
c12) United States Patent 
Long et al. 

(54) METHODS AND SYSTEMS FOR 
IDENTIFYING AND LOCALIZING OBJECTS 
BASED ON FEATURES OF THE OBJECTS 
THAT ARE MAPPED TO A VECTOR 

(75) Inventors: Xi Long, Seattle, WA (US); W. Louis 
Cleveland, New York, NY (US); Y. 
Lawrence Yao, New York, NY (US) 

(73) Assignee: Trustees of Columbia University in the 
City of New York, New York, NY (US) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 796 days. 

(21) Appl. No.: 11/789,571 

(22) Filed: Apr. 25, 2007 

(65) Prior Publication Data 

US 2008/0082468 AI Apr. 3, 2008 

Related U.S. Application Data 

(63) Continuation of application No. 
PCT/US2005/040905, filed on Nov. 10, 2005. 

(60) Provisional application No. 60/795,210, filed on Apr. 
25, 2006, provisional application No. 60/627,465, 
filed on Nov. 11, 2004. 

(51) Int. Cl. 
G06N 5100 (2006.01) 

(52) U.S. Cl. ............................................ 706112; 706/45 

(58) Field of Classification Search . ... ... ... ... .. ... .. 706/12, 
706/45 

See application file for complete search history. 

Microscopic Images 

111111 1111111111111111111111111111111111111111111111111111111111111 
US007958063B2 

(10) Patent No.: US 7,958,063 B2 
(45) Date of Patent: Jun. 7, 2011 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,349,435 A 
4,421,716 A 
6,253,607 B1 

2002/0165837 A1 

9/1982 Ochiai 
12/1983 Hench eta!. 
7/2001 Dau 

1112002 Zhang et al. 

FOREIGN PATENT DOCUMENTS 

WO W0-99/08091 A1 2/1999 
OTHER PUBLICATIONS 

Long, et al, Effective Automatic Recognition of Cultured Cells in 
Bright Field Images Using Fisher's Linear Discriminant Preprocess­
ing, Image and Vision Computing 23 (2005), pp. 1203-1213.* 

(Continued) 

Primary Examiner- Wilbert L Starks, Jr. 
(74) Attorney, Agent, or Firm- Wilmer Cutler Pickering 
Hale and Dorr LLP 

(57) ABSTRACT 
A method of identifYing and localizing objects belonging to 
one of three or more classes, includes deriving vectors, each 
being mapped to one of the objects, where each of the vectors 
is an element of an N-dimensional space. The method 
includes training an ensemble of binary classifiers with a 
CISS technique, using an ECOC technique. For each object 
corresponding to a class, the method includes calculating a 
probability that the associated vector belongs to a particular 
class, using an ECOC probability estimation technique. In 
another embodiment, increased detection accuracy is 
achieved by using images obtained with different contrast 
methods. A nonlinear dimensional reduction technique, Ker­
nel PCA, was employed to extract features from the multi­
contrast composite image. The Kernel PCA preprocessing 
shows improvements over traditional linear PCA preprocess­
ing possibly due to its ability to capture high-order, nonlinear 
correlations in the high dimensional image space. 

40 Claims, 37 Drawing Sheets 

Original Image 



US 7,958,063 B2 
Page 2 

OTHER PUBLICATIONS 

Long, et al, Automatic detection of unstained viable cells in bright 

field images using a support vector machine with an improved train­

ing procedure, Computers in Biology and Medicine 36 (2006), pp. 

339-362.* 
Mika, eta!, Kernel PCA and De-noising in Feature Spaces, Advances 
in Neural Information Processing Systems 11, 1999, pp. 1-7.* 
Long eta!, A new preprocessing approach for cell recognition, IEEE 
Trans InfTechnol Biomed., Sep. 2005, pp. 407-412.* 
A. Ashkin, "Optical trapping and manipulation of neutral particles 
using lasers", Proc. Nat!. Acad. Sci., 94, 1997, pp. 4853-4860. 
A. Berger, Error-Correcting Output Coding for Text Classification, 
IJCAI'99: Workshop on machine learning for information filtering, 
Stockholm, Sweden, 1999. 
A. Hultgren and M. Tanase, "Cell manipulation using magnetic 
nanowires", Journal of Applied Physics, 93 (10), 2003, pp. 7554-
7556. 
A. Shashua, "On the relationship between the support vector machine 
for classification and sparsified Fisher's Linear Discriminant", Neu­
ral Processing Letters, 9, 1999, pp. 129-139. 
B. Boser, I. Guvlon and V. Vapnik, "A training Algorithm for Optimal 
Margin Classifiers", Proceedings of the Fifth Conference on Com­
putational learning Theory, New York: Association of Computing 
Machinery, 1992, pp. 144-152. 
B. Scholkopf, "Statistical learning and kernel methods", MSR-TR 
2000-23, Microsoft Research, 2000. 
B. Scholkopf, et a!., "Nonlinear component analysis as a kernel 
eigenvalue problem", Neural Computation, 10, 1998,pp. 1299-1319. 
B. Stuhrmann, eta!., "Automated tracking and laser micromanipula­
tion of motile cells", Review of Scientific Instruments, 76, 2005, 
035105. 
C. Burges, A tutorial on Support Vector Machines for pattern recog­
nition, Data Mining and Knowledge Discovery, vol. 2, 1998, 122-
167. 
C. Campbell and N. Cristianini, "Simple training algorithms for 
support vector machines", Technical Report CIG-TR-KA, University 
of Bristol, Engineering Mathematics, Computational Intelligence 
Group, 1999. 
C. Loukas, eta!., "An Image Analysis-based Approach for Automated 
Counting of Cancer Cell Nuclei in Tissue Sections", Cytometry Part 
A, 55, 2003, pp. 30-42. 
C. Moler and G. Stewart, "An algorithm for generalized matrix 
eigenvalue problems", SIAM J. Numer. Anal., 10, 1973, pp. 99-130. 
Chih-Chung Chang and Chih-Jen Lin, LIBSVM-A Library for 
Support Vector Machines, <http://www.csie.ntu.edu.tw/-cjlin/ 
libsvm/>, Copyright 2000-2010. 
International Search Report and Written Opinion mailed on Sep. 20, 
2006 for corresponding International Patent Application No. PCT/ 
US2005/040905. 
Invitation to Pay Additional Fees mailed by International Searching 
Authority/European Patent Office on Jun. 21, 2006 for corresponding 
International Patent Application No. PCT/US2005/040905. 
D. Aha and R. Bankert, Cloud classification using error-correcting 
output codes, Artificial Intelligence Applications: Natural Resources, 
Agriculture, and Environmental Science, vol. 11, No.1, 1997, 13-28. 
D. Gray, et a!., "Dielectrophoretic registration of living cells to a 
microelectrode array", Biosensors and Bioelectronics, 19, 2004, pp. 
1765-1774. 
D. Haliyo, S. Regnier and J.-C. Guinot, "MAD, the adhesion based 
dynamic micro-manipulator", European Journal of Mechanics 
A/Solids 22, 2003, pp. 903-916. 
D.J.M. Tax and R.P.W. Duin, Using Two-Class Classifiers for 
Multiclass Classification, ICPR16: Proc. 16th Int. Conf. on Pattern 
Recognition, Quebec City, Canada, 2002, 124-127. 
D.P. Chakraborty, Maximum likelihood analysis of free-response 
receiver operating characteristic (FROC) data, Medical Physics, vol. 
16, 1989, 561-568. 
E. Allwein, R. Schapire, andY. Singer, Reducing multi class to binary: 
A unifYing approach for margin classifiers, Journal of Machine 
Learning Research, vol. 1, 2000, 113-141. 

E. Kong and T. Dietterich, Error-correcting output coding corrects 
bias and variance, Proceedings of the 12th International Conference 
on Machine Learning, 1995, 313-321. 
E. Osuna, R. Freund, and F. Girosi. "Support Vector Machines: Train­
ing and Applications", A.I. Memo 1602, MIT A.I. Lab., 1997. 
F. Arai, eta!, "Minimally Invasive Micromanipulation of Microbe by 
Laser Trapped Micro Tools", Proceedings of the 2002 IEEE Interna­
tional Conference on Robotics & Automation, Washington, DC, 
2002, pp. 1937-1942. 
F. Rosenblatt, "The Perceptron: A Probabilistic Model for Informa­
tion Storage and Organization in the Brain", Cornell Aeronautical 
Laboratory, Psychological Review, 65(6), 1958, pp. 386-408. 
F. Schnorrenberg, C. Patti chis, K. Kyriacou, and C. Schizas, "Com­
puter-aided detection of breast cancer nuclei", IEEE Trans. on Inf. 
Techn. in Biomedicine 1(2), 1997, pp. 128-140. 
G. Bakiri and T. Dietterich, Achieving high-accuracy text-to-speech 
with machine learning, Data mining in speech synthesis, Kluwer 
Academic Publishers, Boston, MA, 1999. 
G. James and T. Hastie, The error coding method and PiCTs, Journal 
of Computational and Graphical Statistics, vol. 7, No.3, 1997, 377-
387. 
G. Valentini and F. Masulli, Ensembles of Learning Machines, Neural 
Nets WIRN Vietri-02, Series Lecture Notes in Computer Sciences, 
Springer-Verlag, Heidelberg, Germany, 2002. 
H. Lee, T. Hunt, and R. Westervelt, "Magnetic and Electric Manipu­
lation of a Single Cell in Fluid", Materials Research Society Sympo­
sium Proceeding, 820, 2004. 
H. Murase and S. Nayar, "Visual learning and recognition of 3D 
objects from appearance", Inti. J. Computer Vision, 14, 1995, pp. 
5-24. 
J. Drish, "Obtaining Calibrated Probability Estimates from Support 
Vector Machines", technique report, Dept. of Computer Science and 
Engineering, University of California, San Diego, CA, 2001. 
J. Kittler, et a!., Face Verification Using Error Correcting Output 
Codes, Proceedings ofiEEE Computer Society Conference on Com­
puterVision and Pattern Recognition (CVPR01), 2001,755-760. 
J. Meltzer, et a!., "Multiple view feature descriptors from image 
sequences via kernel principal component analysis", Computer 
Vision-ECCV 2004, Pt 1. 3021, 2004, pp. 215-227. 
J. Mendes, eta!., "Algorithms for pattern recognition in images of cell 
cultures", Proceedings of SPIE, 4425, 2001, pp. 282-290. 
J. Platt, "Fast Training of Support Vector Machines using Sequential 
Minimal Optimization", in B. Scholkopf, C. Burges, and A. Smola 
( eds ): Advances in Kernel Methods-Support Vector Learning, MIT 
Press, 1998. 
J. Platt, "Sequential Minimal Optimization: A Fast Algorithm for 
Training Support Vector Machines", Microsoft Research Technical 
Report MSR-TR-98-14, 1998. 
J. Price and D. Gough, "Nuclear recognition in images of fluorescent 
stained cell mono layers", Proceedings ofSPIE, Applications of Digi­
tal Image Processing XIII, 1349, 1990, pp. 294-300. 
J.M. Keller eta!., "The principle of! east commitment in the analysis 
of chromosome images," vol. 2493, 1995, pp. 178-186-Proceedings 
of the SPIE, The International Society for Optical Engineering USA. 
K. Huang et al., Boosting accuracy of automated classification of 
fluorescence microscope images for location proteomics, BMC 
Bioinformatics 2004, 5:78. 
K. Huang, M. Velliste, and R. F. Murphy, "Feature reduction for 
improved recognition of subcellular location patterns in fluorescence 
microscope images", Proc. SPIE 4962, 2003, pp. 307-318. 
K. Jonsson, eta!., "Support vector machines for face authentication", 
Image and Vision Computing, 20, 2002, pp. 369-375. 
K. Morik, P. Brockhausen, and T. Joachims, "Combining statistical 
learning with a knowledge-based approach, a case study in intensive 
care monitoring", Proc. 16th International Conference on Machine 
Learning, Bled, Slovenia, 1999. 
K. Muller, et a!., "An introduction to kernel-based learning algo­
rithms", IEEE Neural Networks, 12(2), 2001, pp. 181-201. 
K. Rajpoot and N. Rajpoot "SVM Optimization for Hyperspectral 
Colon Tissue Cell Classification", Proceedings of7th Medical Image 
Computing & Computer Assisted Intervention (MICCAI), 2004, pp. 
829-837. 



US 7,958,063 B2 
Page 3 

K. Takahashi, et a!., "Voltage required to detach an adhered object 
particle by coulomb interaction for micromanipulation", J. Appl. 
Phys. 90 (1), 2001, pp. 432-437. 
L. Breiman, Bagging predictors, Machine Learning, vol. 26, No. 2, 
1996, 123-140. 
L. Hibbard, et a!., "Automated recognition and mapping of 
immunolabelledneurons in the developing brain", Journal ofMicros­
copy, 183(3), 1996, pp. 241-256. 
L. Sirovich and M. Kirby, "Low dimensional procedure for the char­
acterization of human faces", J. Optical Society of America, 4(3), 
1987, pp. 519-524. 
M. Boes, et al., "T-cell engagement of dendritic cells rapidly rear­
ranges MHC class II transport", Science, 418(6901), 2002, pp. 983-
988. 
M. Boland and R. Murphy, "A neural network classifier capable of 
recognizing the patterns of all major subcellular structures in fluo­
rescence microscope images ofhela cells", Bioinformatics, 17, 2001, 
pp. 1213-1223. 
M. Kelz, et a!., "Single- cell antisense RNA amplification and 
microarray analysis as a tool for studying neurological degeneration 
and restoration", Sci Aging Knowledge Environ 2002( 1 ):rei. 
M. Turk and A. Pentland, "Face recognition without features", Proc. 
IAPR Workshop on Machine Vision Applications, Tokyo, 1990, pp. 
267-270. 
M. Turk andA.P. Pentland, "Eigenfaces for recognition", J. Cognitive 
Neuroscience, 3(1), 1991, pp. 71-96. 
M. Turk, "Eigenfaces and Beyond", In W. Zhao and R. Chellappa 
( eds ): Face Processing: Advanced Modeling and Methods, Academic 
Press, 2005. 
N. Bonnet, "Multivariate statistical methods for the analysis of 
microscope image series: applications in materials science", Journal 
of Microscopy, 190 (1-2), 1998 pp. 2-18. 
N. Bonnet, et al., "Dimensionality reduction, segmentation and quan­
tification of multidimensional images: application to fluorescence 
microscopy", In Spectral Imaging: Instrumentation, Applications, 
and Analysis, Gregory H. Bearman, Dario Cabib, Richard M. 
Levenson, Editors, Proceedings ofSPIE vol. 3920, 2000. 
N. Cristianini and B. Scholkopf, "Support Vector Machines and 
Kernel Methods, The New Generation of Learning Machines", Arti­
ficial Intelligence Magazine, 23(3), 2002, pp. 31-41. 
P. Adiga and B. Chaudhuri, "An efficient method based on watershed 
and rule-based merging for segmentation of 3-D histopathological 
images", Pattern recognition, 34, 2001, pp. 1449-1458. 
P. Belhumeur, J. Hespanha, and D. Kriegman, "Eigenfaces vs. 
Fisherfaces: Recognition using class specific linear projection", 
IEEE Transactions on PAMI, 19(7), 1997, pp. 711-720. 
P. Sajda, C. Spence and L. Parra, "A multi -scale probabilistic network 
model for detection, synthesis and compression in mammographic 
image analysis", Medical image analysis, 7, 2003, pp. 187-204. 
P. Sjostrom, B. Frydel, and L. Wahlberg, "Artificial Neural Network­
Aided Image Analysis System for Cell Counting", Cytometry, 36, 
1999, pp. 18-26. 
R. Bernard, M. Kanduser and F. Pernus, "Model-based automated 
detection of mammalian cell colonies", Physics in Medicine and 
Biology, 46, 2001, pp. 3061-3072. 
R. F. Murphy, "Automated Interpretation of Subcellular Location 
Patterns", Proc 2004 IEEE Inti Symp Biomed Imaging (ISBI 2004), 
pp. 53-56. 
R. F. Murphy, "Cytomics and Location Proteomics: Automated Inter­
pretation of Subcellular Patterns in Fluorescence Microscope 
Images", Cytometry, 67 A, 2005, pp. 1-3. 
R. Ghani, Using Error-Correcting Codes for Text Classification, Pro­
ceedings of ICML-00, 17th International Conference on Machine 
Learning, 2000, 303-310. 
R. Rifkin and A. Klautau, "In Defense ofOne-Vs-All Classification", 
Journal of Machine Learning Research, 5, 2004, pp. 101-141. 
R. Xiao et al., "An approach to Incremental SVM Learning Algo­
rithm," Tools with Artificial Intelligence, 2000, ICTA 2000, Proceed­
ings. 12th IEEE International Conference on Nov. 13-15, 2000, pp. 
268-273. 
S. Baker and S. Nayar, "Pattern rejection", Proc. IEEE conf. Com­
puter vision and pattern recognition, 1996, pp. 544-549. 

S. Sanei and T. Lee, "Cell recognition based on PCA and bayesian 
classification", 4th International Symposium on Independent Com­
ponent Analysis and Blind Signal Separation (ICA2003), Nara, 
Japan, 2003, pp. 239-243. 
S. Shiotani, et al., "Cell recognition by image processing. (Recogni­
tion of dead or living plant cells by neural network)", JSME Interna­
tional Journal, Series C: Dynamics, Control, Robotics, Design and 
Manufacturing, 37(1), 1994, pp. 202-208. 
T. Friess, N. Cristianini, and C. Campbell. "Thekernel-Adaton: a fast 
and simple training procedure for support vector machines", In J. 
Shavlik (eds): Machine Learning: Proceedings of the fifteenth Inter­
national Conference, Morgan Kaufmann, 1998. 
T. G. Dietterich and G. Bakiri, Solving Multi class Learning Problems 
via Error- Correcting Output Codes, Journal of Artificial Intelligence 
Research, vol. 2, 1995, 263-286. 
T. Hastie and R. Tibshirani, classification by pairwise coupling, 
Advances in Neural Information Processing Systems, vol. 10, MIT 
Press, 1998. 
T. Joachims, "Making large-Scale SVM Learning Practical", in B. 
Scholkopf, C. Burges and A. Smola ( eds ): Advances in Kernel Meth­
ods-SupportVector Learning, MIT Press, 1999. 
T. Kampfe, T. Nattkemper and H. Ritter, "Combining independent 
component analysis and self-organizing maps for cell image classi­
fication", Proc. DAGM, Lecture Notes in Computer Science, 2191, 
2001, pp. 262-268. 
T. Nattkemper, "A Neural Network-Based System for High­
Throughput Fluorescence Micrograph Evaluation", University of 
Bielefeld, Faculty of Technology, Feb. 2001. 
T. Nattkemper, "Automatic segmentation of digital micrographs: A 
survey", Proceeding of 11th World Congress on Medical Informatics 
(MEDINFO), San Francisco, USA, 2004, pp. 847-854. 
T. Nattkemper, "Multivariate image analysis in biomedicine: a meth­
odological review", Journal of Biomedical Informatics, 37(5), 2004, 
pp. 380-391. 
T. Nattkemper, A. Saalbach and T. Twellmann, "Evaluation of 
Multiparameter Micrograph Analysis with Synthetical Benchmark 
Images", Proc. of EMBC2003 (25th Annual Int. Conf. of the IEEE 
Engineering in Med. and Bioi. Soc.), Cancun, Mexico, Sep. 2003. 
T. Nattkemper, eta!., "A hybrid system for cell detection in digital 
micrographs", Proceedings of the lASTED International Conference 
on Biomedical Engineering, Innsbruck, Austria, 2004, pp. 197-200. 
T. Nattkemper, H. Ritter and W. Schubert, "A neural classifier 
enabling high-throughput topological analysis of lymphocytes in 
tissue sections", IEEE trans Info. Tech. Biomedicine, 5(2), 2001, pp. 
138-149. 
T. Nattkemper, H. Wersing, W. Schubert and H. Ritter, "A neural 
network architecture for automatic segmentation of fluorescence 
micrographs", in Proc. ofESANN 2000, Brugge, pp. 177-182. 
T. Nattkemper, T. Twellmann, H. Ritter and W. Schubert, "Human vs. 
machine: evaluation of fluorescence micrographs", Computers in 
biology and medicine, 33, 2003, pp. 31-43. 
T. Twellmann, et al., "Cell Detection in Micrographs of Tissue Sec­
tions Using Support Vector Machines", Proceeding ofiCANN 2001 
Workshop on Kernel and Subspace Methods for Computer Vision, 
2001. 
T. Wuringer, et al., "Robust automatic coregistration, segmentation, 
and classification of cell nuclei in multimodal cytopathological 
microscopic images", Comput Med Imaging Graph, 28 (1-2), 2004, 
pp. 87-98. 
T.-K. Huang, R. C. Weng <http:/ /www3.nccu.edu.tw/-chweng>, and 
C.-J. Lin, A Generalized Bradley-Terry Model: From Group Com­
petition to Individual Skill, <http:/ /www.csie.ntu.edu.tw/-cjlin/pa­
pers/genera!BT.pdf>, 2004. 
T.W. Nattkemper, H. Ritter and W. Schubert, A neural classifier 
enabling high-throughput topological analysis of lymphocytes in 
tissue sections, IEEE trans Info. Tech. Biomedicine, vol. 5, No. 2, 
2001, 138-149. 
V. Guruswami and Amit Sahai, Multiclass learning, boosting, and 
error-correcting codes, Proceedings of the twelfth annual conference 
on Computational learning theory, Santa Cruz, CA, USA, 1999, 
145-155. 



