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Abstract--This paper presents a new method of employing techniques of neural networks to quantify the 
complicated interrelationship between the change of chip breakability and that of comprehensive wear states, 
including major flank, crater and minor flank wear. Chip breakability under unworn cutting tools is first 
predicted through a fuzzy rating system, then updated dynamically as tool wear develops. Change in surface 
finish with tool wear progression is assessed via the neural networks and finish conditions were used where 
both chip breakability and surface finish are primary concerns. Both training and testing results show that 
the method is not only valid and effective, but also provides a feasible means for in-process prediction of 
chip breakability and surface finish in automated finish-machining systems. 

1. INTRODUCTION 

EFFECTIVE chip control has been recognized as an important  aspect in automated 
machining systems. Although much work has been done on analysis and prediction of 
chip forming patterns including chip shapes and chip breaking in machining [1-4] ,  all 
assume ideal machining conditions, i.e. machining with an u n w o r n  cutting tool. It is 
also known that present theories concerning chip formation in machining and available 
machinability databases are all established based on unworn tools. In actual machining 
processes, however,  the chip forming patterns vary significantly with tool wear pro- 
gression, thus resulting in unpredictable performance of the machining operation.  In 
this sense, a truly effective chip control system should not only be capable of predicting 
chip forming patterns off-line but also updating them on-line as tool wear develops in 
the machining process. 

During the machining process, tool wear formed at different tool faces alters the 
original tool configuration/geometry,  which, in turn, greatly influences chip forming 
patterns. In order  to assess chip forming patterns with wear progression, an effective 
estimation strategy for tool wear at different tool faces is a prerequisite. Many methods 
have been developed [5-10],  among which, dispersion analysis of 3-D dynamic cutting 
force derived from multivariate time series models has proven particularly effective for 
comprehensive tool wear estimation, i.e. more than one type of wear can be estimated 
simultaneously [9], thus providing a possible basis for predicting chip forming patterns 
during tool wear progression. 

Since the interrelationship between chip forming patterns and tool wear progression 
is extremely complex and the present machining theories are inadequate to describe it 
analytically, a certain form of "black-box" approach becomes appealing even inevitable 
for tackling the problem. One such approach, neural networks, has been applied 
recently in machining process monitoring and control,  such as tool wear 
monitoring [11-13] and optimization of machining process [14]. Neural networks pro- 
vide a new approach to resolve a complicated problem through the way of learning by 
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being shown and synthesizing knowledge from the observed input and output variables 
of the process under investigation. 

For the chip forming pattern problem, chip shapes produced are observable and 
readily collectable, while tool wear can be estimated with higher certainties by the 
monitoring strategy developed [9]. Therefore, employing neural network techniques, 
which model a complicated process by extracting knowledge largely based on experimen- 
tal input-output data, would be feasible to correlate dynamic chip forming patterns 
with tool wear progression. In addition, a network algorithm can be implemented on- 
line, once it is trained off-line. 

In this paper, assessing chip breaking/shapes under the condition of an unworn tool 
is first summarized, which provides the initial estimation of chip forming patterns. 
Neural networks are then trained based on the recorded data of chip breakability/surface 
roughness in finish-machining with tool wear progression. The latter is characterized 
by four features extracted from multivariate time series models of 3-D dynamic cutting 
force signals. Using the results derived from neural network modelling, together with 
the comprehensive tool wear estimation reported in Ref. [9], on-line assessment of 
machining performance is achieved, which includes chip breaking/chip shapes, surface 
finish and tool wear states. 

2. ASSESSMENT OF CHIP CONTROL FOR UNWORN TOOLSt 

A series of machining experiments was conducted to set up a basic chip database for 
assessment of chip breaking/shapes for fresh or unworn tools. This effectively provides 
initial conditions for in-process assessment when tool wear is taking place. 

It has been shown that the quantitative description of chip forming patterns can be 
achieved through a fuzzy membership function, ranging from 0 to 1 [4], where fuzzy 
membership values, p. (representing chip breakability ratings), are assigned to the chip 
shapes/sizes obtainable, based on the relative ease/difficulty of producing them. Table 
1 shows some representative chips obtained from machining, with larger membership 
values representing better chip breakability. 

