averaging the strain along the segment, followed by lumping
strain between adjacent paths.

The heating condition for the two desired shapes is deci
following the above strategy and superposed in Figs. 16 and
respectively. Generally, regions requiring high strains get hig
power levels and lower velocities prescribed simply because m
energy input is required. For example for the path atx540 mm in
Fig. 16, where the highest strain is required, the power is high
at 650 W for the path. At locations neary50 on the path, the
strains are larger, therefore the velocity is lowest (v527 mm/s).
As the path moves toward the center, the velocity increa
sharply, due to the quick drop of strain. Since the strain grad
along the path slows down towards the center of the plate,
segment spacing becomes larger accordingly. On the contrary
principal strains are larger at the center of the plate for the sad
case shown in Fig. 17, and therefore the spacing of the adja
paths are denser. But the strain gradients are larger towards e
and corners of the plate, the segment spacing is therefore sm
towards the edges and corners.

6 Experimental Validation
Laser forming experiments were conducted on 1010 steel c

pons of dimension of 80 by 80 by 0.89 mm, the same as use
simulation. The scanning paths and heating condition in the
periments are shown in Figs. 16 and 17 for the pillow and sad
cases, respectively. The laser system used is a PRC-15002
laser, which has a maximum output power of 1,500 W. La
beam spot size used is 4 mm. Workpiece movement was c
trolled by Unidex MMI500 motion control system, which allow
convenient specifications of variable velocities along a path w
smooth transitions from segment to segment.

Figure 19 shows the formed pillow and saddle shape un
these conditions. A coordinate measuring machine~CMM! is used
to measure the geometry of the formed shapes. Figures 20 an

Fig. 18 Average principal in-plane strain vs. power and veloc-
ity from FEM analysis. The average is carried out over the laser
beam radius „beam diameter is 4 mm, square 1010 steel plate of
80 by 80 by 0.89 mm … †6‡.
8 Õ Vol. 126, FEBRUARY 2004
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compare the geometry of formed shape under the determined
ditions and desired shape. Only the geometry of top surface of
plate is measured and a general agreement can be seen from
figures. There is about 10% error for the saddle case especial
the corners seen from Fig. 21. Possible sources of error incl
the average and lumped method used to determine strains of
segments, and the approximate method used to determine the
power and scanning velocity based on independent scans. A
all, a strain field required to develop a curved shape to its pla
shape is continuous in nature while the laser forming process u
a discrete number of paths to approximate the strain field.

Fig. 19 Laser formed pillow and saddle shapes using the pro-
cess plans shown in Figs. 15 and 16, respectively „1010 steel
plate of 80 by 80 by 0.89 nm, beam diameter is 4 mm …

Fig. 20 Comparison of desired and measured shapes of the
pillow case „an array of 7 by 7 points measured by CMM …

Fig. 21 Comparison of desired and measured shapes of the
saddle case „an array of 7 by 7 points measured by CMM …
Transactions of the ASME
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7 Conclusions
Reconstruction of the desired doubly curved shapes shows

strain field determination based on principal curvature formulat
and minimal strain optimization is effective and of sufficient pr
cision. The concept of determining a strain field required to
velop a given curved shape to its planar shape as the first ste
process planning for laser forming is of merit. Placing scann
paths perpendicular to the principal curvature directions, nam
along the line of curvatures of a desired shape proves to be
ambiguous and easy to implement. Practical constraints need
combined with analytical ones in determining path spacing
heating condition. There is a trade-off between forming accur
and efficiency by carefully choosing density of scanning paths
path segments.
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Appendix
Equation~9! shows Gaussian curvatureK is expressed in terms

of the first and second fundamental form coefficients of a surfa
In practice,K can be alternatively expressed as a function of
first fundamental form coefficients and their derivatives@12#.
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K5$E~EvGv22FuGv1Gu
2!1F~EuGv2EvGu22EvFv

14EuFv22FuGu!1G~EuGu22EuFv1Ev
2!

22~EG2F2!~Evv22Fuv1Guu!%/4~EG2F2!2 (A1)

From the definition of first fundamental form coefficients~Eqs.~4!
and ~11!,

Rs•Rs5~Ruus1Rvvs!•~Ruus1Rvvs!5eus
212 f usvs1gvs

2

r s•r s5~ruus1r vvs!•~ruus1r vvs!5Eus
212Fusvs1Gvs

2

(A2)

Using Eqs.~A1!, ~A2!, and~14!, one obtains

eus
212 f usvs1gvs

25~11«s!2~Eus
212Fusvs1Gvs

2!. (A3)

Similarly, along the minimal principal curvature direction, on
obtains

eut
212 f utv t1gv t

25~11« t!2~Eut
212Futv t1Gv t

2! (A4)

Assume the principal curvature directions remain orthogonal a
development, which implies

Rs•Rt5~Ruus1Rvvs!•~Ruut1Rvv t!5eusut1 f ~usv t1utvs!

1gvsv t50 (A5)

Equations~A3! to ~A5! represent a system of three linear equatio
in e, f, andg, which are solved as
e5
v t

2@Eus
212Fusvs1Gvs

2#~11«s!21vs
2@Eut

212Futv t1Gv t
2#~11« t!2

~vsut2usv t!
2

f 52
utv t@Eus

212Fusvs1Gvs
2#~11«s!21usvs@Eut

212Futv t1Gv t
2#~11« t!2

~vsut2usv t!
2 (A6)

g5
ut

2@Eus
212Fusvs1Gvs

2#~11«s!21us
2@Eut

212Futv t1Gv t
2#~11« t!2

~vsut2usv t!
2

ng

a

of

ng

by

rk
For a given curved surface,E, F, andG as well asus , ut , vs , and
v t can be calculated, and therefore if«s and« t are calculated,e, f
andg can be calculated accordingly.

The objective function of Eq.~10! can be discretized using th
trapezoidal rule of integration and central difference method
partial derivatives@13#. After discretization, the objective functio
becomes

(
i 51

m

(
j 51

n

a i j ~~« i j
s !21~« i j

t !2!AEi j Gi j 2Fi j
2 DuDv (A7)

where 5
a i j 51 1, i ,m;1, j ,n

a i j 50.5 1, i ,m; j 51 or j 5n

a i j 50.5 i 51 or i 5m;1, j ,n

a i j 50.25 i 5 j 51 or i 5m, j 5n

a i j 50.25 i 5m; j 51;or i 51,j 5n

Du andDv are the length between two adjacent grid points.
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