US 7,958,063 B2 
Page 4 

V. Kovalev, et a!., "Segmentation Technique of Complex Image 
Scene for an Automatic Blood Cell Counting System", Proceedings 
ofSPIE, 2710, 1996, pp. 805-810. 
W. L. Cleveland, I. Wood and B.F. Erlanger, Routine large-scale 
production of monoclonal antibodies in a protein-free culture 
medium, Journal oflmmunological Methods, vol. 56, 1983, 221-234. 
X. Chen and C. Yu, "Application of some valid methods in cell 
segmentation", Image extraction, segmentation, and recognition, in 
T. Zhang, B. Bhanu and N. Shu, (eds): Proceedings of SPIE, 4550, 
2001, pp. 340-344. 
X. Long, W. L. Cleveland, andY. L. Yao, "Multiclass Detection of 
Cell Mixture in Bright Field Images with Multiclass ECOC Prob­
ability Estimation," Image and Vision Computing, 2005. 

Y. Cui, D. Swets, and J. Weng, "Learning-based hand sign recogni­
tion using SHOSLIF-M", Int'l conf. on computer vision, 1995, pp. 
631-636. 
Y. Freund and R. Schapire, A decision-theoretic generalization of 
on-line learning and an application to boosting, Journal of Computer 
and System Sciences, vol. 55, No. 1, 1997,119-139. 
Y. Sun and B. Nelson, "Biological Cell Injection Using an Autono­
mous MicroRobotic System", International Journal of Robotic 
Research, 21 (10-11), 2002, pp. 861-868. 
Z. Kam, E. Zamir and B. Geiger, "Probing molecular processes in live 
cells by quantitative multidimensional microscopy", Trends in cell 
biology, 11(8), 2001, pp. 329-334. 

* cited by examiner 



U.S. Patent Jun. 7, 2011 Sheet 1 of 37 US 7,958,063 B2 

Microscopic Images Original Image 

Processing 

.. · .. · 
n 

Training Classification 

Training Set Confidence J\1ap 

D 
Orth. Bases n 

Positioning u 
Recognition Result 

ANN 

Trained ANN 

Fig. 1a 



U.S. Patent Jun. 7, 2011 Sheet 2 of 37 US 7,958,063 B2 

Microscopic Images Original Image 

Training 

Training Set Confidence Map 

D 
Orth. Bases n 

Positioning 

u 
Recognition Result 

D 
ANN 

Trained ANN 

Fig. 1b 



U.S. Patent Jun. 7, 2011 Sheet 3 of 37 US 7,958,063 B2 

cen ••• 

Non-cell 

1 2 3 4 5 6 7 8 9 10 

Fig. 2 



U.S. Patent 

lSO 

100 

so 

X3 0 

-50 

-100 

Jun. 7, 2011 Sheet 4 of 37 

X2 

:f:+ 
+ f.+ 
+++'-Ito + o 
+ + 

0 

-SOO -SOO 

Fig. 3a 

Fig. 3b 

+ 

+ 

US 7,958,063 B2 

SOD 

o cell 
+ non-cell 

250 



MICROSCOPE 
IMAGES 

TRAIN 

I > 

, 

TRAINING SET 
(PIXEL PATCHES} 

PREPROCESSING 
PIXEL PATCH I & 

DECOMPOSITIONICLASSiFICATION 
DECISION 
VALUES 

ECOC 
PREPROCESSING INPUT VECTORS 

~ (PROCESSED 
ENCODING -- ·--. 

BY PCA) 

---- -

ECOC DECODING. I ... CONFIDENCE! LOCALIZATION J 
PROBABILITY Est! MAPS 

Fig. 3c 

ENSEMBLE 
OFSVM 

CLASSIFIERS 
(SVM) 

DETECTED 
CELLS 

~ 
00 
• 
~ 
~ 
~ 
~ = ~ 

2' 
:= 

~-....l 
N 
0 .... .... 

rFJ 

=­('D 
('D ..... 
Ul 
0 ..... 
(.H 
-....l 

d 
rJl 
-....l 
\c u. 
00 = 0'1 
w 

= N 



U.S. Patent 

-2 

-4 -~ 
-r... 
!).() -6 
0 

-8 

-10 

Jun. 7, 2011 Sheet 6 of 37 

Fig. 3d 

Fig. 3e 

US 7,958,063 B2 

93.5 
93 
92.5 
92 
91.5 
91 
90.5 
90 
89.5 
88.5 

ACC 
93.9 
93.65 
93.4 
93.15 
92.9 
92.4 
91.9 
91.4 
90.9 
89.9 



U.S. Patent Jun. 7, 2011 Sheet 7 of 37 US 7,958,063 B2 

---- PROCESSED BY PCA, REDUCED TO 10 DIM. 
- +- · PROCESSED BY FLO, REDUCED TO 10 DIM. 
-- EXPONENTIAL DECAY FIT OF PCA PROCESSED DATA 
--- , EXPONENTIAL DECAY FIT OF FLO PROCESSED DATA 

Fig. 4 



U.S. Patent Jun. 7, 2011 Sheet 8 of 37 US 7,958,063 B2 

Fig. 5a Fig. 5b 

Fig. Sc Fig. 5d 



U.S. Patent Jun. 7, 2011 Sheet 9 of 37 US 7,958,063 B2 

100 

w 80 

~ 
~ 60 

~ u 
~ 40 

m 
..J 20 
~ ..... 
% 

0 

70 

- 60 ::f 0 -w 

5 50 

z 
0 

5 
40 

u 30 ..... 
lL ..... 
tl) 

s 20 
u 
tl) ..... 10 % 

0 

r/ 
'II 

'1/ ---- ~· ,._- ---- 7 /·---.::.--- -:· "/,/ ·-·-·-A 
~/ 

Reduced ton 
dimensional subspace 

• By PCA, n=10 
- .. _ · By PCA, n=20 
-·•·- By FLD, n=10 

Focused 12.5J..Lm 251J.-m 37.5~-Lm 

TEST SAMPLES WITH FOCUS VARIATION 

Fig. 6a 

I 

I 
I 

I 

• 

' 
Reduced ton 

dimensional subspace 
---By PCA, n=10 
- .. _·By PCA, n=20 
-·•·- By FLD, n=10 

Focused 12.51J.-m 25~-Lm 37.51J.-m 

TEST SAMPLES WITH FOCUS VARIATION 

Fig. 6b 



U.S. Patent Jun. 7, 2011 Sheet 10 of 37 US 7,958,063 B2 

Fig. 7a Fig. 7b 

Fig. 7c Fig. 7d 

_,.,.,, ...... "-x,·-··:.l .. ,i.r.:_·~ 
:--:. ... ~~·:·. .... . 

Fig. 7e 



U.S. Patent Jun. 7, 2011 Sheet 11 of 37 US 7,958,063 B2 

100 ........ 
~ 0 -w 80 

~ 
z 
0 60 
M 

8 
M 40 &L 
M 
U) 
U) 

:5 20 u 
U) 
M 
~ 

0 

60 

........ 
50 ~ 0 -w 

~ 40 
z 
0 

30 M 
t-
5 
M 
&L 20 M 
U) 
U) 

:5 
10 u 

U) 
M 
~ 

0 

• •' ·,, Reduced ton 
'\ 
\, dimensional subspace 

'~ --By PCA, n=10 
- •- By PCA, n=20 
-·•·- By FLO, n=10 

Level3 Level4 LevelS Level6 Level? 
TEST SAMPLES WITH ILLUMINATION VARIATION 

\ 
\ 

Fig. Sa 

I 
I 

• 

' 
\ I 

&.. \ •I _.,. • ..,A 
.... \~~· "" ......... , ·--..... ..... .., , ,., · ... ···---"':..:-. * ·-·-·-·-J·:•' 

Reduced ton 
dimensional subspace 
--By PCA, n=10 
- -e- ·By PCA, n=20 
--•-- By FLO, n=10 

Level3 Level4 LevelS Level6 Level 7 
TEST SAMPLES WITH ILLUMINATION VARIATION 

Fig. 8b 



U.S. Patent Jun. 7, 2011 Sheet 12 of 37 US 7,958,063 B2 

Fig~ 9a 



U.S. Patent Jun. 7, 2011 Sheet 13 of 37 US 7,958,063 B2 

50.-----------------------------

-0 e:. 40 
w 

~ 
z 30 
0 
1-t 

~ 
u 20 
ti! 

~ 
..J 10 
~ 
1-t 

~ 
0 

-20 
~ 0 ........ 
w 

~ 15 
z 
8 5 10 
1-t 
u. 

~ 
~ 
1-t 

~ 

5 

0 

,• ,, 
I ' ..---......___ _____ ___, 

, / Reduced to n 
t.' dimensional subspace 

II 
t/ • By PCA, n=10 

t.' - •- ·By PCA, n=20 
t.' 

,, -·•·- By FLD, n=lO 
:1 /, 

// 
/ . 

~~·-/ 
-.-:::J ...... • 

0°/o 10°/o 20°/o 

TEST SAMPLES WITH SIZE VARIATION 

Fig. 10a 

• 

Reduced ton ,• 
1 dimensional subspace 

' • By PCA, n=lO 
- •- ·By PCA, n=20 
-·•·- By FLD, n=10 

0°/o 5°/o 10°/o 20°/o 

TEST SAMPLES WITH SIZE VARIATION 

Fig. 10b 



U.S. Patent Jun. 7, 2011 Sheet 14 of 37 US 7,958,063 B2 

Fig. 11a Fig. 11b 

Fig. 11c Fig. 11d 

Fig. 11e 



U.S. Patent Jun. 7, 2011 Sheet 15 of 37 US 7,958,063 B2 

70 
....... 
~ 60 ....... 
w 
~ 50 

~ 40 
~ 
~ 30 
~ 

~ 20 

~ 10 -~ 0 

,• 
t/" 

I • 
I 

I • 
t/ 

;I 
Reduced ton 

dimensional subspace 
---sy PCA, n=10 
- •- ·By PCA, n=20 
-·•·-By FLD, n=10 

-10,_~--~--~~--~~--~~~~~ 

60 

~50 
0 ....... 
w 

~ 40 

z 
0 

30 -8 -u. 20 -U) 

~ 
u 10 U) -~ 

0 

STD=O STD=15 STD=30 STD=45 STD=60 

TEST SAMPLES WITH NOISE VARIATION 

Fig. 12a 

/_·--- / / ...... -- -~., ,/ -- ... / 
' 

~-·-·- / • .,.,·*"' ·-·-& ---- ..... • ...-::::-:-=.-.-A:' 

• 

I 

Reduced ton 
dimensional subspace 

----By PCA, n=10 
- •- ·By PCA, n=20 
-·•·-By FLD, n=10 

STD=O STD=15 STD=30 STD=45 STD=60 

TEST SAMPLES WITH NOISE VARIATION 

Fig. 12b 



U.S. Patent Jun. 7, 2011 Sheet 16 of 37 US 7,958,063 B2 

Fig. 13a Fig. 13b 

Fig. 13c 



U.S. Patent Jun. 7, 2011 Sheet 17 of 37 US 7,958,063 B2 

Fig. 14a 

Fig. 14b 



U.S. Patent 

18 

16 

14 

12 

10 

8 

6 

4 

Jun. 7, 2011 

EZJ100-SE, by PCA 
~ 100-PPV, by PCA 
~ 100-SE, by FLD 
E3100-PPV, by FLD 

Sheet 18 of 37 

Scenario 1 Scenario 2 

SCENARIOS 

Fig. 15 

US 7,958,063 B2 

Scenario 3 



U.S. Patent Jun. 7, 2011 Sheet 19 of 37 US 7,958,063 B2 

5 302 5 306 

s3oo 
...... -OUTPUT - ... 

DEVICE COMPUTER 
READABLE ... .... PROCESSOR - .... 

MEDIUM INPUT ... ... 
-- ... 

DEVICE 
~~ 308> 
v 5 304 

MACHINE 
VISION 

COMPONENT 

Fig. 16 



U.S. Patent Jun. 7, 2011 Sheet 20 of 37 US 7,958,063 B2 

Fig. 17a Fig. 17b 

Fig. 17c Fig. 17d 



U.S. Patent Jun. 7, 2011 Sheet 21 of 37 US 7,958,063 B2 

Fig. 17e 

Fig. 17f 



~1802 

MULTI­
DIMENSIONAL 
MICROSCOPE 

IMAGES 

1804 1806 

TRAINING I ~ TRAINING SET PREPROCESSING INPUT VECTORS I ECOC 
(PIXEL PATCHES) (PROCESSED BY ENCODING 

KERNEL PCA) 

TESTING 

y 

PREPROCESSING ECOC DECODING 
LOCALIZATION PIXEL PATCH & DECISION & CONFIDENCE .. .. .. 

DE COM POSITION CLASSIFICATION .. VALUES PROBABILITY ESf MAPS -

1810 1812 1814 

Fig. 18 

1808 

ENSEMBLE 
OFSVM 

CLASSIFIERS 
(SVM) 

DETECTED 
CELLS 

I 

1816 

~ 
00 
• 
~ 
~ 
~ 
~ = ~ 

2' 
:= 

~-....l 
N 
0 .... .... 

rFJ 

=­('D 
('D ..... 
N 
N 
0 ..... 
(.H 
-....l 

d 
rJl 
-....l 
\c u. 
00 = 0'1 
w 

= N 



U.S. Patent Jun. 7, 2011 Sheet 23 of 37 US 7,958,063 B2 

2 
ACC 

0 96.5 
96 

-2 95.5 
95 

-4 94 - 92 ?-- -6 N 90 bO 
0 85 

-8 80 
75 

-10 68 

-12 

-14 

-5 0 5 10 15 
log

2
(C) 

Fig. 19a 

-5.5 . 

-6 ACC 
96.5 

-6.5 . 96.5 
96.5 - -7 96.45 ?'-

-;:.., 
96.3 bO 

..2 -7.5 96.2 
96 

-8 95.8 
95.5 
95 

-8.5 

-9 
3 4 5 6 7 

log
2

(C) 

Fig. 19b 



U.S. Patent Jun. 7, 2011 Sheet 24 of 37 

Linear PCA 
in input space .... 

Kernel PCA 

Input __ ? _ _.. 
space 

Fig. 20 

US 7,958,063 B2 



U.S. Patent Jun. 7, 2011 Sheet 25 of 37 US 7,958,063 B2 

Fig. 21a 

Fig. 21b 



U.S. Patent Jun. 7, 2011 Sheet 26 of 37 US 7,958,063 B2 

Fig. 22 



U.S. Patent Jun. 7, 2011 Sheet 27 of 37 US 7,958,063 B2 

55 

50 
........ 
~ 0 ....... 

1 ~ 45 
~ 
::I u 
~ 40 
c 
0 ·-tj • Bright field 
I 35 - .. _ · Hoffman modulation contrast 
Q · · "" · Phase contrast 

30 

Images of Cells from Different Cell Lines 

Fig. 23 



U.S. Patent Jun. 7, 2011 Sheet 28 of 37 US 7,958,063 B2 

100 -

80 -~ 0 ......... 

~ 
RS 

60 I-
:::1 
u 
~ 
c 
0 

i 40 

Q 

20 

I I I I I I I I I I I I I 

I BF: Bright Field; HMC: Hoffman modulation contrast; PC: Phase contrast I 

Control Experiments 

Fig. 24 



U.S. Patent 

100 

80 

cu 60 
::I 

~ 
I a. 

40 

20 

Jun. 7, 2011 

A20.2J 

Sheet 29 of 37 US 7,958,063 B2 

~ Bright field 

~ Hoffman modulation contrast 

D Phase contrast 

EAT 

Cell Line 

Fig. 25 

K562 



U.S. Patent Jun. 7, 2011 Sheet 30 of 37 US 7,958,063 B2 

Image Stock 

132 255 ... 

IJ 
255 35 ... 

Tj. 
45 125 ... 211 

. Kernel PCA ... mXmX3 ... 
0 243 96 119 ... ... 79 

mxm mxm mxm 

Fig. 26 



U.S. Patent Jun. 7, 2011 Sheet 31 of 37 US 7,958,063 B2 

Fig. 27a 

Fig. 27b 



U.S. Patent Jun. 7, 2011 Sheet 32 of 37 US 7,958,063 B2 

Fig. 27c 



U.S. Patent Jun. 7, 2011 Sheet 33 of 37 US 7,958,063 B2 

Fig. 28 



U.S. Patent Jun. 7, 2011 Sheet 34 of 37 US 7,958,063 B2 

Fig. 29 



U.S. Patent 

w 96 
c:1 
~ 94 
z 

92 w 
u 
c:: 

90 w 
0.. - 88 0.. 
1--- 86 w 
> 
1-- 84 (I) 

0 82 0.. 
w 
::l 80 c:: 
1-

78 w 
c:1 
<( 76 c:: 
w 

~ 74 

w 98 
c:1 
~ 96 
z 

94 w 
u 
c:: 

92 w 
0.. - 90 D.. 
1--- 88 w 
> 
1- 86 (I) 

0 84 D.. 
w 
:;::) 82 c:: 
1-

80 w 
c:1 
<( 78 c:: 
w 

~ 76 

0 

I 

Jun. 7, 2011 

1 2 3 

Sheet 35 of 37 US 7,958,063 B2 

··O·· PCA preprocessing, Group 1 
-o- PCA preprocessing, Group 2 
-6- PCA preprocessing, Group 3 
··•·· Kernel PCA preprocessing, Group 1 
-Kernel PCA preprocessing, Group 2 
- .t. ·Kernel PCA preprocessing, Group 3 

4 5 6 7 

AVERAGE FALSE POSITIVE(FP} NUMBER 

Fig. 30a 

··o .. PCA preprocessing, Group 1 
-o- PCA preprocessing, Group 2 
-6- PCA preprocessing, Group 3 
..... Kernel PCA preprocessing, Group 1 
-Kernel PCA preprocessing, Group 2 

--~ --~----~----
- • ·Kernel PCA preprocessing, Group 3 

11 J I I ~----~----~----~-----r------~ 
A I I I I I I 

- -~-- --- T -----.----- r - - - - "T---- -~---- - r-- --

7 

AVERAGE FALSE POSITIVE(FP) NUMBER 

Fig. 30b 



U.S. Patent 

LU 98 
(!) 

~ 96 
z 
LLJ 94 u 
0:: 
LLJ 92 0.. -a. 90 1--LLJ 88 > 
!:: 86 1.1) 

0 
0.. 84 UJ 
::> 

82 0:: 
1-
UJ 80 (!) 
<( 
0:: 78 w 

~ 76 
0 

Jun. 7, 2011 

1 2 

Sheet 36 of 37 US 7,958,063 B2 

··O·· PCA preprocessing, Group 1 
-o- PCA preprocessing, Group 2 
- tr PCA preprocessing, Group 3 
..... Kernel PCA preprocessing, Group 1 
-Kernel PCA preprocessing, Group 2 
- • ·Kernel PCA preprocessing, Group 3 
---- ---------- ----

1 
I 

3 4 5 6 7 

AVERAGE FALSE POSITIVE{FP) NUMBER 

Fig. 30c 



U.S. Patent Jun. 7, 2011 Sheet 37 of 37 US 7,958,063 B2 

0.14 

0.13 

0:::: 
0 

0.12 0:::: 
0:::: 
UJ 
:z: 
0 

~ 0.11 (_) 

u.. 
en en 
:5 0.10 (_) 

0.09 

0.08 -+----r-~---r--r----r-----T-r----T"""---r--,....---y-o----,-----1 
0 2 4 6 8 10 12 

ITERATION NUMBER 

FIG. 31 



US 7,958,063 B2 
1 

METHODSANDSYSTEMSFOR 
IDENTIFYING AND LOCALIZING OBJECTS 

BASED ON FEATURES OF THE OBJECTS 
THAT ARE MAPPED TO A VECTOR 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

2 
mitting all available fluorescence channels to be used to 
obtain cellular and subcellular information for further cell 
analysis. 

Classical image analysis approaches require end-users to 
have programming skills and require independent optimiza­
tions for different cell types. An alternative is to use machine­
learning techniques, which avoid end-user programming 
since classifiers only need to be trained. For example, Artifi­
cial Neural Networks (ANNs) have been successfully used to This application is a continuation of PCT Application 

Serial No. PCT/US2005/040905 filed Nov. 10, 2005, entitled 
"Methods and Systems for IdentifYing and Localizing 
Objects Based on Features of the Objects that are Mapped to 
a Vector," which claims priority under 35 U.S.C. § 119( e) to 
U.S. Provisional Patent Application Ser. No. 60/627,465, 
filed Nov. 11, 2004. This application also claims priority 
under 35 U.S.C. § 119( e) to U.S. Provisional Patent Applica­
tion Ser. No. 60/795,210 filed Apr. 25, 2006, entitled "Meth­
ods and Systems for Detection of Objects Using Composite 
Images." All of these prior applications are hereby incorpo­
rated by reference herein in their entireties. 