TABLE 1. MEMBERSHIP VALUES FOR MOST COMMON CHIP SHAPES/SIZES 

Tubular Large Snarled Continuous Broken 
Chips Diameter Long Long 

0.10 0.28 0.35 0.43 

Ribbon Snarled Long Small Snarled 
Chips 0.20 0.30 0.3-0.45 

Helical Large Snarled Continuous Broken 
Chips Diameter Long Long 

0.08 0.20 0.30 0.38 

Cork Snarled Continuous Broken Medium 
Screw Long Long 
Chips 0.25 0.32 0.41 0.45-0.47 

Spiral Wavy Few Turns Full Turn Flat 
Chips 0.44-0.48 0.42-0.48 0.65-0.67 0.57-0.60 

Arc Up-curl Side-curl Connected 
Chips 0.88-0.92 0.85-0.90 0.92-0.95 

String Continuous Broken Medium Short 
Chips Long Long 

0.35 0.42 0.49 0.64 

Tooth- Long Short Side-curl Connected 
Edged Arc Arc 
Chips 0.28 0.60 0.86 0.92 

Medium Short 

0.46-0.48 0.64 

Medium 

0.44-0.46 

Short 

0.62 

Conical 
0.67-0.70 

Short 

0.60 

tThis part is largely based on Ref. [4] and is included for completeness. 
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3. DESCRIPTIONS OF M A C H I N I N G  EXPERIMENTS 

3.1. Machining conditions 

A series of machining experiments concerning chip breaking/chip shapes, surface 
finish and tool wear was carried out under the finish-machining conditions to obtain 
the data needed for training and testing the neural networks to be established. Shown 
in Table 2 are the machining conditions used in the experiments. The cutting conditions 
are organized into two groups, i.e. training and testing. The degraded tool tests, namely 
using a relatively softer tool as recommended in Ref. [15], are adopted to shorten the 
time-consuming and costly tool wear experiments. 

3.2. Investigation of  comprehensive tool wear patterns 

Patterns of major flank, crater and minor flank wear were investigated as they reflect 
the comprehensive wear situation and significantly influence tool configuration/ge- 
ometry and the surface quality of a finished product. The wear was quantitatively 
determined by joint use of scanning electron microscopy (SEM), a surface measurement 
instrument and a coordinate measuring machine (CMM). Figure 1 plots typical measure- 
ment results of major flank wear VB, crater wear (depth) KT and minor flank wear 
VB' for training cutting condition 1, to show the development patterns of these three 
types of tool wear. 

3.3. Chip breakability assessment 

Chip breakability was described by using the fuzzy membership function according 
to the chip shapes/sizes produced in the machining process. Figure 2 illustrates the 
change of chip shapes/sizes with cutting time under training cutting condition 1 and 
Table 3 gives the description of these chips and the corresponding fuzzy membership 
values assigned. 

As seen from Fig. 2 and Table 3, it is clear that tool wear has a significant effect on 
chip forming behaviour. This is largely due to the fact that when tool wear develops, 
the tool geometry changes accordingly. In the initial stage of machining, long and 
continuous chips form because the tool insert used has no chip breaker. With the 
increase of machining time, tool wear causes the change of tool configuration/geometry. 
In particular, the formation of crater wear on the tool rake face acts as a groove-type 
chip breaker and thus increases chip breakability. As crater wear grows further its 
effect as the chip breaker becomes more significant until a fully-utilized chip breaker 

TABLE 2. MACHINING CONDITIONS USED IN THE EXPERIMENTS 

Machine tool 
Tool insert type 
Tool material 
Tool geometry 
Work material 
Depth of cut 

Colchester Mascot 1600 (9.3 kW) 
TNMA 160408F (no chip breaker) 
Carbide : Grade 883, SECO 
0% 5 °, - 6  °, 90 °, 60 °, 0.8 ° 
AISI4140 (BHN=275-320)  
d=0.5 mm 