10 identify cells in bright field images. These algorithms are able 
to capture complex, nonlinear, relationships in high dimen­
sional feature spaces. However, ANNs are based on the 
Empirical Risk Minimization (ERM) principle. Therefore, 
they are prone to false optimizations due to local minima in 

15 the optimization function and are susceptible to training prob­
lems such as "overfitting." This makes ANN-training a com­
plex procedure that can be daunting for biologists and others 
who are not immersed in the complexities of ANNs. 

In recent years, Support Vector Machines (SVMs) have 
20 been found to be remarkably effective in many real-world 

applications. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

Unlike ANNs, SVMs follow the Structural Risk Minimi­
zation (SRM) principle, which aims at minimizing an upper 
bound of the generalization error. As a result, an SVM tends 

25 to perform well when applied to data outside the training set. 
The present invention was made with United States gov­

ernment support under Grant No. R21 CA89841 awarded by 
the National Institute of Health. The United States govern­
ment may have certain rights in this invention. 

SVMs also have many desirable properties such as flexibility 
in choice of kernel function and implicit mapping into high 
dimensional feature spaces. But what makes SVMs most 
attractive is that they avoid several major problems associated 

BACKGROUND OF THE INVENTION 
30 with ANNs. For example, SVMs control overfitting by 

restricting the capacity of the classifier. They also depend on 
the solution of a convex Quadratic Programming (QP) prob­
lem which has no local extrema. The unique optimal solution 
can therefore be efficiently obtained. 

The present invention relates to pattern recognition sys­
tems. Particularly, the invention relates to systems for analyz­
ing vector data to identify and/or localize objects that are 35 

represented by the vector data. 
While the invention is applicable to many different fields, it 

will be described particularly with regard to cell detection and 
classification. However, the invention is also applicable to 

40 
many other research fields wherein vectors can be used to 
describe or otherwise characterize a plurality of objects and 
the objects can represent other entities than cells. 

Considering cell detection, however, cell detection in 
bright field microscopy is an inherently difficult task due to 45 
the immense variability of cell appearance. Even more diffi­
cult is the recognition of the subtle differences in appearance 
that distinguish unstained viable from non-viable cells in 
bright field images. Although an experienced observer can 
sometimes recognize these differences, viability stains are 50 

commonly used for reliable determination of viability. The 
requirement of a human observer represents a severe impedi­
ment to the development of high throughput systems that 
require recognition of viable cells. Therefore, there is a great 
need for effective algorithms that automatically recognize 55 

viable cells. 
Currently, a typical approach for cell detection is to use 

fluorescent probes that have a chemical specificity for cell 
organelles. However, this approach can consume one or more 

SUMMARY OF THE INVENTION 

In general, in some embodiments, the invention identifies 
and/or localizes one or more objects in a sample, where the 
objects include a physical material or substance. Alterna­
tively, the object can include an "informational" object, such 
as a DNA sequence or a textual data packet. In other embodi­
ments of the invention, a machine vision component is pro­
vided which is capable of identifying the at least one object in 
a sample, based on features of the object that are mapped to a 
vector. The machine vision component can use various types 
of illumination for identifying the at least one substance, such 
as light illumination. In certain embodiments, the machine 
vision component includes machine learning software that, 
when executed, identifies the object in the sample based on 
features of the object that are mapped to a vector. The 
machine vision component can also include software for pre­
processing the image of the sample to reduce the size of the 
image data used by the machine learning software to identifY 
the at least one substance in the sample. In some embodi­
ments, the preprocessing software preprocesses can use tech-
niques such as Principle Component Analysis, Independent 
Component Analysis, Self-Organization Maps, Fisher's Lin­
ear Discriminant, and kernel PCA. 

In one aspect of the invention, object identification is done 
using at least two images of an item. For example, at least one 
image can be taken using different contrasts (e.g. bright field 
imaging, phase contrast, and the like), different wavelengths 
(e.g. visible and infrared wavelengths), different angles (e.g., 

of a very limited number of available fluorescence channels 60 

just for the purpose of cell identification. Currently for com­
mercially available microscopes there are typically only four 
channels for simultaneous monitoring and eight channels for 
sequential observation, while there are many cellular charac­
teristics for which the fluorescence channels can be used to 
detect. It is therefore highly desirable to identifY cells with a 
method that uses transmitted light illumination, thereby per-

65 perpendicular, 45°, and the like), and the like. Software can be 
used for preprocessing each of the images. Use of multiple 
images can allow the removal of redundant information, 
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while allowing relevant information to be maintained. This 
can improve the accuracy of identification, and the classifi­
cation of objects into different classes. Multiple images can 
also improve detection, because although cells make look 
similar in one image take with a particular contrast type 
(optical or chemical), the cells may look different in an image 
take with a different contrast type. 

In one aspect, the invention is a method of identifYing one 

4 

or more objects, wherein each of the objects belongs to a first 
class or a second class. The first class is heterogeneous and 10 

has C subclasses, and the second class is less heterogenous 
than the first class. The method includes deriving a plurality 

pixel patches from the digital image, each of the plurality of 
pixel patches being mapped to one of the one or more objects. 
Each of the plurality of pixel patches is an element of an 
N-dimensional space. The method also includes training a 
support vector machine with a compensatory iterative sample 
selection technique, and processing the plurality of pixel 
patches with the support vector machine, so as to classifY 
each of the plurality of pixel patches into either the first class 
or the second class. 

In another aspect, the invention is a method of identifying 
one or more cells in a digital image, where each of the one or 
more cells belongs to one of two or more classes. The method 
includes deriving a plurality of pixel patches from the digital 
image, each of the plurality of pixel patches being mapped to 
one of the one or more objects. Each of the plurality of pixel 
patches is an element of anN -dimensional space. The method 

of vectors each being mapped to one of the one or more 
objects, wherein each of the plurality of vectors is an element 
of anN -dimensional space. The method further includes pre- 15 

processing each of the plurality of vectors using a Fisher 
Linear Discriminant, wherein the preprocessing reduces the 
dimensionality of each of the plurality of vectors toM dimen­
sions, wherein M is less than or equal to C. The method also 
includes classifYing the preprocessed vectors by (i) grouping 20 

the preprocessed vectors belonging to any of the C subclasses 

also includes training an ensemble of binary classifiers using 
the Error Correcting Output Coding technique, and process­
ing the plurality of pixel patches with the ensemble of binary 
classifiers, so as to classifY each of the plurality of pixel 
patches into one of the two or more classes. 

of the first class into a first set of vectors, and (ii) grouping the 
preprocessed vectors belonging to the second class into a 
second set of vectors. 

In one embodiment, each of the ensemble of binary clas-
sifiers is a support vector machine. In another embodiment, 
the method further includes, for each pixel patch, calculating 
a probability that the pixel patch belongs to a particular one of 
the two or more classes, using an Error Correcting Output 
Coding probability estimation technique. In another embodi­
ment, the method further includes localizing a cell in the 
digital image by identifYing a pixel patch having a cell that is 

In one embodiment, each of the plurality of vectors 25 

includes information mapped from a digital image. In another 
embodiment, the information mapped from a digital image 
includes a pixel patch. In one embodiment, the preprocessed 
vectors are classified with an artificial neural network. In 
another embodiment, the preprocessed vectors are classified 
with a support vector machine. Another embodiment includes 
training the support vector machine with training sets gener­
ated with a compensatory iterative sample selection tech­
nique. 

30 centered within the pixel patch. 
In another aspect, the invention is a method of identifying 

one or more objects, where each of the one or more objects 
belongs to one of three or more classes. The method includes 
deriving a plurality of vectors, each being mapped to one of 

In one embodiment, the compensatory iterative sample 
selection technique includes (a) selecting a first working set 
of pre-classified objects from a set of training data, (b) train­
ing the support vector machine with the first working set, (c) 
testing the support vector machine with pre-classified objects 
from the set of training objects not included in the first work­
ing set so as to produce a set of correctly classified objects and 
a set of incorrectly classified objects, (d) selecting a replace­
ment set of pre-classified objects from the set of incorrectly 
classified objects, and replacing a subset of the working set 
with the replacement set, and (e) repeating steps (b), (c) and 
(d) until the set of incorrectly classified objects does not 
decrease in size for subsequent iterations of steps (b), (c) and 
(d). 

In another aspect, the invention is a method of identifying 
and localizing one or more objects, where each of the objects 
belongs to either a first class or a second class. The method 
includes deriving a plurality of vectors each being mapped to 
one of the one or more objects, where each of the plurality of 
vectors is an element of anN -dimensional space. The method 
further includes training a support vector machine with a 
compensatory iterative sample selection technique, and pro­
cessing the plurality of vectors with the support vector 
machine, so as to classifY each of the plurality of vectors into 
either the first class or the second class. 

In one embodiment, each of the plurality of vectors 
includes information mapped from a digital image. In another 
embodiment, the information mapped from a digital image 
includes a pixel patch. 

In another aspect, the invention is a method of identifying 
and localizing one or more objects in a digital image, where 
each of the one or more objects belongs to either a first class 
or a second class. The method includes deriving a plurality of 

35 the one or more objects. Each of the plurality of vectors is an 
element of an N-dimensional space. The method further 
includes training an ensemble of binary classifiers with a 
compensatory iterative sample selection technique, using an 
Error Correcting Output Coding technique. The method also 

40 includes processing the plurality of vectors with the ensemble 
of binary classifiers, so as to classifY each of the plurality of 
vectors into one of the three or more classes. 

In another aspect, the invention is a method of identifying 
one or more objects in a digital image, where each of the one 

45 or more objects belongs to one of three or more classes. The 
method includes deriving a plurality of pixel patches from the 
digital image, each of the plurality of pixel patches being 
mapped to one of the one or more objects, where each of the 
plurality of pixel patches is an element of an N -dimensional 

50 space. The method also includes training an ensemble of 
binary classifiers with a compensatory iterative sample selec­
tion technique, using an Error Correcting Output Coding 
technique. The method also includes processing the plurality 
of pixel patches with the ensemble of binary classifiers, so as 

55 to classifY each of the plurality of pixel patches into one of the 
three or more classes. One embodiment further includes 
localizing an object in the digital image by identifying a pixel 
patch having an object that is centered within the pixel patch. 

In another aspect, the invention is a method of identifying 
60 and localizing one or more objects, where each of the one or 

more objects belongs to one of three or more classes. The 
method includes deriving a plurality of vectors, each being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 

65 The method further includes training an ensemble of binary 
classifiers with a compensatory iterative sample selection 
technique, using an Error Correcting Output Coding tech-
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nique. For each object, the method includes calculating a 
probability that the associated vector belongs to a particular 
one of the three or more classes, using the Error Correcting 
Output Coding probability estimation technique. The method 
also includes generating a confidence map for each object 
type using the probability calculated for the vector as a con­
fidence value within the confidence map, comparing peaks in 
the confidence map for the object type with corresponding 
peaks in confidence maps for other classes, and using a high­
est peak to assign class membership. The method also 
includes determining localization of the object corresponding 
to the highest peak by determining pixel coordinates of the 
highest peak. 

In another aspect, the invention is a method of identifying 
and localizing one or more objects in a digital image, where 
each of the one or more objects belongs to one of three or 
more classes. The method includes deriving a plurality of 
pixel patches from the digital image, each of the plurality of 
pixel patches being mapped to one of the one or more objects, 
where each of the plurality of pixel patches is an element of an 
N-dimensional space. The method also includes training an 
ensemble of binary classifiers with a compensatory iterative 
sample selection technique, using an Error Correcting Output 
Coding technique. For each object, the method includes cal­
culating a probability that the associated pixel patch belongs 
to a particular one of the three or more classes, using the Error 
Correcting Output Coding probability estimation technique. 
The method also includes generating a confidence map for 
each class using the probability calculated for the pixel patch 
as a confidence value within the confidence map, comparing 
peaks in the confidence map for the class with corresponding 
peaks in confidence maps for other classes, and using a high-
est peak to assign class membership. The method further 
includes determining localization of the cell corresponding to 
the highest peak by determining pixel coordinates of the 
highest peak. 

6 
calculating a probability that the pixel patch belongs to a 
particular one of the three or more classes, using the Error 
Correcting Output Coding probability estimation technique. 
The method also includes generating a confidence map for 
each class using the probability calculated for the pixel patch 
as a confidence value within the confidence map, comparing 
peaks in the confidence map for the class with corresponding 
peaks in confidence maps for other class, and using a highest 
peak to assign class membership. The method also includes 

10 determining localization of the object corresponding to the 
highest peak by determining pixel coordinates of the highest 
peak. 

In another aspect, the invention is a method of generating a 
training set of pre-classified objects for training a classifier. 

15 The method includes applying one or more fluorescent mark­
ers to a sample containing objects to be classified, generating 
one or more fluorescence images of the sample containing 
objects to be classified, and generating a transmitted light 
illumination image of the sample containing objects to be 

20 classified. For each of the one or more fluorescence images, 
the method includes superimposing at least a portion of the 
fluorescence image with a corresponding portion of the trans­
mitted light illumination image. The method also includes 
using information from the one or more fluorescence images 

25 to identify characteristics of corresponding objects in the 
transmitted light illumination image, thereby producing a 
transmitted light illumination image having one or more pre­
classified objects. One embodiment further includes using 
information from the transmitted light illumination image 

30 having one or more pre-classified objects to identifY charac­
teristics of corresponding elements in one or more subse­
quently generated fluorescent images. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 

35 on a processor. The computer readable medium includes 
instructions for deriving a plurality of vectors each being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 
The computer readable medium also includes instructions for 

In another aspect, the invention is a method of identifying 
and localizing one or more objects, where each of the one or 
more objects belongs to one of three or more classes. The 
method includes deriving a plurality of vectors, being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 
The method also includes training an ensemble of binary 
classifiers using an Error Correcting Output Coding tech­
nique. For each object, the method includes calculating a 
probability that the associated vector belongs to a particular 
one of the three or more classes, using the Error Correcting 
Output Coding probability estimation technique. The method 
further includes generating a confidence map for each object 
type using the probability calculated for the vector as a con- 50 

fidence value within the confidence map, comparing peaks in 
the confidence map for the object type with corresponding 
peaks in confidence maps for other classes, and using a high-

40 preprocessing each of the plurality of vectors using a Fisher 
Linear Discriminant, wherein the preprocessing reduces the 
dimensionality of each of the plurality of vectors toM dimen­
sions, wherein M is less than or equal to C. The computer 
readable medium further includes instructions for classifying 

45 the preprocessed vectors by (i) grouping the preprocessed 
vectors belonging to any of the C subclasses of the first class 
into a first set of vectors, and (ii) grouping the preprocessed 
vectors belonging to the second class into a second set of 
vectors. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of pixel patches from the 
digital image, each being mapped to one of the one or more 
objects, wherein each of the plurality of pixel patches is an 
element of an N -dimensional space. The computer readable 

est peak to assign class membership. The method also 
includes determining localization of the object corresponding 55 

to the highest peak by determining pixel coordinates of the 
highest peak. 

In another aspect, the invention is a method of identifying 
and localizing one or more objects in a digital image, where 
each of the one or more objects belongs to one of three or 60 

more classes. The method includes deriving a plurality of 
pixel patches from the digital image, each of the plurality of 
pixel patches being mapped to one of the one or more objects, 
where each of the plurality of pixel patches is an element of an 
N-dimensional space. The method also includes training an 65 

ensemble of binary classifiers using an Error Correcting Out­
put Coding technique. For each object, the method includes 

medium also includes instructions for preprocessing each of 
the plurality of pixel patches using a Fisher Linear Discrimi­
nant, where the preprocessing reduces the dimensionality of 
each of the pixel patches toM dimensions, wherein M is less 
than or equal to C. The computer readable medium also 
includes instructions for classifYing the preprocessed pixel 
patches by (i) grouping the preprocessed pixel patches 
belonging to any of the C subclasses of the first class into a 
first set of pixel patches, and (ii) grouping the preprocessed 
pixel patches belonging to the second class into a second set 
of pixel patches. 
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In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 

8 

on a processor. The computer readable medium includes 
instructions for deriving a plurality of vectors each being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 
The computer readable medium also includes instructions for 
training a support vector machine with a compensatory itera­
tive sample selection technique. The computer readable 
medium also includes instructions for processing the plurality 1 o 
of vectors with the support vector machine, so as to classify 
each of the plurality of vectors into either the first class or the 
second class. 

plurality of pixel patches with the ensemble ofbinary classi­
fiers, so as to classify each of the plurality of pixel patches into 
one of the three or more classes. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of vectors, each being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 
The computer readable medium also includes instructions for 
training using an ensemble of binary classifiers with a com-
pensatory iterative sample selection technique, an Error Cor­
recting Output Coding technique. The computer readable 
medium also includes instructions for calculating, for each In another aspect, the invention is a computer readable 

medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of pixel patches from the 
digital image, each of the plurality of pixel patches being 
mapped to one of the one or more objects, where each of the 
plurality of pixel patches is an element of anN -dimensional 
space. The computer readable medium also includes instruc­
tions for training a support vector machine with a compensa­
tory iterative sample selection technique. The computer read­
able medium also includes instructions for processing the 
plurality of pixel patches with the support vector machine, so 
as to classifY each of the plurality of pixel patches into either 
the first class or the second class. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of pixel patches from the 
digital image, each of the plurality of pixel patches being 
mapped to one of the one or more objects, where each of the 
plurality of pixel patches is an element of anN -dimensional 
space. The computer readable medium also includes instruc­
tions for training an ensemble of binary classifiers using an 
Error Correcting Output Coding decomposition technique. 
The computer readable medium also includes instructions for 
processing the plurality of pixel patches with the ensemble of 
binary classifiers, so as to classifY each of the plurality of 
pixel patches into one of the two or more classes. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of vectors, each being 
mapped to one of the one or more objects, where each of the 
plurality of vectors is an element of anN -dimensional space. 
The computer readable medium also includes instructions for 
training an ensemble of binary classifiers with a compensa­
tory iterative sample selection technique, using an Error Cor­
recting Output Coding technique. The computer readable 
medium also includes instructions for processing the plurality 
of vectors with the ensemble of binary classifiers, so as to 
classify each of the plurality of vectors into one of the three or 
more classes. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of pixel patches from the 
digital image, each of the plurality of pixel patches being 
mapped to one of the one or more objects, where each of the 
plurality of pixel patches is an element of anN -dimensional 
space. The computer readable medium also includes instruc­
tions for training an ensemble of binary classifiers with a 
compensatory iterative sample selection technique, using an 
Error Correcting Output Coding technique. The computer 
readable medium also includes instructions for processing the 

15 object, a probability that the associated vector belongs to a 
particular one of the three or more classes, using the Error 
Correcting Output Coding probability estimation technique. 
The computer readable medium also includes instructions for 
generating a confidence map for each object type using the 

20 probability calculated for the vector as a confidence value 
within the confidence map. The computer readable medium 
also includes instructions for comparing peaks in the confi­
dence map for the object type with corresponding peaks in 
confidence maps for other classes, and using a highest peak to 

25 assign class membership. The computer readable medium 
also includes instructions for determining localization of the 
object corresponding to the highest peak by determining pixel 
coordinates of the highest peak. 

In another aspect, the invention is a computer readable 
30 medium including stored instructions adapted for execution 

on a processor. The computer readable medium includes 
instructions for deriving a plurality of pixel patches from the 
digital image, each of the plurality of pixel patches being 
mapped to one of the one or more objects, wherein each of the 

35 plurality of pixel patches is an element of an N -dimensional 
space. The computer readable medium also includes instruc­
tions for training an ensemble of binary classifiers with a 
compensatory iterative sample selection technique, using an 
Error Correcting Output Coding technique. The computer 

40 readable medium also includes instructions for calculating, 
for each object, a probability that the pixel patch belongs to a 
particular one of the three or more classes, using the Error 
Correcting Output Coding probability estimation technique. 
The computer readable medium also includes instructions for 

45 generating a confidence map for each class using the prob­
ability calculated for the pixel patch as a confidence value 
within the confidence map. The computer readable medium 
also includes instructions for comparing peaks in the confi­
dence map for the class with corresponding peaks in confi-

50 dence maps for other class, and using a highest peak to assign 
class membership. The computer readable medium also 
includes instructions for determining localization of the 
object corresponding to the highest peak by determining pixel 

55 

coordinates of the highest peak. 
In another aspect, the invention is a computer readable 

medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes 
instructions for deriving a plurality of vectors, being mapped 
to one of the one or more objects, wherein each of the plurality 

60 of vectors is an element of an N-dimensional space. The 
computer readable medium also includes instructions for 
training an ensemble of binary classifiers using training sets 
generated with an Error Correcting Output Coding technique. 
The computer readable medium also includes instructions for 

65 each object corresponding to a class, calculating a probability 
that the associated vector belongs to a particular one of the 
three or more classes, using the Error Correcting Output 
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image of the specimen that is of a first contrast type, and pixel 
patches from a digital image of the specimen that is of a 
second contrast type distinct from the first contrast type. The 
method also includes preprocessing the plurality of vectors 
using a non-linear feature extraction method, wherein the 
preprocessing reduces the dimensionality of the vectors. The 
method also includes generating a plurality of confidence 
maps, based on the plurality of vectors, wherein each of the 
plurality of confidence maps corresponds to a particular one 

Coding probability estimation teclmique. The computer read­
able medium also includes instructions for generating a con­
fidence map for each object type using the probability calcu­
lated for the vector as a confidence value within the 
confidence map. The computer readable medium also 
includes instructions for comparing peaks in the confidence 
map for the object type with corresponding peaks in confi­
dence maps for other classes, and using a highest peak to 
assign class membership. The computer readable medium 
also includes instructions for determining localization of the 
object corresponding to the highest peak by determining pixel 
coordinates of the highest peak. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor, comprising. The computer readable medium 
includes instructions for deriving a plurality of pixel patches 
from the digital image, each of the plurality of pixel patches 
being mapped to one of the one or more objects, where each 

10 of the two or more classes, and wherein each confidence value 
in that confidence map corresponds to a probability that a 
vector belongs to that class. This method also includes iden­
tifYing a cell at a location of a peak in a confidence map; and 
assigning the cell to the particular one of the two or more 

15 classes corresponding to the highest peak among the plurality 
of confidence maps at the location. 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 
on a processor. The computer readable medium includes of the plurality of pixel patches is an element of an N-dimen­

sional space. The computer readable medium also includes 
instructions for training an ensemble of binary classifiers 
using an Error Correcting Output Coding technique. The 
computer readable medium also includes instructions for cal­
culating, for each cell, a probability that the pixel patch 
belongs to a particular one of the three or more classes, using 
the Error Correcting Output Coding probability estimation 
teclmique. The computer readable medium also includes 
instructions for generating a confidence map for each class 
using the probability calculated for the pixel patch as a con­
fidence value within the confidence map. The computer read­
able medium also includes instructions for comparing peaks 
in the confidence map for the class with corresponding peaks 

20 instructions for deriving a plurality of vectors from a plurality 
of pixel patches, including at least pixel patches from a digital 
image of the specimen that is of a first contrast type, and pixel 
patches from a digital image of the specimen that is of a 
second contrast type distinct from the first contrast type. The 

25 computer readable medium also includes instructions for pre­
processing the plurality of vectors using a non-linear feature 
extraction method, wherein the preprocessing reduces the 
dimensionality of the vectors. The computer readable 
medium also includes instructions for generating a plurality 

in confidence maps for other classes, and using a highest peak 
to assign class membership. The computer readable medium 
also includes instructions for determining localization of the 
object corresponding to the highest peak by determining pixel 
coordinates of the highest peak. 

30 of confidence maps, based on the plurality of vectors, wherein 
each of the plurality of confidence maps corresponds to a 
particular one of the two or more classes, and wherein each 
confidence value in that confidence map corresponds to a 
probability that a vector belongs to that class. The computer 

In another aspect, the invention is a computer readable 
medium including stored instructions adapted for execution 

35 readable medium also includes instructions for identifying a 
cell at a location of a peak in a confidence map; and instruc­
tions for assigning the cell to the particular one of the two or 
more classes corresponding to the highest peak among the 
plurality of confidence maps at the location. 

on a processor. The computer readable medium includes 40 

instructions for applying one or more fluorescent markers to 
a sample containing objects to be classified. The computer 
readable medium also includes instructions for generating 
one or more fluorescence images of the sample containing 
objects to be classified. The computer readable medium also 45 

includes generating a transmitted light illumination image of 
the sample containing objects to be classified. The computer 
readable medium also includes instructions for superimpos­
ing, for each of the one or more fluorescence images, at least 

BRIEF DESCRIPTION OF DRAWINGS 

The foregoing and other objects of this invention, the vari­
ous features thereof, as well as the invention itself, can be 
more fully understood from the following description, when 
read together with the accompanying drawings in which: 

FIGS. la and lb is a flow diagram of a method for identi­
fYing at least one cell or other identifiable substance in a 
sample according to one embodiment of the invention. 

FIG. 2 depicts images of a sample set of cell patches for use 
in a learning set according to one embodiment of the inven­
tion. 

FIGS. 3a-3b are graphical representations comparing PCA 
and FLD where (a) is projected with PCA and (b) is projected 
withFLD. 

FIG. 3c is flow diagram showing a cell detection frame­
work for bright field images of cultured cells. 

FIG. 3d is a course grid search illustration of a region of 
interest containing optimal values for a particular embodi-

a portion of the fluorescence image with a corresponding 50 

portion of the transmitted light illumination image. The com­
puter readable medium also includes instructions for using 
information from the one or more fluorescence images to 
identify characteristics of corresponding objects in the trans­
mitted light illumination image, thereby producing a trans- 55 

mitted light illumination image having one or more pre-clas­
sified objects. In one embodiment, the computer readable 
medium further includes instructions for using information 
from the transmitted light illumination image having one or 
more pre-classified objects to identify characteristics of cor­
responding elements in one or more subsequently generated 
fluorescent images. 

60 ment. 

In another aspect, the invention is a method of classifying 
one or more cells in a specimen, wherein each of the one or 
more cells belongs to one of two or more classes. The method 65 

comprises deriving a plurality of vectors from a plurality of 
pixel patches, including at least pixel patches from a digital 

FIG. 3e is a fine grid search illustration of a region of 
interest. 

FIG. 4 is a graphical representation showing the effect of 
neuron number in the first hidden layer on the generalization 
properties oftheANN. 

FIGS. Sa-d depict sample images for focus variation 
experiments where (a) the focal plane is at the equator of the 
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microsphere, (b) the focal plane is at the supporting surface, 
(c) the focal plane is 2 f.tm below the equator, and (d) the focal 
plane is 37.5 urn below the equator. 

FIGS. 6a-6b are graphical representations showing mis­
classification rates with different focus conditions and pre- 5 

processing methods where the ANN in (a) was trained with 
only focused samples and applied to all samples, and in (b) 
was trained with focused and 25 f.tm focus variation samples 
and applied to all samples. 

FIGS. 7a-e depict sample images for an illumination varia- 10 

tion experiment varying between extremely week extremely 
strong illumination: (a) Intensity level 3: representing 
extremely weak illumination; (b) Intensity level4: represent­
ing weak illumination; (c) Intensity levelS: representing nor­
mal illumination; (d) Intensity level 6: representing strong 15 

illumination and (e) Intensity level 7: representing extremely 
strong illumination. 

FIGS. 8a-b are graphical representations showing misclas­
sificationrates with different illumination conditions and pre­
processing methods where the ANN in (a) was trained with 20 

only level 5 illumination and applied to all levels, and in (b) 
was trained with level 4, 5 and 6 and applied to all levels. 

FIGS. 9a-b depict sample images for a size variation 
experiment where in (a) the microspheres had no size varia­
tion and in (b) the micro spheres varied between 0% and 20% 25 

Ill SIZe. 

12 
FIG.17d depicts a sample image ofK562 cells labeled with 

blue fluorescence. 
FIG. 17e depicts a sample image of A20.2J cells labeled 

with green fluorescence. 
FIG. 17/ depicts a sample image of EAT cells labeled with 

red fluorescence cham~el. 
FIG. 18 is a flow diagram showing a multiclass cell detec­

tion process using multiple images and ECOC probability 
estimation. 

FIG. 19a graphically shows how a coarse grid size is used 
to localize a region of interest. 

FIG. 19 b graphically shows how a fine grid size can be used 
on the region of interest to locate optimal parameters. 

FIG. 20 graphically illustrates the basic principles of Ker­
nel PCA 

FIG. 21a depicts a sample bright field image used for 
control experiments. 

FIG. 21b depicts a fluorescence image of the same speci­
men as FIG. 21a 

FIG. 22 shows the detection of cells in the specimen of 
FIG. 21a. 

FIG. 23 graphically shows the detection accuracy of 
stained and unstained cells from different cell lines under 
different imaging cham~els. 

FIG. 24 graphically shows the detection accuracy of cell 
objects (stained and unstained) from different cell lines under 
different imaging cham~els. 

FIG. 25 graphically shows P-values for distinguishing 
between stained and unstained cells from different cell lines 

FIGS. 10a-b are graphical representations showing mis­
classification rates with different size variations and prepro­
cessingmethods where the ANN in (a) was trained with only 
0% variation samples and applied to all samples, and in (b) 
was trained with 0% and 15% variation samples and applied 
to all samples. 

30 under different imaging channels. 

FIGS. lla-e depict sample images for a noise variation 
experiment where the zero-mean Gaussian noise varied 
between standard deviations: (a) STD=O, (b) STD=15, (c) 35 

STD=30, (d) STD=45, (e) STD=60. 
FIGS. l2a-b are graphical representations showing mis­

classification rates with different noise conditions and pre­
processing methods where the ANN is (a) was trained with 
STD=O samples and applied to all samples, and in (b) was 40 

trained with STD=O, 45 samples and tested on all samples. 
FIGS. 13a-c depict sample images for a living cell experi­

ment where in (a) cells are almost completely separate and the 
background is clean, (b) most cells are attached to each other 
and there are trash and debris in the background, and (c) most 45 

cells are clumped together and the background is full of trash 
and debris. 

FIGS. 14a-b depict images showing detection results of an 
ANN classifier with the detected cell positions denoted by 
white crosses in the images, where identification occurred in 50 

(a) using an ANN with PCA preprocessing (Sensitivity: 
82.5%, Positive predictive value: 83.02%) and (b) using an 
ANN with FLD preprocessing (Sensitivity: 94.38%, Positive 
predictive value: 91.52%). 

FIG. 15 is a graphical representation showing sensitivity 55 

(SE) and positive predictive value (PPV) results for the 
sample images shown in FIGS. 13a-c using different prepro­
cessing methods. 

FIG. 16 is a block diagram depicting one embodiment of 
the present invention. This embodiment is a computer-based 60 

system for identifYing and/or localizing objects. 
FIG. 17a depicts a sample image of cells taken with bright 

field imaging 

FIG. 26 illustrates pixel patch extraction and Kernel PCA 
preprocessing for cell detection in multi-contrast composite 
images. 

FIGS. 27a-c show confidence maps for the images of FIG. 
17a:fusing Scenario 3-scheme and preprocessed by Kernel 
PCA, for each of (a) A20.2J cell (b) EAT cells, and (c) K562 
cells. 

FIG. 28 shows the detection result of processing the images 
of FIG. 17a:fusing Scenario 3-scheme and preprocessed by 
PC A. 

FIG. 29 shows the detection result of processing the images 
of FIG. 17a:fusing Scenario 3-scheme and preprocessed by 
Kernel PCA. 

FIG. 30a shows FROC plots of different preprocessing 
methods when applied to different image groups from Sce­
nario 1: 1) PCA preprocessing; 2) Kernel PCA preprocessing. 

FIG. 30b shows FROC plots of different preprocessing 
methods when applied to different image groups from Sce­
nario 2: 1) PCA preprocessing; 2) Kernel PCA preprocessing. 

FIG. 30c shows FROC plots of different preprocessing 
methods when applied to different image groups from Sce­
nario 3: 1) PCA preprocessing; 2) Kernel PCA preprocessing. 
A1 

FIG. 31 is a graphical representation of the results obtained 
with the CISS algorithm in combination with the ECOC 
decomposition strategy. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The present invention generally provides methods and sys­
tems for identifYing and/or localizing one or more identifiable 
objects within a sample. The objects can include physical 
objects or substances, such as a living cell or cells, or portions FIG. 17b depicts a sample image of cells taken with Hoff­

man Modulation Contrast. 
FIG. 17c depicts a sample image of cells taken with phase 

contrast imaging. 

65 thereof, in a digitized image of a sample. Alternatively, the 
objects can include informational objects such as data blocks 
or a DNA code sequence stored in a suitable storage medium. 
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The objects that can be identified are generally all items that 
can be represented by feature vectors. In general, the inven­
tion identifies objects by analyzing such vectors. In some 
embodiments, the vectors are derived from images. The term 
"substance" is used herein to denote items that have a mass 
and occupy space, including solid as well as liquid and gas­
eous materials. Although the described embodiments are set 
forth herein by way of example with respect to certain types 
of substances, such as cells, and certain analytical techniques, 
it is understood that the present invention is generally appli- 10 

cable to various other types ofliving or non-living materials 
and techniques, and with or without all of the components or 
subcomponents described herein, and is thus not limited 

14 
that is one half of the width of the pixel box, although other 
scanning techniques can be used instead of or in addition to 
the described technique to address the neglected band of cells. 

Referring to FIG. la, in one embodiment, the machine 
vision component identifies cells in a culture using algo­
rithms derived based on machine learning techniques, such as 
Artificial Neural Networks ("ANN") or Support Vector 
Machines (SVM). ANNs are able to capture complex, even 
nonlinear, relationships in high dimensional feature spaces 
that are not easily handled by algorithms based on heuristic 
rules. The ANN-based algorithms can use pixel values 
directly from primary grayscale images (bright field) for cell 
recognition; however, the image data processed by these 
types of algorithms is very large, which results in networks 
that can be very complex and exhibit slow performance. thereto. 

Machine Vision Component 

At least one embodiment includes a machine vision com­
ponent, which reduces or eliminates the need for intensive 
microscopic observation by a human operator. The machine 
vision component is generally a computing device with asso­
ciated software that, when executed, identifies and/or recog­
nizes objects (e.g., individual cells or portions thereof, or 
other identifiable substances) within an image. The machine 
vision component also generates information related to the 
objects, such as the position of the object (e.g., coordinates 
with respect to a reference position) or particular character­
istics of the object (e.g., whether the cells are viable or non­
viable). The machine vision component operates on image 
data produced by a microscopy component. In one embodi­
ment, the machine vision component is capable of identifying 
cells or portions thereof in a culture having a plurality of cells 
that vary or are non-uniform with respect to their features, 
and/or are partially aggregated. 

15 Accordingly, in one embodiment of the invention, the image 
data is preprocessed, as shown in FIG. lb, using statistical 
data processing techniques, such as Principle Component 
Analysis ("PCA"), Independent Component Analysis 
("ICA"), Self-Organization Maps ("SOM"), or preferably 

20 Fisher's Linear Discriminant ("FLD") techniques. Such pre­
processing generates abstract representations of cells from 
the image data that are dimensionally smaller, which makes 
subsequent classification computationally effective. One 
embodiment achieves computational effectiveness by pro-

25 cessing image data to provide a cell classifier, e.g., the ANN 
or the SVM, with only the information that is essential for cell 
recognition. 

PCA can be used for dimensionality reduction by using a 
set of orthogonal vectors, referred to as principal compo­
nents, that point in the directions of maximum covariance in 

30 the image data as the basis of the new subspace. If the dimen­
sion of the subspace is given, PCA minimizes the mean 
square reconstruction (projection) error, and provides a mea­
sure of importance for each axis. More formally, suppose the 
learning set x is composed of n sample images (x={x1 , Automatic cell recognition or identification can be facili­

tated with fluorescent probes that have a chemical specificity 
for cell organelles. For example, DNA intercalators can be 
used to stain nuclear DNA for cell identification. Fluorescent 
probes used in this respect, however, can consume one or 
more fluorescence channels. In one embodiment of the inven­
tion, the machine vision component is capable of identifying 
cells based on their feature set using transmitted light illumi­
nation, thereby permitting all of the available fluorescence 
channels to be used for other purposes, such as to provide 
additional cellular and sub-cellular information that can 
greatly enhance the value of the information obtained by 45 

molecular genetic analysis. 

35 x2 , ... xJ ), where each image is represented by a vector x, in 
anN-dimensional image space. The goal is to find a linear 
transformation that maps the input set to an M-dimensional 
subspace, where M<N. After defining x'={ x' u x'2 , ... x'n}={ 
(x1 -f.l), (x2 -f.l), ... (xn-fl)}, where fl is the sample mean, the 

40 new feature vector set y={y,} can be defined by the linear 
transformation: 

In one embodiment, pixel patches are used as the primary 
input data elements. The described embodiment uses a square 
pixel patch, but other embodiments can use pixel patches 
having different shapes, such as rectangular, circular, ellipti- 50 

cal, or a shape matched to the objects to be detected. In a 
typical pixel patch of 25x25 pixels (which is enough to 
enclose a complete cell), there are 625 pixels, each of which 
is characterized by a grayscale intensity. In the described 
embodiment, the value of the grayscale intensity can range 

55 
from 0 to 255, inclusive, although other grayscale ranges can 
be used. The ordered set of these 625 grayscale intensities 
generates a 625-dimensional input vector for the software. 
Essentially, the software is taught to sort pixel patches into 
two or more classes. Some classes contain desired objects 
(such as cells or viable cells). Other classes contain all nndes- 60 

ired objects (e.g., non-cells or non-viable-cells, fragments of 
cells, trash). Classes of desired objects are usually much 
smaller (regarding the number of elements of the class) than 
the class of undesired objects. This embodiment scans the 
overall image by moving a pixel box one pixel per step, nntil 65 

the image has been covered. This technique of scanning the 
images neglects a band of cells at the periphery of the image 

y = WTx', 

and 

Yi = wrx; 

x = Wy = WWT x', 

xi= Wyi = wwrx;, i= 1, 2, ... , n, 

(1) 

(2) 

where W is anN xM matrix whose columns form a orthonor­
mal basis of the subspace and xis the reconstruction from y. 
PCA seeks to minimize the mean square reconstruction error: 

1, =E{IIx' -xlll (3) 

=E{tr[(x' -x)(x' -xlll 

where 

n 

Sr =x'x'T = ~ (x; -f.l)(x; -f.ll 
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is anNxN matrix called total scatter. Note that the last term of 
(3) is equal to the variance ofy: 

(4) 

Therefore, minimizing the mean square reconstruction err~r 
is equivalent to maximizing the projection variance. The opti­
mal transformation matrix W opt in PCA then can be defined 
as: 

(5) 

A larger eigenvalue means more variance in the data cap­
tured by the corresponding eigenvector. Therefore, by elimi­
nating all eigenvectors except those corresponding to the 
highest M eigenvalues, the feature space for recognition is 
reduced from the original N-dimensional image space to the 
subspace spanned by the top M eigenvectors. The eigenvec­
tors have the same dimension as the original vectors. 

Note that although the PCA projection is optimal for recon­
struction from a low dimensional basis, it is not optimal from 
a classification point of view, for it only considers the total 
scatter of the whole sample set and makes no discrimination 
within the sample points. In PCA, the total scatter is maxi­
mized. Therefore, there is not only maximization of the 
between-class scatter, which is useful for classification, but 
there is also maximization of the within-class scatter, which 
should be minimized. Consequently, PCA can retain or even 
exaggerate unwanted information. Points from individual 
classes in the low dimensional feature space can therefore not 
be well clustered, and points from different classes could be 
mixed together. 

As described above, the PCA method treats the learning set 
as a whole. Since the learning set is labeled in different 
classes, it should be possible to use this information to build 

16 
W is known to be the solution of the following generalized opt 
eigenvalue problem: 

SBW-SwWA=O (9) 

where A is a diagonal matrix whose elements are the eigen­
values. The colunm vectors w, (i =1, ... , m) of matrix Ware 
eigenvectors corresponding to the eigenvalues in A. 

Compared to the PCA method, the representation yielded 
by FLD tries to reshape the scatter instead of conserving its 

10 original details. FLD emphasizes the discriminatory content 
of the image. To illustrate the benefit ofFLD projection, the 
learning set described above was projected to a three-dimen­
sional subspace using PCA and FLD, results of which are 
shown in FIGS. 3a and 3b, respectively. One can see that 

15 although the point distribution range of PCA projection is 
greater in all three directions, (i.e., the total scatter is larger), 
the points from different classes are somewhat mixed 
together. On the other hand, the points from different classes 
in FLD projection are better separated and, therefore, more 

20 suitable for classification. 
When FLD is used, the dimension of the resulting subspace 

must be reduced to no more thann-1, where n is the number 
of recognition classes. Instances for which there are only two 
recognized classes (e.g., cell and non-cell) result in a one-

25 dimensional subspace, which can be inadequate for cell rep­
resentation. In one embodiment, the non-cell classes are 
divided into two or more subclasses. For example, as shown 
in FIG. 2, the non-cell classes can be divided into 10 sub­
classes which result in a total class number of 11, making 

30 FLD u~e practical. Thus, the difficulty with FLD can be 
overcome by treating the cell detection as a multi-class prob­
lem in the preprocessing stage, and as a binary classification 
problem in subsequent stages. The division of the "non-cell" 
class into multiple subclasses allows one to generate pro-

35 cessed input vectors with sufficient dimensionality for effec­
tive cell recognition. This maneuver is possible because the 
"non-cell" class is highly heterogeneous in relation to the 
"cell" class. a more reliable representation for classification in the lower 

dimensional feature space. The key to achieving this goal is to 
use class specific linear methods, such as the FLD technique, 

40 
which considers not only between-class variation but also 
within-class variation, and optimizes the solution by maxi­
mizing the ratio ofbetween-class scatter to within-class scat­
ter. This can be expressed in mathematical terms as follows. 
Assume that each image in the learning set belongs to one of 

45 
c classes { Cu C2 , ... , Cc}. The between-class scatter matrix 

In one embodiment, the ANN is trained to recognize 
whether an image patch contains a centered cell body or a 
viable/non-viable cell, as the case can be. This is generally 
accomplished with image patches represented by feature vec­
tors derived in preprocessing. The ANN uses the input-output 
mapping learned from a set of training samples to generalize 
to data not "seen" before. FIG. 2 shows a learning set of cell 
image patches used to train the ANN, which is manually 

SB and within-class scatter matrix Sw can be defined as: selected from microscopic images for testing. A similar set is 
also used to train the ANN to detect microspheres in a sample. 

c 

Ss = "'I,m;(Jl; -J1)(J1; -Jll 
i=l 

(6) 50 
The learning set Q is composed of two subsets (Q=QPos+ 

gneg). QPos contains patches of centered cells and is labeled 
"cell". All images in QPos belong to a single class. gneg is 

and 

c 

Sw =I, I, (x, - Jl;)(x, - JlJ 
i=l xkECj 

(7) 

where fl is the grand mean, f.l, is the mean of class C, and m, 
denotes the number of images in class C,. The objective of 
FLD is to find the W opt maximizing the ratio of the determi­
nants of the above scatter matrices: 

(8) 

labeled "non-cell" and is divided into 10 sub-classes accord­
ing to the similarity of the images. For example, subclasses 
1-8 contain a specific fraction of a cell. Images in subclass 9 

55 are almost blank and subclass 10 includes images with mul­
tiple fragments of different cells. 