Cutting Speed and Feed 

Training group Testing group 

1. V = 115 m/min f = 0.10 mm/rev 
2. V = 145 m/min f = 0.10 mm/rev 
3. V = 145 m/min f = 0.06 mm/rev 
4. V = 205 m/min f = 0.06 mm/rev 
5. V = 170 m/min f = 0.10 mm/rev 
6. V = 160 m/min f = 0.15 mm/rev 

1. V = 140 m/min f = 0.12 mm/rev 
2. V = 165 m/min f = 0.06 mm/rev 
3. V = 190 m/min f = 0.06 mm/rev 
4. V = 130 m/min f = 0,15 mm/rev 
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FIG. 1. Deve lopment  patterns of comprehensive tool wear. 
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FIG. 2. Change of chip shapes/sizes with tool wear progression• 

is realized which breaks chips in the most effective way as seen at t = 20 min. Further 
growth of crater wear oversizes the chip breaker, resulting in the increase of chip 
curling curvature which lowers chip breakability. The change of chip breakability as 
tool wear develops has been observed consistently under all cutting conditions used, as 



Tool Wear Progression in Machining 

TABLE 3. CHIP FORMING BEHAVIOUR IN MACHINING PROCESS DURING TOOL WEAR 

93 

Time 
(min) 

Chip shapes/sizes Chip breakability 
(membership value) 

0 
2.7 

5 
10 
15 
20 
25 
46 

long and continuous ribbon chips 
curved ribbon chips 
combination of ribbon and continuous cork-screw chips 
long and continuous cork-screw chips 
long but broken cork-screw chips 
short to medium size chips 
distorted medium size chips 
heavily distorted long but broken chips 

0.25 
0.30 
0.32 
0.35 
0.41 
0.58 
0.46 
0.42 

1.0 
Condition 2 : V=145m/min, f=O.lOmnVrov 

Condition 3 : V,145m/min, f-O.O6mnWev 

o---.- Condition 4 : V=2OSrn/min, l=O.06mm/rov 
0,8 

o. 4- Condition 5 : V=170m/min, f,=O.lOmm/rev 

~ Condition 6 : V=160nVmin, f=O.15mm/rev 

~e 0.6 

~ 0.4 

~ 0.2 

0.0 
0 5 10 15 

Time (rain) 

FIG. 3. Change of chip breakability under training cutting conditions 2-6. 

shown in terms of fuzzy membership values in Fig. 3 for training cutting conditions 
2-6. 

Although the above analysis clearly confirms the interrelationship between chip 
forming patterns and tool wear progression, its analytical modelling proves prohibitively 
difficult, even impossible. In order to predict the chip forming patterns, a quantitative 
description of the relation is required. This motivated the introduction of neural 
networks to model the relationship. 

3.4. Surface finish assessment 
Surface finish was assessed in terms of the arithmetic mean deviation, Ra, with the 

use of a portable surface measurement instrument. Although surface finish can be 
predicted theoretically with some accuracy, its development heavily depends on the 
severity of tool wear during the machining process, as shown in Fig. 4 for training 
cutting Condition 1. Compared with the tool wear development shown in Fig. 1, it is 
noticeable that the significant increase of surface roughness corresponds to the acceler- 
ation stage of minor flank wear. Similar results were obtained under training cutting 
conditions 2-6. 
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FIG. 4. Change of surface finish with tool wear rates for training cutting condition 1. 

4. FEATURE EXTRACTION FROM 3-D DYNAMIC CUTTING FORCES 

Various types of tool wear development have been reliably correlated with four 
features extracted from dynamic components of 3-D cutting forces [9]. The results are 
summarized below. 

A trivariate autoregressive time series vector (ARV) model [16] was developed to 
analyse the dynamic relationships among the 3-D cutting force data sampled from the 
machining process. An ARV model with nth order can be expressed as: 

Xr = '~ qbk X,_ k + a, (1) 
k=l 

where X t = ( S i t  , X2t  , X3t)  T, S i t  = Fxt - - -  feed force, X2, = Fy, = thrust force and 
X3t = Fzt = main cutting force. The values of ~k are autoregressive coefficients describ- 
ing the instantaneous dynamics of the machining process; a, is the independent random 
vector. The model order n may be determined by the F-test [16] or Akaike's Infor- 
mation Criterion (AIC) [17]. 