The training of an ANN involves gradually modifying the 
synaptic weights according to the back-propagated output 
error for each sample, until the desired average responses are 

60 obtained on the entire set. In one embodiment, the network 
structure is designed to be flexible by allowing the size of the 
network to be adjusted as a result of easily changing only a 
few parameters. In one embodiment, three layers in addition 
to the input layer are used: two hidden layers, and one output 

65 layer. The size of the neural network can be adjusted accord­
ing to the size of training set and dimension of input vectors. 
In order to be able to establish all possible representations, a 
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bias weight in addition to the inputs is included in each 
neuron. The hyperbolical tangent sigmoid function, TANSIG 
(x), can be used as the transfer function throughout the net­
work. 

18 
can then be selected, randomly or otherwise, and used to 
replace an equal number of objects in the working set. In one 
embodiment, the relative contributions of the classes are con­
strained to the replacement set. That is, in cases where there is 
an imbalance in the classes, the replacement set contains a 
larger proportion of the misclassified objects of the larger 
class. The contribution of the smaller class can also be 
negated or replaced with samples from the larger class. The 
replacement set is not therefore randomly chosen from the 

After a network is trained with examples, the most impor­
tant issue is how well the network generalizes to new data. 
The capacity for generalization greatly depends on the struc­
ture of the neural network. Generally, more neurons in the 
hidden layers give the system more capacity to partition the 
data. However, if the network has too many neurons, it will 
learn insignificant aspects of the training set and lose its 
generalization ability, a phenomenon termed "overfitting." 
Although there is no universal simple rule to determine how 
many hidden units are required for a given task, one rule of 
thumb is to obtain a network with the fewest possible neurons 
in the hidden layer. Using the smallest possible size not only 
helps improve generalization, it also increases the computa­
tional speed of the system, for there is roughly a linear rela­
tionship between network size and speed. 

10 misclassified objects of the combined classes; rather, the 
replacement set is derived only from misclassified objects of 
the much larger class, which compensates for the imbalance. 
The SVM can then be trained with the new working set and 
retested. This procedure can be repeated until satisfactory 

15 accuracy is achieved, or until no further improvement occurs. 
In many cases with highly imbalanced classes, a useful 

SVM can also be trained with a working set that includes most 
or all of the smaller class. However, in other cases, the size of 
the smaller class can be too large for this to be done. In these 

One method to train an ANN with good generalization 
ability is to start with a small initial network and gradually 
add new hidden units in each layer until efficient learning is 
achieved. To avoid drawbacks associated with this training 
method, such as slow learning and difficult-to-avoid local 
minima, a pruning strategy can be used, which starts with a 
largenetworkandexcises unnecessary weights and units. The 
training results of the ANNs are discussed below in the 
examples section in connection with FIGS. 5-15. 

20 instances, the SVM can be trained with a working set with less 
extreme weighting. For example, a 10%-90% weighting 
might be better than the 0%-100% weighting used. The same 
solution can be applied to the selection of the replacement set. 
The weighting used can generally be optimized empirically to 

25 provide the best results. 
SVMs represent an approximate implementation of the 

SRM principle and were first introduced to solve pattern 
recognition and regression estimation problems. In what fol­
lows, we denote the training data as (x,, y,=f(x,)): i=1, 2, ... As an alternative classifier to Artificial Neural Networks 

(ANN), Support Vector Machines (SVM) for cell recognition 
can also be used. SVMs like ANNs, are statistical learning 
machines that use supervised learning techniques and there­
fore eliminate the need for end user programming. SVMs 
have been successfully applied to distinguish between 
unstained viable and non-viable cells in bright field images, 
as discussed in X. Long, W. L. Cleveland andY. L. Yao, 
Automatic Detection of Unstained Viable cells in Bright Field 
Images Using a Support Vector Machine with an Improved 
Training Procedure, Computers in Biology and Medicine, 
2004, which poses different obstacles in comparison to cell 
and non-cell determinations. 

30 I, y,E{-1,+1}, x,E~n. 
In a linearly separable case, the SVM classifier follows the 

intuitive choice and selects the hyperplane (among many that 
can separate the two classes) that maximizes the margin, 
where the margin is defined as the sum of the distances of the 

35 hyperplane to the closest points of the two classes. 
If the two classes are non-separable, positive slack vari­

ables are introduced to allow some training samples to fall on 
the wrong side of the separating hyperplane. The SVM then 
finds the hyperplane that maximizes the margin and, at the 

In cell recognition, the training sample set is extremely 
large and highly unbalanced, in comparison since the number 

40 same time, minimizes a quantity proportional to the number 
of classification errors. The trade-off between maximizing 
the margin and minimizing the error is controlled by a user­
adjusted regularization parameter Q>O. A large Q corre­
sponds to a high penalty for classification errors. of pixel patches in the "viable-cell" (VC) class is much 

smaller than the number in the "not-a-viable-cell" (NAVC) 45 

class. The nature of a SVM is such that it requires a memory 
space that grows quadratically with the training sample num­
ber. Therefore, in practice, an SVM is typically trained with a 
small subset of the pixel patches available for training, raising 
the possibility that the chosen subset is not representative. 50 

The above problem has been solved where the two classes are 
balanced, i.e., where both are represented by comparable 
numbers of class elements, however, the problem has not 
been solved when classes are unbalanced and the number of 
samples is large relative to the available computational 55 

resources. 

In many practical cases, however, nonlinear decision sur-
faces are needed. Nonlinear SVMs can be generalized from 
linear SVMs by using a nonlinear operator <I>(-) to map the 
input pattern x into a higher (even infinite) dimensional 
Euclidean space H. It has the form: 

j(x)~wT<I>(x)+b 

Mathematically, it can be shown that the solution of the 
nonlinear case is: 

l l 

f(x) = ~a:;y;<I>T(x;)<I>(x) +b = ~a:;y;K(x;, x) +b, 
i=l i=l 

where the coefficients a, are the solution of the following 
60 convex QP problem: 

To handle instances where there is relatively high degree of 
imbalance, iterative SVM training, e.g., a "compensatory 
iterative sample selection" (CISS) technique, can be applied, 
which involves selecting a working set of pre-classified 
objects from the set of possible training objects. In one 
embodiment, the initial working set contains approximately 
equal numbers of samples from both classes, such as cell and 
non-cell, even though the classes are unbalanced. The SVM 
can then be trained with the initial working set and tested on 65 

the remainder of the pre-classified objects. From the set of 
incorrectly classified objects, a replacement set of a fixed size 
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subject to O~a,~C, and 

l 

~a:;y;=O, 
i=l 

19 

where the function K(-, ·)is called kernel function and defined 
as 

K(x,z)=<l>T(x)<l>(z) 

It turns out that, in a typical problem, only the coefficients 
a of a few training samples will be nonzero. These samples 
a;e called "Support Vectors" (SVs). Let s1, a*1,j=1, 2, ... , m, 
(m<1) denote these SVs and their corresponding n?nze~o 
coefficients. The decision function in (2) can be rewntten m 
the "sparse" form of the support vectors as: 

f(x) =fa:' JYJ'l>T(s;)<l>(x) + b =fa:' JYJK(sJ, x) + b 
j=l j=l 

This form shows that the decision functions are determined 
only by the SVs, which typically represent a very small frac­
tion of the whole training set. 

The impractically large size of the "NAVC" class and the 
extremely unbalanced size ratio of "NAVC" to "VC" class 
make this application a very difficult case. In many applica­
tions, random selections of training sets with a controllable 
size will typically be made. However, since only a very small 
portion of the total set is used, the randomly selected training 
sets may not be representative. 

Researchers have proposed a "decomposition" algorithm 
to make use of all the available training samples. The algo­
rithm exploits the sparseness ofSVM solution and iteratively 
selects the "most representative" examples for the classes. In 
the context ofSVMs, "most representative" refers to samples 
that are close to the boundary and are difficult to classify. 
Osuna's algorithm has been modified to produce an algorithm 
referred to herein as "Compensatory Iterative Sample Selec­
tion" (CISS) to handle the extremely unbalanced training 
sample set. The new algorithm includes four steps: 

1) Construct an initial working setS (with a user-selected 
size 1) from the whole training set Sn such that S con­
sists of all samples from the "VC" class Sn and a com­
parable number of samples randomly selected from the 
very large "NAVC" sample set SN' 

10 

20 
set to contain all the samples from the "VC" class and a 
comparable number of samples randomly selected from 
the very large "NAVC" class. 

2) In the strategy of the earlier approach, there is no delib­
erate control of the relative contributions of the two 
classes to the replacement set. This has been shown to 
work well for balanced cases. We have tested this 
approach with highly unbalanced classes and found it to 
be unusable (data not shown). In our algorithm, we 
deliberately constrain the relative contributions of the 
two classes to the replacement set. In the detailed studies 
described below, we make the contribution of the "VC" 
class zero and replace only samples from the much 
larger "NAVC" class. 

CISS leads to a reduced classification error that converges 
15 to a stable value. Essentially, we show that substitution of 

correctly classified "NAVC" samples in the working set S 
with misclassified "NAVC" samples from SM an improve­
ment of the function for max Ln(a,) above can be achieved. 

LetS={ (x1 ,y 1), (x2 ,y2 ), ... , (xz,y1)} be the working set used 
20 to train the SVM classifier, and let SN={ (xz+I,yl+l), 

(x1+2 ,y1+2), ... , (xDYL)} be the remainder of the training 
samples, where y,=-1i=l+1, 1+2, ... , L, i.e. total training set 
Sr=SUSN. 

LetA1={au a 2 , ... , a 1} bean optimal solution to (3)when 
25 training with the working setS. We can extend it to the entire 

training set as A={ au a 2 , ... , a,, a,+u a,+2 , ... , aL} with 
a =0, i=l+1, 1+2, ... , L. Note that although the solution of A 
is' optimal over working set S, it can not be optimal over Sr. 
Since the SVM guarantees to find the optimal solution, what 

30 we need to prove here is that the solution A is not necessarily 
optimal when we replace a correctly classified sample in S 
with one that is misclassified in SN' 

We now replace a correctly classified (randomly chosen) 
sample a,=O, iE[1, I] (note that for SVMs, points which. are 

35 correctly classified during the training will have a coefficient 
ofa=O) with am=O, mE[l+1, L], Ymf(xm)<l. After replace­
ment, the new subproblem is optimal if and only if 
Ymf(xm)~l. . 

Assume that there exists a margin support vector aP, w1th 
40 corresponding label yP=-1. We have O<aP<C since it is a 

support vector. (We can also pick out an error support vector; 
the proof is analogous). Then there exists a positive constant 
ll such that O<a -ll<C. Consider a vector A'={ a\, a'2 , ... , 

a'z, a'z+u a'1+2 , P . .. , a'L} which has the elements: a'm =ll, 
45 a' =a -ll and a' =a. for all other elements. Then we have: 

p p ' l l 

2) Train a SVM classifier f(x) with Sand use f(x) to classify 
the remainder of the preclassified training set Sr. Put 50 

misclassified "NAVC" samples into a set SM' 
3) From SM, a "replacement set" of size n is randomly 

selected and is used to replace an equal number of 
"NAVC" samples in the working set which were cor­
rectly classified in step 2. 

4) Repeat steps 2)-3) until no further improvement occurs. 
This algorithm differs from that of an earlier approach in 

the following ways: 

55 

Note that: 

L L 

~ CYi = ~a;, a~ = c5 = c5 + CYm and a~ = O!p - c5. 
i=l i=l 

60 
It can be shown that: 

1) In Step 1, when generating the initial working set, the 
earlier approach arbitrarily chose samples from the 
whole training set. Since only balanced classes were 
used in their case, the resulting working set was also 
approximately balanced. In our algorithm, since the 
training set is extremely unbalanced, arbitrary choices of 
samples from the whole training set would result in a 65 

working set that is likewise extremely unbalanced. To 
solve this problem, we constrained the initial working 

LD(A') = LD(A)- O[(Ymf(xm) -1]-

62 
2 [K(xp, Xp)- 2ypYm X K(xp, Xm) + K(xm, Xm)J 
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If the ll is chosen small enough, the third term of above can be 
neglected. Then, above become: 

Ln(A')~Ln(A)-i\[(ymfCxm)-1] 

Since YmfCxm)<1, it can be easily shown from the equation 5 

above that Ln(A')>Ln(A). 
An extension of the CISS algorithm is to combine it with 

multiclass classification techniques as discussed above. For 
example, in a cell recognition context, the multiclass classi­
fication problem arises when there is more than one type of 10 

cell in the image. Currently, a popular strategy to handle a 
multiclass classification problem is to decompose it into a 
series ofbinary classifications.An example of one implemen­
tation of this strategy is "Error Correcting Output Coding" 
(ECOC). A binary classifier is trained on each .binary prob- 15 

!em. Binary classification results are then combmed together 
to give the overall classification. Appendix A of this applica­
tion (X. Long, W. L. Cleveland, andY. L. Yao, Multiclass Cell 
Detection in Bright Field Images of Cell Mixtures with ECOC 
Probability Estimation) provides an ECOC-based proba~i!ity 20 

estimation algorithm to enable the pixel patch decompos1t10n 
technique described herein to be used in multiclass classifi­
cation, in particular as applied to bright field images ofliving 
cells. 

In many cases, the resulting binary classification problems 25 

will be also unbalanced, especially in cell detection and local­
ization applications. Specifically, the "non-cell" class will be 
much larger than the class for any one cell type and often 
much larger than all of the "cell" classes combined. In these 
cases the CISS algorithm is very useful in dealing with the 30 

multi~lass classification problem since the classification 
accuracy of a multiclass classifier depends largely on the 
classification accuracy of each binary classifier and CISS can 
improve the accuracy of the individual binary classifiers: 

FIG. 31 is a graphical representation of the results obtamed 35 

with the CISS algorithm in combination with the ECOC 
decomposition strategy. The test set is a randomly generat~d 
artificial 2D data set that includes four classes. One class IS 

much larger than the other three. As the graph indicates, the 
CISS algorithm clearly shows a trend of convergence, and the 40 

overall classification error is lowered. The fact that the CISS 
algorithm converges with randomly generated data empha­
sizes the generality of this approach, i.e., the application to 
cell recognition is only one of many possible applications of 
this method. 45 

An ECOC-based cell detection framework for bright field 
images of cultured cells is presented in FIG. 3c. The frame­
work employs the multiclass classification and probability 
estimation ability of our proposed algorithm to analyze bright 
field images of cell mixtures. It permits not only the identifi- 50 

cation of the desired cells but also gives their locations rela­
tive to the pixel coordinates of the primary image. It also uses 
pixel patches as the primary input data elements. Essentially, 
the software is taught to classifY pixel patches into different 
classes. Each class corresponds to a single cell type, except 55 

for the larger class containing all undesired objects (e.g. back­
ground, fragments of cells, trash), denoted as "non-cell." 

Initially, ECOC is used to train an ensemble of SVM clas­
sifiers. This is done with input vectors that are derived from 
manually extracted training patches and are represented as 60 

linear combinations of feature vectors derived in Principal 
Component Analysis (PCA) preprocessing. 

For each pixel pin the testing image (excluding pixels in 
the margin around the edges), a pixel patch centered at that 
pixel is extracted and represented in the same way as that in 65 

training process. The probability that this extracted patch 
belongs to each class is calculated by ECOC probability 

22 
estimation. For each class corresponding to a cell type, this 
probability is then used as a "confidence value"V[p ]E[O, 1] in 
a "confidence map" for that cell type. Pixels in each confi­
dence map are the confidence values of their corresponding 
patches in the original image and form "mountains" with 
large peaks representing a high probability of presence of the 
corresponding cell type. A given peak in a confidence map is 
compared with the corresponding peaks in the other confi­
dence maps. The confidence map with the highest peak at that 
location gives the assignment of class membership. The pixel 
coordinates of the highest peak provide localization. It should 
be pointed out that generating a confidence map for the "non­
cell" class is unnecessary in this case, since localization of the 
non-cell objects is not important. 

For the ECOC approach, binary classifiers have to be 
trained as the base classifiers. The choice ofbase classifier can 
be arbitrary. In one embodiment, Support Vector Maqhines 
(SVMs) are used with the RBF kernel K(x,y)=e-YIIx-yll. T~e 
SVM classifier in this embodiment is implemented by modi­
fYing LibSVM (see http://www.csie.ntu.edu.tw/-cjlin/lib­
svm/). The regularization parameter Q and the kernel param­
eter y are optimized using a two-step "grid-~earch" me~hod 
for each classifier. In the first step, a coarse gr1d-search w1th a 
grid size of 1 was used to localize a Region oflnterest (ROI) 
containing the optimal values (shown in FIG. 3d). In the 
second step, a fine grid-search over the ROI with a grid size of 
0.25 is used to givemoreprecisevalues forQ andy. The result 
is shown in FIG. 3e. 

In one embodiment, the standard ECOC method is modi­
fied to enable probability estimation. Our new algorithm is an 
extension of the pairwise coupling method introduced by 
Hastie and Tibshirani. 

The Hastie and Tibshirani's pairwise coupling method can 
be briefly described as follows. Assume that after training a 
classifier using the samples from class i (labeled + 1) and 
samples from class j (labeled -1), the pairwise prob~bility 
estimation for every class i and j (i>'j) is rif(x). Accordmg to 
the Bradley-Terry (BT) model, rif(x) is related to the class 
posterior probabilities p,=P(class=iiX=x) (i=1, 2, ... k): 

r u(x )~P( class~i I class~iUclass~j,X ~x )~p,(x )I (p,(x )+p1 
(x)) 

Note that p, is also constrained by 

k 

~p;(x) = 1. 
i=l 

There are k-1 variables but k(k-1)/2 constraints. Further, 
when k> 2, k(k -1 )/2>k -1. This means that there may not exist 
p, exactly satisfYing all constraints. In this case, one must use 
the estimation 

fu(x)~p,(x)l(j!,(x)+P)x)) 

In order to get a good estimation, Hasti and Tibshirani use 
the average Kullback-Leibler distance between ry(x) and rif 
(x) as the closeness criterion, and find the P that maximizes 
the criterion. 

l(P)= '\' nu[rulog~+(l-ru)log~=~Ul 
~ ru ru 
«j 
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this is equivalent to minimizing the negative log-likelihood: 

A ~ [ P; Pj l l(P) = - n·· r··1og-- + (1 - r··)1og--u I) A A I) A A 

i<J Pi+PJ Pi+PJ 

where nif is the number of training samples used to train the 
binary classifier that predicts rif. This can be solved by a 
simple iterative algorithm: 

1. Initialize P=[p 1 , p2 , ... Pk] with random p,(x)>O, 
i=1, 2, ... k. 

2. Repeat (j=1, 2, ... , k, 1, 2, ... ) until convergence: 
(a) Calculate corresponding rif(x)=p,(x)/(p,(x)+pix)). 
(b) Calculate 

~nJirJi 
i:i*) 

PI· ... , PJ-I· --A-PJ· PJ+I• ... , Pk 
L nJirJi 

i:i*) 

(c) Update P=P~p,. 

T 

Pairwise coupling is a special case of ECOC. With some 
generalization, Hastie and Tibshirani's pairwise strategy can 
be extended to ECOC with any arbitrary code matrix C. A 
close look at the ECOC code matrix reveals that it actually 
divides the samples from different classes into two groups for 
each binary classifier: the ones labeled "+1" and the ones 
labeled "-1". In this sense, ECOC with any arbitrary code 
matrix is equivalent to pairwise group coupling. Therefore 
Hastie and Tibshirani's results can be generalized to cases 
where each binary problem involves data in two "teams" (two 
disjoint subsets of samples), i.e., instead of comparing two 
individuals, we can compare two groups that are generated by 
ECOC and estimate the individual probabilities through the 
group comparisons. 

Assuming an arbitrary code matrix T, for each colunm i of 
T results in: 

r;(x) =?(class E It I class E It U Ij, X = x) 

~ p,~n,(x) 
classEI+ 

.Z.: p,~n,(x) 
classEf+UJ-

24 
matrix. The above equation may be solved by a slightly more 
complex iterative algorithm listed below. This algorithm is 
equivalent to a special case on probability estimation of 
Huang et al.'s Generalized Bradley-Terry Model. Since the 

5 convergence of Generalized Bradley-Terry Model has been 
proven, the algorithm is also guaranteed to converge. 