Since 3-D dynamic cutting force signals are to be analysed to estimate more than 
one type of tool wear, a method, which is capable of singling out particular features in 
the signals corresponding to particular types of tool wear, must be used. Dispersion 
analysis has proven to be effective to quantify the relationships [9,18,19]. The calcu- 
lation of dispersion is associated with the eigenvalues h~ (i=1, 2, ..., n for each time 
series) of the established ARV models, as shown below: 

~a gk 
di -- gi ~f~ (2 )  

k = i 1 - hick k 

where gi is determined as follows: 

kT-- 1 
( 3 )  gi = 

(×i-×k) 11 
k=l ,k~i  

The dispersion percentage, D,-, describes the contribution of the roots or ultimately the 
frequencies in the series to the series variation 3'o and is given as: 

di 
D, = --. (4) 

~o 
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The eigenvalues appearing in complex conjugate pairs are found to be of particular 
interest because they contribute to the oscillating variation of the process. Two dominant 
percentage dispersions, Di, one in low frequency (LF) related to the idle frequencies 
of machine-tool and the other in high frequency (HF) related to the natural frequencies 
of the tool-holder/dynamometer system, are found to exhibit patterns in agreement 
with wear rate patterns including major flank wear VB, crater wear KT and minor 
flank wear VB' shown in Fig. 1 [9]. In summary, the relationship between wear rate 
patterns and dispersion development patterns is shown in Fig. 5 based on Ref. [9]. 

5. ARCHITECTURE OF NEURAL NETWORKS 

5.1. Neural network techniques used 

By imitating the computational architecture of human brains and implementing it 
into software/hardware, neural networks are capable of learning to recognize non-linear 
and complicated input-output relationships. Back-propagation (BP) is the most widely 
used learning algorithm for multilayered feed-forward neural networks [20-22]. BP 
neural networks can be used to attack any problems that require pattern mapping, i.e. 
given the input pattern, the network produces the associated output. Once the network 
has learned the pattern mapping from the input-output training set, for any new or 
previously unpresented input it will be capable of producing an output pattern based 
on the knowledge derived from the recognized input-output relationship. 

The typical BP neural network employs one hidden layer of perceptron neurons fully 
connected through weights to the input and output layers. The significance of using a 
hidden layer is that it allows the non-linear mappings between input and output patterns. 
Shown in Fig. 6 is a three-layer neural network with N inputs, M hidden neurons and 
L output neurons. 

In Fig. 6, the forward propagation takes place first after an input pattern is presented 
at the input layer. The errors, i.e. the differences between the output pattern (Oj, j---l, 
2, ..., L) and target pattern (Tj, j = l ,  2 . . . . .  L) are calculated for all neurons in the 
output layer and propagated back through the network to update their coming weights. 
Next, an error value is calculated for all the neurons in the hidden layer and the weights 
are adjusted for all interconnections coming from the input layer. This process is 
repeated until the output pattern is close enough to the target pattern or until the error 
is within the convergence criterion determined in advance. The bias is connected to 
each neuron in the hidden and output layers and is used to adjust the activation 
threshold of the perceptron neurons during the training process. The function of a 
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neuron in the hidden and output layers can be shown in Fig. 7(a) where the total input 
X1, ..., X,  to neuron j is a weighted linear summation, i.e. 

n 
z j  = Y~ wj,.  x ,  + Bj (5) 

i=1 

where Wsl is the weight from the ith input to neuron j and Bj is the bias of the neuron 
j. Then, a real output value from neuron j is activated by a non-linear transfer function 
f(zD: 

Yj = f ( Z j )  = f i "  X~ + . (6) 
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There are many transfer functions which might be implemented in the BP neural 
network that only require the functions be differentiable everywhere [21]. Figure 7(b) 
describes three commonly used non-linear transfer functions. 