1. Initialize P=[p 1 , p2 , ... Pk] with random p,(x)>O, 
i=1, 2, ... k. 

2. Repeat (j=1, 2, ... , k, 1, 2, ... ) until ol(P)/ap,=O, 

10 
i=1, ... , k are satisfied. 

a) Calculate corresponding q/, q,-, q,, i=1, 2, ... I. 

15 

20 

b) Calculate 

~ n;r; ~ n;(1-r;) 

i:)El[ qt + i:)Efj ~ 
p = PI· ... , PJ-I• Pi• PJ+I• ... , Pk 

'\:' '2 u qi 
i:)EitUij 

c) Update P=P~p,. 

T 

To get effective cell recognition with an ANNs it can be 
necessary to use an improved preprocessing strategy (FLD, 
multiple "non-cell" subclasses). Although effective, this pro-

25 cedure requires human effort in the selection of "non-cell" 
subclasses. With SVMs, the above strategy is not necessary. 
After only PCA preprocessing (which is completely auto­
matic), the SVM has sufficient discrimination without the 
FLD strategy. A feature ofSVMs is that the input vectors are 

30 implicitly (and automatically) projected into a high (ap­
proaching infinite) dimensional hyperspace, which substan­
tially increases the separability of the classes. This has an 
effect that is equivalent to FLD preprocessing, making the 
latter redundant and therefore unnecessary. SVMs andANNs 

35 
are highly complicated tools that have diverse requirements. 
In some circumstances, SVMs will be the tool of choice; in 
others, ANN s will be optimal. 

In one embodiment, cells in a digitized microscopic image 
are detected or classified by extracting, for each pixel p in the 
microscopic image, a sub-image, which consists of the pix-

40 el's mxm neighborhood. The size of m can be adjusted to 
accommodate cell size. The sub-image is then mapped to a 
confidence value V[p]E[-1,1] by the classifier. After all the 
pixels are processed, a new image (referred to herein as a 
"confidence map") is created. Pixels in the confidence map 

45 are the confidence values of their corresponding sub-images 
in the original microscope image and form "mountains" with 
large peaks that represent cell positions. The cell positions/ 
coordinates can then be found by identifYing local maxima in 

where I/ and I,- are the set of classes for which the entries in 
the code matrix T(*, i)=+1 and T(*, i)=-1. If we define: 50 

mountains. To increase speed, only patches with average 
pixel intensities above a user-defined value are analyzed fur­
ther. 

Similar to pairwise comparison, the negative log-likelihood 
must be minimized: 

l 

minl(P) =- '\:' n;[r;1og'd_ + (1- r;)1og'f_l 
p u qi qi 

i=l 

where n, is the number of training samples of the binary 
classifier that corresponds to the ith colunm of the code 

EXAMPLES 

55 In one embodiment the ANN is optimized using an empiri-
cal method to determine an upper bound for each layer of the 
network. Then the optimal number of neurons in the two 
hidden layers are estimated by independently decreasing the 
number ofhidden neurons in each layer from the upper bound 

60 to 1, and evaluating the generalization properties of the ANN 
on the test set at each step. To avoid entrapment in a local error 
minimum, every training session is repeated five times and 
the best weights were used for each number of hidden neu­
rons. 

65 FIG. 4 illustrates the generalization properties of the ANN 
for different numbers of neurons in the first layer, while 
keeping the size of the second hidden layer constant at five 
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neurons. The mean squared error (the difference between the 
actual output and the desired output for the samples in the test 
set) is plotted versus the number of neurons. The error rate 
improved as the number ofhidden neurons was increased, but 
leveled out at around 40 neurons when preprocessed by PCA; 
and 37 neurons by FLD. This experiment was repeated with 
the number of neurons in the second layer changed from 1 to 
10 and similar but worse results were obtained (not shown). 
Based on above results, one embodiment uses 40 neurons for 
PCA preprocessing and 3 7 for FLD preprocessing in the first 1 o 
hidden layer and 5 neurons in the second hidden layer. 

Microsphere Experiments 

In order to study systematically the factors that affect rec- 15 

ognition accuracy and to compare the relative efficiencies of 
PCA and FLD preprocessing, microspheres were used as 
model cells. The micro spheres are very uniform in size, shape 
and color and are stable over time. This facilitates experimen­

26 
tion was purposely introduced by training the neural network 
with Intensity levels 4, 5, and 6 together and then tested again 
with all levels. 

Referring to FIGS. 9a-b, in the size variation experiment, 
computer generated images of microspheres with 0%, 5%, 
10%, 15% and 20% variations in size were used. Again, two 
schemes were used to examine the effect of size variation on 
both PC A and FLD methods, results of which are shown in 
FIGS. lOa-b. In Scheme 1, ANNs were trained with only 
microspheres having 0% size variation and tested to all sizes. 
In Scheme 2, they were trained using images with both 0% 
and 15% variation. The patch size used in both schemes was 
fixed to a value that was big enough to contain the biggest 
microspheres. 

Referring to FIGS. lla-e, noise used in noise variation 
experiments was zero-mean Gaussian noise with different 
standard deviations. An image set with five groups of images, 
each have different noise levels was created by adding com­
puter generated noise to original images. The original images 

tal reproducibility and makes it possible to create ideal scenes 20 (standard deviation equals zero) belonged to the first group. 
Groups 2, 3, 4 and 5 contained images in which the standard 
deviations equaled 15, 30, 45 and 60 respectively. The two 
experimental schemes were: first, both PCA and FLD were 
applied to only Group 1 and then tested on all groups. Second, 

in which critical factors can be individually isolated and well 
controlled. Furthermore, the ability to create scenes with very 
small within-class variation by using micro spheres permits a 
test of the hypothesis that FLD gives better performance 
because it controls within-class variation. 25 the training set was expanded to include both Groups 1 and 4. 

Many experimental factors can affect bright field images of 
living cells. Among these are variations in focus, illumina­
tion, and image noise. These factors could in tum affect cell 
recognition accuracy. For example, variation in focus is espe­
cially important, since it is often the case that there is no single 30 

focal plane that is optimal for all the cells in a microscope 
field. Another factor that could affect the recognition effi­
ciency is the variation in size. The effects of these factors on 
recognition accuracy were systematically studied. For all 
microsphere experiments, recognition was performed as 35 

described above. For FLD preprocessing, the dimensionality 
was reduced to 10. For PCA preprocessing, results are shown 
when both 10 and 20 principal components were used to 
improve performance. 

FIGS. l2a-b show the result of the experiments. 
It can be seen from the results that both PCA and FLD 

preprocessing performed well if presented with images in the 
test set, which were selected, from the group(s) used for 
training. This is reasonable because the classifiers have 
learned very similar data during the training. Increasing the 
number of principal components in PCA preprocessing did 
improve the performance, but it was still no better than that of 
FLD. Furthermore, both preprocessing methods performed 
similarly in Scheme 1 for each of the factors studied, but very 
differently in Scheme 2, with the error rate of FLD being 
much less than that ofPCA in both interpolation and extrapo­
lation tests. The reason lies in that, for Scheme 1, all images 
in the training set came exclusively from a single group, in 
which all microspheres had very homogeneous appearance. 
Therefore, when we extracted patches from these images and 
classified them into classes similar to those in FIG. 2, the 
within-class variations were very small. As expected, FLD 
was not superior to PCA in this case, since the variation was 
almost entirely between-class variation. Scheme 2, on the 
contrary, purposely introduced within-class variation into the 
training set by using images from different groups. In this 
case, the FLD method could learn the variation trend from the 
training set and choose projection directions that were nearly 
orthogonal to the within-class scatter, projecting away varia­
tions in focus, illumination, size and noise; the PCA method 
could not. Consequently, the generalization ability of the 
neural network with FLD preprocessing was greatly 
improved and substantially better than a similar neural net-

Referring to FIGS. Sa-d, four image groups were created at 40 

different focal planes relative to the microsphere equatorial 
plane to quantifY the effects of focus variation, with all other 
conditions unchanged: (a) focused: the focal plane is at the 
equator of the micro sphere (i.e. 12.5 f.tm above the supporting 
surface); (b) 12.5 f.tm: the focal plane is at the supporting 45 

surface; (c) 25 f.tm: the focal plane is 25 f.tm below the equator 
and is within the plastic bottom of the microplate well and (d) 
37.5 f.tm: the focal plane is 37.5 flill below the equator. Two 
experimental schemes were performed on these images, 
which are shown in FIGS. 6a-b. In Scheme 1, each method 50 

was trained on the first group and then tested on all groups. In 
Scheme 2, each method was trained on the first and third 
group and then tested again on all groups, in which the test on 
the second group was an interpolation test and on the fourth 
group was an extrapolation test. 55 work with PCA preprocessing in Scheme 2-type experiments. 

Referring to FIGS. 7a-e, images were taken under five light 
intensity levels of the microscope: (a) Intensity level 3: rep­
resenting extremely weak illumination; (b) Intensity level 4: 
representing weak illumination; (c) Intensity level 5: repre­
senting normal illumination; (d) Intensity level 6: represent- 60 

ing strong illumination and (e) Intensity level 7: representing 
extremely strong illumination. Two experimental schemes 
were performed using these images the results of which as 
shown in FIGS. Sa-b. To create the situation of small within­
class variation, ANNs based on both PCA and FLD were 65 

trained with images only in Intensity level 3 and then tested 
with all levels in Scheme 1. In Scheme 2, within-class varia-

Living Cell Experiments 

Recognition ofliving cells in digitized microscope images 
was also studied. The testing images were divided into three 
groups denoting three different scenarios. Scenario 1 repre­
sents the case where cells are almost completely separate, i.e., 
not aggregated, and the background is clean. Scenario 2 is 
more complex where most cells are attached to each other and 
there are trash and debris in the background. Scenario 3 
represents the most complex case where most cells are aggre­
gated together and there is more trash and debris in the back-
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ground. The three microscope images used in the test are 
shown in FIGS. 13a-c. These images show considerable out 
of focus blur, cells in clumps occupying multiple focal planes, 
as well as size variations. 

To obtain a standard for evaluation of our classifiers, three 
human experts independently evaluated pre-selected micro­
scope images. The experts were asked to identifY objects with 
the normal appearance of a viable cell and to exclude ghosts 
of cells, i.e., objects having shape and size similar to viable 
cells but with lower contrast. The three lists generated by the 
human experts were merged to form one list, called "Human 
Standard." To be included in the Human Standard list, an 
object had to be identified as a cell by at least two of the 
experts. 

In experiments with living cells, images were reduced to 
10-dimensional subspaces for both PCA and FLD methods. 
Results obtained the ANN classifiers were compared to the 
Human Standard by evaluating sensitivity ("SE") and posi­
tive predictive value ("PPV"). TheSE of a classifier is defined 
as the percentage of cells in the reference standard, which are 
identified by the classifier and the PPV is the percentage of 
classifier detected cells which are also listed in the reference 
standard. 

The cell positions detected by the classifier are denoted by 
white crosses in the images (see FIGS. 14a-b for Scenario 3 
result-Scenarios 1 and 2 are not shown). The detected cells 
were carefully compared with human standard. SE and PPV 
results of the classifiers are shown in TABLE 1 below and in 
FIG. 15. 

TABLE 1 

Scenario 1 Scenario 2 Scenario 3 

PCA SE 97.73% 87.76% 82.5% 
PPV 100% 89.58% 83.02% 

FLD SE 97.73% 95.92% 94.38% 
PPV 100% 95.92% 91.52% 

The results show that for Scenario 1, both PCA and FLD 
produced very good results. For example, they both achieved 
SE values of97 .7% and PPV values of 100%. For Scenario 2, 
where the image is more complex, theSEs ofPCA and FLD 
dropped to 87.7% and 95.9%, respectively, and PPVs 
dropped to 89.5% and 95.9%, respectively. These results 
indicate that the FLD is superior to PCA when the image 
becomes more complex. This can be seen even more clearly in 
the very complex case represented by Scenario 3. Here, the 
SE percentage for FLD is 11.9 greater than that for PCA and 
the PPV percentage is 8.5 greater. 

As noted previously, the results with micro spheres suggest 
that FLD can better generalize from training sets with a single 
type of confounding factor. The experiments with living cells 
described in this section clearly show that FLD gives superior 
generalization even when multiple types of confounding fac­
tors are present simultaneously. It should also be noted that a 
close inspection of results yielded by our algorithm suggests 
that it can distinguish between cell ghosts and viable cells, 
similar to a human observer. 

The microspheres used in the experiments were 25 f.tm­
diameter, dry-red Fluorescent Polymer Microspheres from 
Duke Scientific (Cat. No. 36-5). The cells used were K562 
chronic myelogenous leukemic cells (ATCC; Cat. No. CCL-
243) grown at 37.0° C. in BM+1/2 TE1+TE2+10% fetal calf 
serum (FCS). For microscope observation, cells and micro­
spheres in culture medium were dispensed into polystyrene 
96-well microplates, which have well bottoms that are 1 mm 
thick. An Olympus Model-CK inverted microscope equipped 
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with a 20x planachromat objective and a SONY DSC-F717 
digital camera was used to obtain digitized images. The 
image processing, ANN training and classification programs 
were written in MATLAB code and implemented in MAT­
LABVersion6.5.0.180913a (R13) supplemented with Image 
Processing Toolbox Version 3.2 and Neural Network Toolbox 
Version 4.0.2. A standard PC equipped with an Intel Pentium 
4/1.6G processor with 256-MB RAM was used. 

In order to train and optimize the neural classifier, a set <I> 
10 of 1700 input-output pairs (<I>={(I,, 0,)}, i=1, 2, ... , 1700) 

was created by projecting the learning set Q (containing 
patches of25x25 pixels) to linear subspaces using both PCA 
and FLD methods. Accordingly, the set was also composed of 
two subsets <I>=<IY'os+gneg. The positive subset QPos= 

15 { (I,Pos, 1)} consisted of feature vectors I,Pos computed from 
the image patches in Ql'os, together with the target output 
classification value otos= 1. The other subset gneg={ (I ,neg, 
-1)} consisted of feature vectors I,neg computed from image 
patches in gneg and the target output value o,neg=-1 of the 

20 classifier. This set was further split into a training set of 1400 
samples and a test set of 300 samples. The training set was 
used to modifY the weights. The test set was used to estimate 
the generalization ability. 

With the above system using a 25x25 pixel patch, a 640x 
25 480 sized image requires a processing time of 1 to 8 minutes, 

depending on the number of cells present. This is judged to be 
acceptable for some applications. Substantial speed improve­
ments can be obtained by replacing the MATLAB environ­
ment with dedicated neural network software. Further 

30 
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improvement of speed is readily available with more power­
ful or specialized hardware, such as cluster computing sys­
tems. 

One embodiment of the invention uses transmitted light 
illumination images in conjunction with one or more fluores­
cence images to automatically generate training sets for train­
ing the classifiers. For example, cell viability can be objec­
tively determined using three images of the same microscope 
field. One image is the transmitted light image which will be 
analyzed by the pattern recognition algorithm (ANN or 

40 SVM). The other two images are images obtained with fluo­
rescent probes, where one probe is specific to viable cells, and 
the other probe is specific to non-viable cells. A human 
observer can examine the three images and determine 
whether a particular cell in the transmitted light image is alive 

45 or dead. This process provides a pre-classified sample for use 
in training and testing. Alternatively, a more automated pro­
cedure can be used. Specifically, in one embodiment an image 
analysis algorithm is used to replace or partially replace the 
human observer, thereby evaluating the two fluorescence 

50 images automatically or semi-automatically and applying 
information from that evaluation to the transmitted light 
image. This embodiment therefore provides an automated or 
semi-automated system for creating the training set. 
Although this example deals specifically with cell viability, 

55 other characteristics identified with fluorescence images can 
similarly be used to identify and classifY objects in a trans­
mitted light image. Further, the concepts described herein can 
also be employed in the "reverse direction," i.e., images 
obtained with transmitted light illumination can be used to 

60 pre-classify the characteristics of objects in images obtained 
using fluorescence images. In other words, once the objects in 
a transmitted light illumination image have been classified 
and/or localized using the techniques described above, that 
information can be used to identifY, localize or classify infor-

65 mation acquired via subsequent fluorescence imaging. For 
example, such a reverse direction technique can be used to 
monitor gene expression in real time. 
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and unbalanced training set. This is a circumstance one fre­
quently encounters in applications of SVMs to diverse prob­
lem domains. 

To move forward towards the goal of a practical automatic 
cell detection system, an algorithm that can detect cells in 
mixtures of multiple cell types and sort them into subtypes 
has been described above. This algorithm employs ECOC 
technique to solve the multiclass pattern recognition problem. 
In the standard ECOC method, only a class label is assigned 

The theoretical and experimental investigations described 
above have advanced the development of fully automated cell 
detection algorithms for micromanipulation purposes, 
thereby facilitating analysis of gene expression in single, 
viable cells. The analysis and proposed strategies were 
applied to digital images of cultured cells (from both single 
cell line and mixture of multiple cell lines) obtained with 
single or multiple types of transmitted light contrast. The use 
of transmitted light channels permits all of the fluorescence 
channels to be used for other purposes. 

PCA has been widely used as a feature extraction and 
representation technique for object recognition due to its 
ability to capture some of the relationships that are useful to 
model the object. Alternatively, FLD has been widely 
accepted to extract features that are better suitable for classi­
fication tasks. However, when FLD is used in a binary cell 
detection problem, where there are only two classes: "Cell" 
and "Non-cell", one must reduce the dimension of the feature 
space to 1. A one-dimensional space is inadequate for a com­
plex pattern recognition problem like cell detection. 

10 to each sample. However, in this thesis, it is necessary not 
only to identifY the class of a cell but also to determine its 
position relative to pixel coordinates, since tracking and 
manipulation of cells are needed. We therefore extended the 
standard ECOC method with a pairwise "team" comparison 

15 strategy to enable probability estimation. The use of probabil­
ity estimation provides both cell type identification as well as 
cell localization relative to pixel coordinates. This approach 
has been systematically studied under different overlap con­
ditions. The experimental results suggest that, for images that 

20 are intrinsically difficult, ECOC can have some advantage 
over other methods. 

A novel FLD preprocessing strategy has been described 
above. The idea is to treat the cell detection as a multiclass Detection of Objects Using Composite Images 

As described above, for multiclass object detection, a 
supervised, multiclass pattern recognition problem can be 
formulated and solved by extension of the Error Correcting 
Output Coding (ECOC) method. The use of ECOC intro­
duces redundancy into classifiers (ensemble of classifiers) 
and increases detection accuracy. The probability estimation 
provides both cell type identification as well as cell localiza-
tion relative to pixel coordinates. However, the detection 
accuracy can be judged to be inadequate for some applica­
tions. One method of increasing detection accuracy is the use 
of multiple images for object detection. 

With respect to microscopy, bright field images represent a 
worst-case scenario and may not provide enough information 
for classification. To improve multiclass cell detection, 
redundancy can be introduced into input images. One way to 

problem in the preprocessing stage and come back to a binary 
problem in the classification stage. It can be done by dividing 25 

the "Non-cell" class into multiple subclasses. This "factor­
ing" of the "Non-cell" class into subclasses makes the use of 
FLD a practical possibility. In addressing the variability of 
cell size and morphology, as well as microscope parameter 
variations, such as focus and illumination, the new FLD pre- 30 

processing was clearly superior to PCA preprocessing when 
combined with neural network classifiers. The primary rea­
son is that FLD optimizes the solution by maximizing the 
ratio of between-class scatter to within-class scatter, while 
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PCA maximizes the effect of total scatter only. The new 
strategy can be applicable to any pattern recognition tasks 
where a class of relatively homogeneous objects needs to be 
distinguished from another class of objects that is highly 
heterogeneous. 

One problem with automatic cell detection is that there are 
much more negative samples than positive samples in the 
image. This is especially true for the problem of distinguish­
ing between viable cells (VC) and all other samples (not a 
viable cell, or NACV). The is a problem for SVMs since the 45 

training set is both highly unbalanced and very large in size. 

40 achieve this goal is to perform cell detection in multidimen­
sional images. As microscopy techniques are moving rapidly 
toward the direction of multidimensionality, images that con­
tain much more discriminatory information can now be 

In order to deal with this problem, an effective SVM train­
ing procedure, called Compensatory Iterative Sample Selec­
tion (CISS), has been described. The algorithm uses an itera­
tive sampling technique, where an SVM is trained at each step 50 

with all positive examples and a subset of the negative 
examples and then retrained by re-sampling the negative 
training set from negative examples that were misclassified at 
the previous iteration. The new training procedure has been 
successfully applied to identifY and localize unstained viable 55 

cells in bright field images and has been shown to be superior 
to SVMs with non-iterative training, especially when the 
ratios are high. The underlying reason for the effectiveness of 
CISS has also been investigated. Our experimental results 
suggest that CISS is effective because it iteratively chooses 60 

the most representative training samples, i.e., the samples that 
are close to the boundary and are more difficult to classify. 
This scheme can make the decision boundary more accurate, 
especially when applied to difficult scenarios. 