5.2. Selection of input features 
The appropriate selection of input features is vital to the success of neural networks 

and depends on the thorough understanding of the problem in question. As described 
before, chip breakability and surface finish change with tool wear progression, and 
therefore the features selected should be sensitive to the specific wear types which 
influence the chip breakability and surface finish. Major flank wear and crater wear 
(crater depth) significantly change the tool configuration/geometry thus resulting in the 
change of chip breakability, while minor flank wear is the dominant factor influencing 
the surface quality of a finished product [9]. Since the dispersion patterns derived from 
ARV models are sensitive to the rate of the above-mentioned wear types, four associ- 
ated dispersion features, i.e. the low frequency (LF) dispersion D~(LF) of the feed 
force and the high frequency (HF) dispersion D~(HF) of the feed force, D~(HF) of 
the thrust force and D ' (HF)  of the main cutting force are selected as the input features 
representing effects of tool wear on chip breakability and surface finish. 

In addition, an initial condition for assessing chip forming patterns is required. As 
summarized in section 2 above, assessment of chip shapes/sizes for unworn tools is 
achieved based on a basic chip database and in terms of a fuzzy membership value, ~. 
This value is selected as the fifth feature. Two machining parameters, cutting speed 
and feed, are also selected as the input features due to their close relationship with 
chip breakability and surface finish. Figure 8 shows the schematic diagram of feature 
selection, and Table 4 lists the input-output data under training cutting conditions 1-3 
as representatives. 

In Table 4, p.i(k) and Ixo(k), k = 1,2 . . . . .  represent the input and output of chip 
breakability, respectively, whilst: 

ixi(0 ) = predicted value from the basic chip database; and 

~i(1,) = ~o(I,-1).  

(7) 
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FIG. 8. Feature selection for neural networks. 
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TABLE 4, THE TRAINING DATA UNDER TRAINING CUITING CONDITIONS 1--3 

Input features Outputs 

Feed Speed D'(LF) D'(HF) Dy(HF) D'(HF) R. 
(ram rev-') (m min 1) (min-l) (rain-') (min-') (min -l) ~xi(k ) ~z,,(k) (gtm) 

0.1 115 -4.91 3.22 1.50 1.47 0.25 0.25 1.09 = 
o 0.l 115 -3 .89  2.52 1.31 1,15 0.25 0.30 1.14 '.~ 
k~ 0.1 115 -3 .03  1.92 1.14 0.87 0.30 0.32 1.23 
" 0.1 115 -1 .15 0.62 0.78 0.27 0.32 0.35 1.32 O 

r.) 0.1 115 0.73 -0 .68  0.42 -0 .33 0.35 0.41 1.78 
,- 0. l 115 2.61 -1 .98  0.06 -0 .93 0.41 0.58 1.99 
"~ 0.1 115 4.49 -3 .28  -0 .30  - 1.53 0.58 0.46 2.35 

0.1 115 7.78 -5 .62  -0 .95 -2.61 0.46 0.42 2.68 

t'q 
= 0.1 145 -5 .29  3.83 5.22 4.01 0.25 0.25 1.04 
O • = 0.1 145 -3.11 2.31 3.84 2.79 0.25 0.27 1.12 

;~ 0.1 145 -1.01 0.78 2.54 1.56 0.27 0.31 1.27 
o 0.1 145 1.01 -0 .75  1.29 0.34 0.31 0.41 1.64 

0.1 145 3.11 -2 .27  -0.01 -0 .89  0.41 0.47 1.88 
~" 0.1 145 5.13 -3 .92  -1 .26 -2.21 0.47 0.45 2.08 

'~ ~ 0.1 145 7.48 -5 .32  -2.71 -3 .34 0.45 0.42 2.27 

= 0.06 145 -8 .50  4.06 4.89 2.87 0.23 0.23 1.00 
• ~ 0.06 145 -5 .80  2.71 3.88 2.06 0.23 0.24 1.06 
-~ 0.06 145 -3 .20  1.41 2.90 1.29 0.24 0.27 1.14 
o 0.06 145 -0 .70  0.16 1.97 0.55 0.27 0.32 1.35 