It should be noted that the CISS algorithm is not a useful 65 

technique only for automatic cell detection. It can be gener­
alized to any pattern recognition problem that involves a large 

obtained with different imaging techniques (channels) and 
conditions. In the field of transmitted light microscopy, com­
monly used techniques include phase contrast and Hoffman 
modulation contrast. Image sets that contain multiple images 
of the same specimen obtained from different microscopy 
techniques or different conditions with the same technique 
are called multidimensional or multivariate images. In many 
cases, they can provide information well beyond the limits 
achievable with individual techniques, therefore, cell detec­
tion in multidimensional images can be improved over the 
accuracy achieved with single channels. 

One task in object recognition in multidimensional images 
is to extract essential information contained in the image 
stack. Since a multidimensional data set can contain some 
redundant information that is not essential for recognition, 
however the redundancy that introduces more discriminatory 
information is useful, it is therefore often helpful to reduce the 
number of components of the objects studied. This process 
can help to define a new representation space, onto which the 
objects can be represented in a way that is more suitable for 
classification. 

Currently existing approaches for automatic analysis of 
multidimensional cell images are dominated by techniques 
that linearly combine information from different images. For 
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example, Nattkemper et a!. first performed automatic lym­
phocyte detection on all individual images in a fluorescence 
image stack and then linearly combined the detection results 
with heuristic rules. Wuringer eta!., achieved automatic co­
registration, segmentation, and classification of cell nuclei in 

32 

a similar fashion. Linear Principal component analysis (PCA) 
has also been directly applied on fluorescence image stacks to 
reduce the dimensionality of input data. However, these 
applications concentrated on image stacks in which different 
parameters of the same imaging technique were applied to 10 

record a set of images. Problems of this category are called 
intramodular problems. They usually have identical spatial 
resolutions and similar pixel value scales. In contrast, com­
bining different contrast methods (image stacks) under trans­
mitted light illumination, are referred to as "multi-contrast 15 

composite images." Problems of this category are called inter­
modular problems. It should be pointed out that, by definition, 
multi-contrast composite images are also multidimensional 

Probes) were used to label different cell lines. K562 cells 
were labeled with blue fluorescent probe (C2110) and 
observed with a standard DAPI filter set (31000v2, Chroma). 
CRlO cells were labeled with green fluorescent probe 
(C2925) and observed with a standard FITC filter set (41001, 
Chroma). EAT cells were labeled with red fluorescent probe 
(C34552) and observed with a standard Texas Red filter set 
(41004, Chroma). 

An inverted microscope equipped with a 20x Nikon Hoff­
man modulation contrast objective (Numerical Aperture: 
0.45), a 20x Nikon phase contrast objective (Numerical Aper­
ture: 0.45) and anAndor iXon DV 887-BI EMCCD camera 
was used to obtain digitized images. Bright field images were 
obtained with the Hoffman modulation contrast objective. 
For each microscope field, a set of six images was acquired 
(FIGS. 17a-j). Three images (FIGS. 17a, 17b, 17c) were 
acquired with three different contrast methods in transmitted 
light illumination (bright field, phase contrast and Hoffman 
modulation contrast) and were used for SVM training or 
testing. Three auxiliary fluorescence images (FIGS.17d, 17e, 
17j) were also acquired to distinguish different cell lines, 

images. 
Compared to intramodular problems, intermodular prob- 20 

!ems are more difficult to solve. This is because that the 
imaging techniques used in an intermodular problem are typi­
cally based on different physical effects which can generate 
image stacks with different spatial resolutions and pixel value 
scales. Consequently, the correlation of the pixel information 

which were labeled blue, red or green, respectively. 
Although only three contrast methods are described above, 

images for use in multidimensional analysis can be acquired 
25 using any contrast method (e.g. differential interference). The 

methods of the invention can be applied to a set of images 
acquired with different contrast methods and in any combi­
nation. Further, the contrast methods used can also include 

in the intermodular images is much more complex than that of 
the intramodular images. In this case, a linear feature extrac­
tion may no longer be adequate. This is due to the fact that 
linear feature extraction decomposes data set into orthogonal 
components. However, the real sources of information in 30 

intermodular images have very little chance to be orthogonal. 

chemical contrast methods, in addition to optical methods. 
FIG. 18 is a flow diagram showing a multiclass cell detec-

tion process using multiple images and ECOC probability 
estimation. At 1802, microscope images are obtained for 
analysis. There are at least two images for each specimen. For 
example, twenty sets of microscope images were acquired 

To capture the basic sources of information, non-linear fea­
ture extraction algorithms are needed. 

Non-linear statistical analysis techniques have started to be 
used in the field of automatic multidimensional image analy­
sis. Among these techniques, Kernel PCA is the most popular 
one. Kernel PCA is a non-linear generalization of the conven­
tional linear PCA using kernel based methods. It has been 
successfully used in applications ranging from image fusion 
to multiview feature tracking to object recognition in 2D 
images and has been shown to extract features with improved 
efficiency. A multi class cell detection algorithm in composite 
images obtained with three contrast methods in transmitted 
light illumination (bright field, phase contrast and Hoffman 
modulation contrast) is described below. Here, Kernel PCA is 
used to extract features from the composite images. Experi­
mental results suggest that: 1) the use of multiple contrast 
methods provides more discriminatory information about the 
cells and therefore improves the detection accuracy; and 2) 
for multi-contrast composite images of cells, Kernel PCA 
extracts features that are more suitable for classification com­
pared to linear PCA. 

As objects to be identified, cells were used. The cell lines 
used in the experiments were K562 (human chronic myelog­
enous leukemic cells, ATCC; Cat. No. CCL-243), A20.2J 
(murine B-ee!! lymphoma cells, ATCC; CAT. NO. HB-97) 
and EAT cells (Ehrlich Ascites Tumor cells, ATCC; Cat. No. 
CCL-77). All cells were grown at 37.0° C. in BM+l/2 TEl+ 
TE2+10% fetal calf serum (FCS). For microscope observa­
tion, cells in culture medium were dispensed into polystyrene 
96-well microplates, which have glass bottoms that are 0.175 
mm thick. Cell viability was determined by nigrosine staining 
before and after microscope observation and was greater than 
95%. 

To obtain an accurate and objective training and testing 
standard, the fluorescent probes for living cells (Cell­
Tracker™ CAT. No. C211 0, C2925 and C34552, Molecular 

35 and used in the cell detection experiments described below. In 
each experiment, two subsets were extracted: one exclusively 
for training and another exclusively for testing. Ambiguous 
objects showing more than one fluorescence colors were 
manually deleted. The deleted objects were a very small 

40 percentage of the total number of cells. 
In this section, a multiclass cell detection framework for 

multi-contrast composite images of cultured cells is pre­
sented. The system can be implemented using MATLAB and 
LIBSVM, similar to the embodiments described above for 

45 object identification using a single image. At 1804, training is 
done using pixel patches as the primary input data. The pixel 
patches are then preprocessed at 1806 using Kernel PCA to 
nonlinearly reduce the dimensionality of the input data. Input 
vectors are derived from manually -extracted training patches 

so and are represented as nonlinear combinations of feature 
vectors derived from Kernel PCA preprocessing. The system 
also employs multi class classification and probability estima­
tion for image analysis, which permits not only the identifi­
cation of the desired cells but also gives their locations rela-

55 tive to the pixel coordinates of the primary image. Essentially, 
the software is taught to classifY pixel patches into different 
classes. Each class corresponds to a single cell type, except 
for the larger class containing all undesired objects (e.g. back­
ground, fragments of cells, trash, and off-centered cells), 

60 denoted as "Non-cell". For cell classes, the localization infor­
mation of the classified pixel patches in the image is used as 
cell locations. 

At 1808, an ensemble of SVM classifiers with ECOC is 
trained. At 1810, for each position p in the testing images 

65 (excluding positions in the margin around the edges), three 
pixel patches centered at that position are extracted and rep­
resented in the same way as that in training process, one patch 
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from each channel. At 1812, the probability that the input 
vector derived from these extracted patches belongs to each 
class is calculated by ECOC probability estimation. At 1814, 
for each class corresponding to a cell type, this probability is 
then used as a "confidence value"V[p] E[O, 1] in a "confidence 
map" for that cell type. At 1816, localization of the confidence 
maps is performed. Pixels in each confidence map are the 
confidence values of their corresponding patches in the origi­
nal images and form "monntains" with large peaks represent­
ing a high probability of presence of the corresponding cell 10 

type. A given peak in a confidence map is compared with the 
corresponding peaks in the other confidence maps. The con­
fidence map with the highest peak at that location gives the 
assignment of class membership. Localization is provided by 

15 
the pixel coordinates of the highest peak. It should be pointed 
out that generating a confidence map for the "Non-cell" class 
is unnecessary in our case since localization of the non-cell 
objects is not important for cell detection. 

In the ECOC approach, binary classifiers are trained as the 20 

base classifiers. The choice of base classifier can be arbitrary. 
In this work, we used Support Vector Machines (SVM) with 
the RBF kernel. The SVM classifier in our experiment is 
implemented by modifYing LibSVM. The regularization 
parameter Q and the kernel parameter y are optimized using a 25 

two-step "grid-search" method for each classifier. In the first 
step, a coarse grid-search with a grid size of 1 was used to 
localize a Region of Interest (ROI) containing the optimal 
values (shown in FIG. 19a) in the second step (shown in FIG. 
19b ), a fine grid-search over the ROI with a grid size of 0.25 30 

was used to give more precise values for Q and y. 
Kernel PCA is used in the preprocessing stage to reduce the 

dimensionality of input data (raw pixel patches). In this sec­
tion, some fundamental aspects of Kernel PCA are briefly 
described. A detailed introduction to Kernel PCA can be 35 

found in Schiilkopf eta!., "Nonlinear component analysis as 
a kernel eigenvalue problem", Neural Computation, 10, 1998, 
pp. 1299-1319, which is herein incorporated by reference in 
its entirety. Principal component analysis (PCA) is one of the 
most popular dimension reduction methods. Given a set ofM 40 

centered samples: 
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PCA with nonlinear kernel functions, which allows more 
powerful nonlinear solutions. Consider a nonlinear mapping 

xl~x'~<t>(x) (6.3) 

which maps the examples xkERN to some feature space H. 
Assuming that the mapped data are centered in H (if not, they 
can be easily centered.), one can perform PCA in H. This is 
equivalent to find the eigenvectors A of the covariance matrix 
inH 

(6.4) 

It can be shown that the eigenvectors v' in H lie in the span of 
<I>(x1), ... , <I>(xM). Therefore, the above problem is equivalent 
to the following eigenvalue problem 

(6.5) 

where a is a column vector of coefficients [a1 , ... , aM]r, 
whose elements describe the dual form of the eigenvector by 

M 

v' = ~ a'j<l>(xi) 
i=l 

(6.6) 

and K is a symmetric matrix, called Gram matrix, with ele­
ments 

Ku~x'ix)~<P(xJ<l>(x),ij~1, ... ,M (6.7) 

By normalizing ak corresponding to the kth eigenvalue ak of 
K to ensure Ak(ak·a1=1, principal components in H can be 
extracted by projecting example x on v'k 

M 

x= v'' ·x' = v'' ·<l>(x)= ~a1(<t>(x;)·<l>(x)) 
k=l 

(6.8) 

It should be noted that, in equation (8), all vectors appear in 
M 

x,:k = 1, 2, ... , M, x, ERN, ~xk = 0, 
k=l 

45 the form of inner product of the mapping (<I>( xJ<I>( x)) instead 
of the explicit mapping alone. Consequently, Kernel fnnc­
tions can be used to implicitly calculate the mapping. This 
results in 

PCA diagonalizes the covariance matrix: 

1 M 
C=- ~X;·X; 

M i=l 

by solving the eigenvalue equation 

(6.1) 

(6.2) 

for A~O and vERN\{0}, the eigenvector v corresponding to 
bigger eigenvalue A captures more variance. Therefore, the 
set of the first n~N eigenvectors or Principal Directions 
(PDs) carry more variance than any other n orthogonal pro­
jections. 

In recent years, kernel based methods have been more and 
more widely accepted as a new revolution in the machine 
learning area. The concept of kernel based methods is based 
on the combination of well-known linear algorithms such as 

50 
M 

x=~ 
(6.9) 

x) 
k=l 

55 1. where the kernel functionk(x,, x)=<I>(x,)-<I>(x) returns the 
result of dot product of two feature vectors in the feature 
space H. 
FIG. 20 illustrates the basic principle of Kernel PCA. With 

Kernel PCA, one is actually performing linear PCA in some 
60 high dimensional feature space H, just as a PCA in input 

space. Since His nonlinearly related to input space, the linear 
relationship (dashed line) that is captured in the feature space 
H becomes nonlinear in input space (dashed curve). Kernel 
PCA can therefore obtain more powerful nonlinear solutions 

65 while retaining most properties oflinear PCA. 
As has been mentioned above, to obtain an accurate and 

objective training and testing standard, fluorescent probes 
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with different, characteristic colors were used in the experi­
ments to stain cells from different cell lines. Ideally, the 
fluorescent probes should only be detectable under fluores­
cence and should be completely invisible to the classifiers in 
images obtained with transmitted light illumination. 
Although the concentration of the fluorescent probes were 
carefully controlled to the lowest possible level ( experimen­
tally decided), there is still the possibility that the probes 
could alter the transmitted light images in a way that could be 
detected by the classifiers. This would of course affect the cell 
detection accuracy. To check if the use of fluorescent probes 
affects cell detection ability of the classifier under transmitted 
light illumination, a series of control experiments have been 
performed. 

The control experiments were designed to proceed as fol­
lows: 

1) stained and unstained cells of the same type were first 
mixed together and the images were taken. 

2) a 3-class classifier was trained to classify objects in the 
following categories: a) stained cells; b) unstained cells and c) 
non-cells. 

3) if the fluorescent probes do not affect cell detection, the 
distinction between stained and unstained cells will be impos­
sible. Since the distinction between cell (categories a & b) and 
non-cell objects (category c) is much easier than that between 
stained (category a) and unstained cells (category b), the 
detection accuracy of both stained and unstained cells should 
be close to 50%. 

4) as a metric of randonmess, P-values for the problem of 
distinguishing between stained and unstained cells were also 
calculated. The P-value is defined as the probability of getting 
something more extreme than the result, when there is no 
effect in the population. If the fluorescent probes do not affect 
cell detection, P-values should be close to 1. 

5) Repeat the experiment for all three cell types (A20.2j, 
EAT and K562) and for all transmitted light charmels (bright 
field, Hoffman modulation contrast and phase contrast). 

FIG. 2la depicts a sample bright field image used for 
control experiments. It shows a bright field image of mixture 
of stained and unstainedA20.2J cells. Its corresponding fluo­
rescence image is shown in FIG. 21b. FIG. 22 shows the 
detection of cells in the specimen of FIGS. 2la and 21b. The 
detection result ofFIG. 2la is shown in FIG. 22, in which the 
stained and unstained cells detected are denoted by squares 
and crosses respectively. 
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bright field, Hoffman modulation contrast and phase contrast. 
The overall framework of this approach has been described 
above with respect to FIG. 18. In what follows, the detailed 
experiment is described in steps. The experimental result is 
also quantitatively analyzed. 

Since individual cells typically occupy only a small per­
centage of total image area, it is advantageous to decompose 
images using pixel patches that are just large enough to con­
tain the largest cells in the image. In actual experiments, 

10 images obtained with different contrast methods were first 
manually co-registered. Then, for a possible location in the 
co-registered microscope images (except in the 15-pixel mar­
gin around the edges), three 29x29 pixel patches centered at 
that location were extracted. These pixel patches can be 

15 viewed as a 29x29x3 dimensional input vector (see FIG. 26). 
The experiments indicate that performance is not very sensi­
tive to small variations in patch size, e.g. a patch size of31 x31 
produced similar results (data not shown). Since many loca­
tions in the image are uniform background, a "mask" was 

20 created to exclude these patches. Essentially, the "mask" 
eliminated all pixel patches whose average pixel intensities 
were below a user-chosen threshold. 

A training set was created with the aid of an interactive 
program that displays the digitized microscope images and 

25 allows a user to select the locations of cell centers with a 
mouse cursor after manual comparison of transmitted light 
and fluorescence images. For each cell type, the pixel patches 
extracted from the selected cell locations were used as input 
vectors of that class. The input vectors in the "Non-cell" class 

30 were then generated automatically by extracting all the pixel 
patches whose centers were r~7 pixels away from any of the 
manually selected cell locations. The value of r was empiri­
cally chosen in relation to the sizes of cells and pixel patches. 

The primary input vectors generated above are 
35 29*29*3=2523 dimensional. To define a new representation 

space that is more suitable for classification, Kernel PCA 
preprocessing was used to reduce dimensionality ton= 10 for 
all input vectors (FIG. 26). The dimensionality ofl 0 is experi­
mentally chosen (data not shown). We followed the method 

40 described in Schiilkopf et a!., 1998, and used a polynomial 
kernel function: 

(6.10) 

which is parameterized by the degree of polynomial "d". 
45 This parameter is chosen by testing the range 1 through 6 

using a manually extracted testing set of 1000 samples (250 
for each class). To simplifY the optimization process, we also 
followed Schiilkopf et al.'s strategy and used linear SVM 

A total of9 control experiments have been done to cover all 
possible combinations of three cell types and three transmit­
ted light charmels. The detection accuracies of stained (cat­
egory a) and unstained cells (category b) are summarized in 
FIG. 23. One can see from the figure that, in all cases, the 50 

detection accuracies of both stained and unstained cells are 

classifiers. The experimental results show that the classifica­
tion accuracy can improve as the degree goes higher. How­
ever, increasing from the degree 5 to 6 only gives very limited 

very close to 50%. Considering the fact that the detection 
accuracies are very high (>95%, shown in FIG. 24) for the 
entire cell objects (stained & unstained), it indicates a rather 
random classification between stained and unstained cells. To 
show the confidence of randonmess in above experiments, the 
P-values for distinguishing between stained and unstained 
cells from different cell lines under different imaging chan­
nels are plotted in FIG. 25. As expected, all P-values are very 
close to 1. The results of the control experiments suggest that 
the use of fluorescent probes may not affect cell detection 
accuracy in any cell type and any transmitted light charmel. 

To quantitatively evaluate multiclass cell detection in 
multi -contrast composite images, a cell mixture was prepared 

improvement (0.1% ). We therefore chose d=5 for our actual 
cell detection experiments. 

After all input vectors are preprocessed, each attribute of 
55 the Kernel PCA-preprocessed vectors was linearly scaled to 

the range [ -1, +1]. An advantage of scaling is to avoid com­
putational difficulties and to avoid the dominance of attributes 
with greater numeric ranges over those with smaller numeric 
ranges. Finally, the classes were labeled with ordinal num-

60 bers. 

by mixing cells from three different cell lines (A20.2J, EAT 65 

and K562). The composite images consist of images obtained 
with three contrast methods in transmitted light illumination: 

ECOC was implemented with a sparse matrix that was 
selected from 10000 randomly generated 4x10 matrices. To 
select the optimum matrix in the set of 10000, we calculated 
the minimum Hming distance between all pairs of the rows 
for each matrix. The matrix with the biggest minimum dis­
tance was chosen. For each binary SVM classifier, the param­
eters are independently optimized following the aforemen-
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tioned two-step grid search procedure. During the process of 
binary classifier training, the Compensatory Iterative Sample 
Selection (CISS) algorithm (described above) was employed 

38 
discriminatory information into the system by observing cells 
from different perspectives. Secondly, in Scenario 1, both 
methods appear to produce similar detection accuracies, with 
Kernel PCA preprocessing only slightly better than PCA 
preprocessing. This holds true for all three image groups. For 
Scenario 2, where two channels are combined for detection, 
Kernel PCA preprocessing starts to show more advantage. A 
much greater advantage of Kernel PCA can be seen when all 
three channels are combined in Scenario 3. For example, 

to address the imbalance problem caused by the large "Non­
cell" sample set. This algorithm maintains a fixed-size "work­
ing set", in which the training samples are kept balanced by 
iteratively choosing the most representative training samples 
for the SVM. These samples are close to the boundary and can 
therefore be more difficult to classify. This methodology can 
make the decision boundary more accurate, especially when 
applied to difficult scenarios. 

In order to examine the effect ofKernel PCA preprocessing 
on images with different levels of complexity, three different 
scenarios were created. In Scenario 1, only images obtained 
with bright field channel are used. Since there is no difference 

10 when applied to image Group 2 in Scenario 3, if the average 
false positive acceptance number in each image is set at 1, 
Kernel PCA preprocessing achieves a sensitivity of 87.7%, 
which is about 3.6 percentage points greater than that of PCA 
preprocessing (To facilitate capturing this trend, Group 2 

15 testing results in each Scenario are plotted in thick lines). The 
reason lies in that, in Scenario 1, since only a single channel 
is used, the correlation of the pixel information in the images 
is relatively simple. Kernel PCA has no advantages over PCA 
preprocessing in this case. However, as new channels are 

in spatial resolutions and pixel value scales in a single chan­
nel, this scenario represents a very simple case. Scenario 2 is 
more complex since it uses the combination ofbright field and 
Hoffman modulation contrast images. Scenario 3 represents 
the most complex case where images obtained with all three 
contrast methods are combined for cell detection. For each 
scenario, three image groups representing different levels of 
cell density and overlapping conditions were tested. Images 
from Group 1 have very low cell density and very little cell 
overlap. The cell density in Group 2 is moderate and repre- 25 

sents an ideal situation for automatic cell micromanipulation. 
Cell density in Group 3 is very high, making images from this 
group very difficult for automatic detection. 

20 added, the correlation of the pixel information in the images 
becomes more and more complex in Scenario 2 & 3. Kernel 
PCA is therefore more and more advantageous because it can 
capture complex, nonlinear correlations in the high dimen-

An ensemble of SVM classifiers was trained and tested on 
each image group in each scenario (totally 9 cases). For each 30 

ensemble, testing samples were from the same image group 
as the training samples. However, none of the samples used 
for training were used for testing. 

The classifier ensembles were applied to pixel patches 
obtained by automatic pixel patch decomposition of entire 35 

microscope images described above. FIGS. 27a-c shows the 
confidence maps for images shown in FIGS. 17a:f(Scenario 
3-scheme, Kernel PCA preprocessing). The range of the con­
fidence value ([0, 1]) in the confidence maps has been linearly 
scaled to [0,255] for grayscale representation. The detection 40 

results of the same images with PCA and Kernel PCA pre­
processing are shown in FIGS. 28 and 29 respectively. The 
detected cell positions are denoted by different symbols ( dia­
mond, square and cross, one for each class) in the image. 

Statistical cell detection results for whole microscope 45 

images in Scenarios 1, 2 and 3 are summarized in FIGS. 30a, 
30b and 30c, respectively. For each group, five testing image 
sets were used. A "Free-response Receiver Operating Char­
acteristics" method (FROC) was employed (Chakraborty, 
1989), with the average false positive (FP) number of all cell 50 

types in each image and the average sensitivity (true positive 
percentage, i.e., the percentage of cells that are identified 
correctly) of all cell types as performance indexes. As 
described above, the cell positions are identified as "peaks" of 
the "mountains" in the confidence maps. This requires a user- 55 

defined threshold for the definition of "peak". The FROC 
curve plots the relationship of false positives and sensitivity 
as a function of the threshold (not explicitly represented in the 
plot). In a practical application, a suitable threshold can then 
be selected to achieve the required behavior. Generally speak- 60 

ing, the bigger the area under the curve, the better the result is. 
The results are shown in the form of systematical comparison 
between Kernel PCA and PCA preprocessing. 

Firstly, the results show that detection accuracy increases 
when switching from Scenario 1 to Scenarios 2 & 3 for both 65 

PCA and Kernel PCA preprocessing. This is reasonable since 
the use of additional contrast methods can introduce more 

sional image space. 
With regard to the processing speed, when the current 

method is used with a 29x29 pixel patch, a 492x453 image 
requires a processing time of5-15 minutes, depending on the 
number of objects present in the image. 

A framework for multiclass cell detection in multi-contrast 
composite images has been described. The use of multiple 
contrast methods improves the detection accuracy, possibly 
due to its ability to provide information well beyond the limits 
achievable with individual methods and introduce more dis­
criminatory information into the system. Our experimental 
results also suggest that Kernel PCA preprocessing is supe­
rior to traditional linear PCA preprocessing. This can be due 
to the fact that Kernel PCA can capture high-order, nonlinear 
correlations in the high dimensional image space. The speed 
and accuracy of our multi class cell detection framework sug­
gest that it can be useful in some systems that require auto­
matic subtyping and localization of cells in mixtures of mul-
tiple cell types. 

Embodiments of the invention can be used not only with 
still images, but with videos. This is useful in systems, such as 
a fully automated robotic system. In those type of systems cell 
micromanipulation requires that the viable cells need to be 
localized in real time. Other embodiments of the invention 
can use alternative feature representations. This can provide 
more discriminative information, useful for more complex 
classification tasks, such as multi-class classification of fluo­
rescence patterns. 

Each of the embodiments describe herein can be imple-
mented by instructions stored on a computer readable 
medium and executed on a processor, as depicted in FIG. 16. 
The computer readable medium 300 can be any medium 
known in the art for storing instructions, such as a magnetic 
disk drive, an optical disk drive, magnetic tape, FLASH 
memory or PROM, among others. In some embodiments, the 
processor 302 can include a personal computer, a worksta­
tion, or any other device known in the art with processing 
capabilities. The processor 302 reads instructions stored on 
the computer readable medium 300 and executes those 
instructions to perform any or all of the functions of the 
embodiments described herein. In some embodiments, the 
processor 302 is connected to a machine vision component 
304 that generates a digital image as described herein and 
provides that image to the processor 302. In some embodi-
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ments, the processor is connected to an output device 306 
such as a CRT or flat panel display that provides results 
information generated by the processor 302 to the user. In 
some embodiments, the processor is connected to an input 
device 308 such as a keyboard, a mouse or other input device 
known in the art for allowing the user to provide data and 
control to the processor. 

40 
wherein each of the plurality of pixel patches is an ele­
ment of anN -dimensional space; 

preprocessing each of the plurality of pixel patches using a 
Fisher Linear Discriminant, wherein the preprocessing 
reduces the dimensionality of each of the pixel patches 
to M dimensions, wherein M is less than or equal to C; 
and, 

classifYing the preprocessed pixel patches by (i) grouping 
the preprocessed pixel patches belonging to any of the C 
subclasses of the first class into a first set of pixel 
patches, and (ii) grouping the preprocessed pixel patches 
belonging to the second class into a second set of pixel 
patches. 

The invention can be embodied in other specific forms 
without departing from the spirit or essential characteristics 
thereof. The present embodiments are therefore to be consid- 10 

ered in respects as illustrative and not restrictive, the scope of 
the invention being indicated by the appended claims rather 
than by the foregoing description, and all changes which 
come within the meaning and range of the equivalency of the 
claims are therefore intended to be embraced therein. 

8. The method of claim 7, wherein the preprocessed pixel 
15 patches are classified with a support vector machine. 

What is claimed is: 9. The method of claim 8, further including training the 
support vector machine with a compensatory iterative sample 
selection technique. 

1. A method of identifYing one or more objects, wherein 
each of the one or more objects belongs to a first class or to a 
second class, the first class being heterogeneous and having C 
subclasses, the second class being less heterogenous than the 
first class, comprising: 

10. The method of claim 9, wherein the compensatory 
20 iterative sample selection technique comprises: 

deriving a plurality of vectors each being mapped to one of 
the one or more objects, wherein each of the plurality of 
vectors is an element of anN -dimensional space; 

preprocessing each of the plurality of vectors using a Fisher 25 

Linear Discriminant, wherein the preprocessing reduces 
the dimensionality of each of the plurality of vectors to 
M dimensions, wherein M is less than or equal to C; and, 

classifYing the preprocessed vectors by (i) grouping the 
preprocessed vectors belonging to any of the C sub- 30 

classes of the first class into a first set of vectors, and (ii) 
grouping the preprocessed vectors belonging to the sec­
ond class into a second set of vectors. 

2. The method of claim 1, wherein each of the plurality of 
vectors includes information mapped from a digital image. 

3. The method of claim 2, wherein the information mapped 
from a digital image includes a pixel patch. 

35 

(a) selecting a first working set of pre-classified objects 
from a set of training objects; 

(b) training the support vector machine with the first work­
ing set; 

(c) testing the support vector machine with pre-classified 
objects from the set of training objects not included in 
the first working set so as to produce a set of correctly 
classified objects and a set of incorrectly classified 
objects; 

(d) selecting a replacement set of pre-classified objects 
from the set of incorrectly classified objects, and replac­
ing a subset of the working set with the replacement set; 

(e) repeating steps (b), (c) and (d) until the set of incorrectly 
classified objects does not decrease in size for subse­
quent iterations of steps (b), (c) and (d). 

11. The method of claim 7, further including localizing an 
object in the digital image by identifying a pixel patch having 
an object that is centered within the pixel patch. 4. The method of claim 1, wherein the preprocessed vectors 

are classified with at least one of a support vector machine and 
an artificial neural network. 

5. The method of claim 4, further including training the 
support vector machine with a compensatory iterative sample 
selection technique. 

12. The method of claim 7, wherein the first class homo-
40 geneous class includes cells, and the second heterogeneous 

class includes non-cells. 

6. The method of claim 5, wherein the compensatory itera­
tive sample selection technique comprises: 

(a) selecting a first working set of pre-classified objects 
from a set of training objects; 

(b) training the support vector machine with the first work­
ing set; 

45 

(c) testing the support vector machine with pre-classified 50 

objects from the set of training objects not included in 
the first working set so as to produce a set of correctly 
classified objects and a set of incorrectly classified 
objects; 

(d) selecting a replacement set of pre-classified objects 55 

from the set of incorrectly classified objects, and replac­
ing a subset of the working set with the replacement set; 

(e) repeating steps (b), (c) and (d) until the set of incorrectly 
classified objects does not decrease in size for subse­
quent iterations of steps (b), (c) and (d). 

7. A method of identifying one or more objects in a digital 
image, wherein each of the one or more objects belongs to a 
first class or to a second class, the first class being heteroge­
neous and having C subclasses, and the second class being 
less heterogeneous than the first class, comprising: 

deriving a plurality of pixel patches from the digital image, 
each being mapped to one of the one or more objects, 

60 

65 

13. A method of identifying and localizing one or more 
objects, wherein each of the one or more objects belongs to 
either a first class or a second class, comprising: 

deriving a plurality of vectors each being mapped to one of 
the one or more objects, wherein each of the plurality of 
vectors is an element of anN -dimensional space; 

training a support vector machine with a compensatory 
iterative sample selection technique; and, 

processing the plurality of vectors with the support vector 
machine, so as to classifY each of the plurality of vectors 
into either the first class or the second class. 

14. The method of claim 13, wherein each of the plurality 
of vectors includes information mapped from a digital image. 

15. The method of claim 14, wherein the information 
mapped from a digital image includes a pixel patch. 

16. The method of claim 13, wherein the compensatory 
iterative sample selection technique comprises: 

(a) selecting a first working set of pre-classified objects 
from a set of training objects; 

(b) training the support vector machine with the first work­
ing set; 

(c) testing the support vector machine with pre-classified 
objects from the set of training objects not included in 
the first working set so as to produce a set of correctly 
classified objects and a set of incorrectly classified 
objects; 
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(d) selecting a replacement set of pre-classified objects 
from the set of incorrectly classified objects, and replac­
ing a subset of the working set with the replacement set; 

(e) repeating steps (b), (c) and (d) until the set of incorrectly 
classified objects does not decrease in size for subse­
quent iterations of steps (b), (c) and (d). 

17. The method of claim 13, wherein the objects are in a 
digital image. 

18. The method of claim 17, wherein the objects are cells. 
19. A method of identifying and localizing one or more 10 

objects in a digital image, wherein each of the one or more 
objects belongs to one of three or more classes, comprising: 

deriving a plurality of pixel patches from the digital image, 
each of the plurality of pixel patches being mapped to 
one of the one or more objects, wherein each of the 15 

plurality of pixel patches is an element of an N-dimen­
sional space; 

training an ensemble of binary classifiers using an Error 
Correcting Output Coding technique; and, 

for each object, calculating a probability that the pixel 20 

patch associated with the object belongs to a particular 
one of the three or more classes, using the Error Correct­
ing Output Coding probability estimation technique; 

generating a confidence map for each class using the prob­
ability calculated for the pixel patch as a confidence 25 

value within the confidence map; 
comparing peaks in the confidence map for the class with 

corresponding peaks in confidence maps for other 
classes, and using a highest peak to assign class mem-
bership; and, 30 

determining localization of the object corresponding to the 
highest peak by determining pixel coordinates of the 
highest peak. 

20. A computer readable medium including stored instruc-
tions adapted for execution on a processor, comprising: 35 

instructions for deriving a plurality of vectors each being 
mapped to one of the one or more objects, wherein each 
of the plurality of vectors is an element of an N-dimen­
sional space; 

instructions for preprocessing each of the plurality of vee- 40 

tors using a Fisher Linear Discriminant, wherein the 
preprocessing reduces the dimensionality of each of the 
plurality of vectors toM dimensions, wherein M is less 
than or equal to C; and, 

42 
22. A computer readable medium including stored instruc­

tions adapted for execution on a processor, comprising: 
instructions for deriving a plurality of pixel patches from 

the digital image, each of the plurality of pixel patches 
being mapped to one of the one or more objects, wherein 
each of the plurality of pixel patches is an element of an 
N-dimensional space; 

instructions for training an ensemble of binary classifiers 
with a compensatory iterative sample selection tech­
nique, using an Error Correcting Output Coding tech­
nique; 

instructions for calculating for each object, a probability 
that the pixel patch belongs to a particular one of the 
three or more classes, using the Error Correcting Output 
Coding probability estimation technique; 

instructions for generating a confidence map for each class 
using the probability calculated for the pixel patch as a 
confidence value within the confidence map; 

instructions for comparing peaks in the confidence map for 
the class with corresponding peaks in confidence maps 
for other classes, and using a highest peak to assign class 
membership; and, 

instructions for determining localization of the object cor­
responding to the highest peak by determining pixel 
coordinates of the highest peak. 

23. A method of classifying one or more cells in a speci­
men, wherein each of the one or more cells belongs to one of 
two or more classes, comprising: 

deriving a plurality of vectors from a plurality of pixel 
patches, including at least pixel patches from a digital 
image of the specimen that is of a first contrast type, and 
pixel patches from a digital image of the specimen that is 
of a second contrast type distinct from the first contrast 
type; 

preprocessing the plurality of vectors using a non-linear 
feature extraction method, wherein the preprocessing 
reduces the dimensionality of the vectors; 

generating a plurality of confidence maps, based on the 
plurality of vectors, wherein each of the plurality of 
confidence maps corresponds to a particular one of the 
two or more classes, and wherein each confidence value 
in that confidence map corresponds to a probability that 
a vector belongs to that class; 

identifYing a cell at a location of a peak in a confidence 
map; and 

assigning the cell to the particular one of the two or more 
classes corresponding to the highest peak among the 
plurality of confidence maps at the location. 

24. The method of claim 23 wherein the non-linear feature 

instructions for classifYing the preprocessed vectors by (i) 45 

grouping the preprocessed vectors belonging to any of 
the C subclasses of the first class into a first set of 
vectors, and (ii) grouping the preprocessed vectors 
belonging to the second class into a second set of vec­
tors. 50 extraction method is Kernel Principal Component Analysis. 

25. The method of claim 23 wherein the first contrast type 
is at least one of bright field, phase contrast, and Hoffman 
modulation contrast. 

21. A computer readable medium including stored instruc­
tions adapted for execution on a processor, comprising: 

instructions for deriving a plurality of pixel patches from 
the digital image, each being mapped to one of the one or 
more objects, wherein each of the plurality of pixel 55 

patches is an element of an N -dimensional space; 
instructions for preprocessing each of the plurality of pixel 

patches using a Fisher Linear Discriminant, wherein the 
preprocessing reduces the dimensionality of each of the 
pixel patches toM dimensions, wherein M is less than or 60 

equal to C; and, 
instructions for classifYing the preprocessed pixel patches 

by (i) grouping the preprocessed pixel patches belong­
ing to any of the C subclasses of the first class into a first 
set of pixel patches, and (ii) grouping the preprocessed 65 

pixel patches belonging to the second class into a second 
set of pixel patches. 

26. The method of claim 23 wherein the second contrast 
type is at least one of bright field, phase contrast, and Hoff­
man modulation contrast. 

27. The method of claim 23 wherein the probability that a 
vector belongs to a class is generated using Error Correcting 
Output Code probability estimation. 

28. The method of claim 23 further comprising the step of: 
determining localization of the cell corresponding to the 

highest peak by determining pixel coordinates of the 
highest peak. 

29. A computer readable medium including stored instruc­
tions adapted for execution on a processor, comprising: 

instructions for deriving a plurality of vectors from a plu­
rality of pixel patches, including at least pixel patches 
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from a digital image of the specimen that is of a first 
contrast type, and pixel patches from a digital image of 
the specimen that is of a second contrast type distinct 
from the first contrast type; 

instructions for preprocessing the plurality of vectors using 
a non-linear feature extraction method, wherein the pre­
processing reduces the dimensionality of the vectors; 

44 
(d) means for selecting a replacement set of pre-classified 

objects from the set of incorrectly classified objects, and 
replacing a subset of the working set with the replace­
ment set; 

(e) means for repeating the operations of (b), (c) and (d) 
until the set of incorrectly classified objects does not 
decrease in size for subsequent iterations of the opera­
tions of (b), (c) and (d). 

36. A system of identifYing one or more objects in a digital instructions for generating a plurality of confidence maps, 
based on the plurality of vectors, wherein each of the 
plurality of confidence maps corresponds to a particular 
one of the two or more classes, and wherein each confi­
dence value in that confidence map corresponds to a 
probability that a vector belongs to that class; 

10 image, wherein each of the one or more objects belongs to a 
first class or to a second class, the first class being heteroge­
neous and having C subclasses, and the second class being 
less heterogeneous than the first class, comprising: 

15 
instructions for identifying a cell at a location of a peak in 

a confidence map; and 

instructions for assigning the cell to the particular one of 
the two or more classes corresponding to the highest 
peak among the plurality of confidence maps at the 20 

location. 

30. A system of identifying one or more objects, wherein 
each of the one or more objects belongs to a first class or to a 
second class, the first class being heterogeneous and having C 

25 
subclasses, the second class being less heterogenous than the 
first class, comprising: 

means for deriving a plurality of pixel patches from the 
digital image, each being mapped to one of the one or 
more objects, wherein each of the plurality of pixel 
patches is an element of anN -dimensional space; 

means for preprocessing each of the plurality of pixel 
patches using a Fisher Linear Discriminant, wherein the 
preprocessing reduces the dimensionality of each of the 
pixel patches toM dimensions, wherein M is less than or 
equal to C; and, 

means for classifYing the preprocessed pixel patches by (i) 
grouping the preprocessed pixel patches belonging to 
any of the C subclasses of the first class into a first set of 
pixel patches, and (ii) grouping the preprocessed pixel 
patches belonging to the second class into a second set of 
pixel patches. means for deriving a plurality of vectors each being 

mapped to one of the one or more objects, wherein each 
of the plurality of vectors is an element of an N-dimen­
sional space; 

37. The system of claim 36, wherein the preprocessed pixel 
30 patches are classified with at least one of a support vector 

machine and an artificial neural network. 

means for preprocessing each of the plurality of vectors 
using a Fisher Linear Discriminant, wherein the prepro­
cessing reduces the dimensionality of each of the plu-

35 
rality of vectors toM dimensions, wherein M is less than 
or equal to C; and, 

means for classifying the preprocessed vectors by (i) 
grouping the preprocessed vectors belonging to any of 
the C subclasses of the first class into a first set of 40 

vectors, and (ii) grouping the preprocessed vectors 
belonging to the second class into a second set of vee-
tors. 

31. The system of claim 30 wherein each of the plurality of 45 
vectors includes information mapped from a digital image. 

32. The system of claim 31, wherein the information 
mapped from a digital image includes a pixel patch. 

33. The system of claim 30, wherein the preprocessed 
50 

vectors are classified with at least one of a support vector 
machine and an artificial neural network. 

38. The system of claim 37, further including means for 
training the support vector machine with a compensatory 
iterative sample selection technique. 

39. The system of claim 38, wherein the compensatory 
iterative sample selection technique comprises: 

(a) means for selecting a first working set of pre-classified 
objects from a set of training objects; 

(b) means for training the support vector machine with the 
first working set; 

(c) means for testing the support vector machine with pre­
classified objects from the set of training objects not 
included in the first working set so as to produce a set of 
correctly classified objects and a set of incorrectly clas­
sified objects; 

(d) means for selecting a replacement set of pre-classified 
objects from the set of incorrectly classified objects, and 
replacing a subset of the working set with the replace­
ment set; 

(e) means for repeating the operations of (b), (c) and (d) 
until the set of incorrectly classified objects does not 
decrease in size for subsequent iterations of operations 
of(b), (c) and (d). 34. The system of claim 33, further including means for 

training the support vector machine with a compensatory 
iterative sample selection technique. 

35. The system of claim 34, wherein the compensatory 
iterative sample selection technique comprises: 

40. A system of classifYing one or more cells in a specimen, 
55 wherein each of the one or more cells belongs to one of two or 

more classes, comprising: 

(a) means for selecting a first working set of pre-classified 
objects from a set of training objects; 

(b) means for training the support vector machine with the 
first working set; 

60 

(c) means for testing the support vector machine with pre­
classified objects from the set of training objects not 
included in the first working set so as to produce a set of 65 

correctly classified objects and a set of incorrectly clas­
sified objects; 

means for deriving a plurality of vectors from a plurality of 
pixel patches, including at least pixel patches from a 
digital image of the specimen that is of a first contrast 
type, and pixel patches from a digital image of the speci­
men that is of a second contrast type distinct from the 
first contrast type; 

means for preprocessing the plurality of vectors using a 
non-linear feature extraction method, wherein the pre­
processing reduces the dimensionality of the vectors; 

means for generating a plurality of confidence maps, based 
on the plurality of vectors, wherein each of the plurality 
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of confidence maps corresponds to a particular one of 
the two or more classes, and wherein each confidence 
value in that confidence map corresponds to a probabil­
ity that a vector belongs to that class; 

means for identifying a cell at a location of a peak in a 5 

confidence map; and 

46 
means for assigning the cell to the particular one of the two 

or more classes corresponding to the highest peak 
among the plurality of confidence maps at the location. 

* * * * * 
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