0.06 145 1.90 -1 .14  0.99 -0 .23 0.32 0.41 1.73 
" 0.06 145 4.40 -2 .39  0.05 -0 .97  0.41 0.43 1.92 

0.06 145 7.30 -3 .84 -1 .04  -1 .84  0.43 0.41 2.13 
d 

Equation (7) assumes the fact that no sudden change in chip breakability will occur as 
tool wear is normally a process of gradual progression. It is therefore reasonable to 
use the output of chip breakability from the neural network at previous time interval 
txo(k-1) as the value of current input ~i(k), with the initial chip breakability Ixi(0) 
from the established basic chip database for unworn tools. 

6. ANALYSIS OF RESULTS FROM N E U R A L  NETWORKS 

6.1. Training strategy with neural networks 

The objective of using neural networks is to predict the development patterns of chip 
breakability and surface finish at different wear states. Therefore, the input data should 
be presented to the neural network by group in order to learn the development trend 
of chip breakability and surface finish during the process of tool wear. The training 
task in this work is to have the neural network learn the mappings from the given input 
patterns to the desired output patterns under the training cutting conditions 1-6 (Table 
2) that contain 41 samples in total. As the system under investigation contains only 
seven inputs and two outputs, one hidden layer is sufficient to establish an effective 
neural network [22]. 

How to select the optimum number of hidden neurons is a critical yet complicated 
issue in back-propagation networks [23,24]. In this work, an experimental approach 
was taken to the selection of the number of hidden neurons. The training procedure 
started with 7 and ended with 14 hidden neurons in line with the number of inputs/out- 
puts. Due to lack of knowledge about which transfer function would give the best 
performance for the problem in question, three common transfer functions, i.e. sigmoid, 
hyperbolic tangent (TanH) and sine, are used in each training process. As the training 
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time is not important in the off-line stage for the size of neural networks concerned, 
the training process did not stop until no further improvement was observed. 

6.2. Analysis of results for training and testing effects 
A Macintosh-based package, NeuralWorks Professional II, was used to establish the 

neural networks. Figure 9 shows the RMS errors for all the neural networks trained 
with different numbers of hidden neurons and different transfer functions. It is seen 
that 12 hidden neurons is the minimum RMS error achieved for all three transfer 
functions, This is in agreement with Ref. [11] where the experimental results show 
that up to a certain number, further increase of hidden neurons does not always lead 
to a better performance of neural networks. From Fig. 9, it can also be concluded that 
among the three transfer functions, TanH gives the minimum RMS errors, 0.014, which 
should be considered as sufficiently close to zero [22]. 

The training effects of the selected 7-12-2 (i.e. 7 inputs, 12 hidden neurons and 2 
outputs) neural networks with the TanH transfer function are shown in Fig. 10 with 
training cutting conditions 1 and 2 as representatives. The results indicate that the 
selected neural network is capable of learning the mappings between the given input 
patterns and the desired output patterns with quite acceptable accuracy. 

Four groups of testing cutting conditions shown in Table 2, which were not used in 
training of the neural network, are used to test the performance of this 7-12-2 network. 
Figures l l ( a )  and (b) show the comparisons between the actual outputs and the 
predicted network outputs for chip breakability and surface finish, respectively. 
Although the results, as expected, are slightly poorer than those during the training 
shown in Fig. 10, they should be considered close enough to describe the in-process 
relationship between chip breakability/surface finish and tool wear states under finish- 
machining conditions. 

7. CONCLUSIONS 

The integration of chip forming patterns with tool wear progression is extremely 
complicated. No effective theories at present can describe their interrelationship analyti- 
cally. Thus neural networks, which largely rely on input-output data have proven 
effective for the problem under investigation. 

With the appropriate selection of a neural network structure and activation transfer 
function, the mappings between the given input and output patterns can be quite 
precisely achieved through training. Thus, predictions of chip breakability and surface 
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FIG. 9. Effect of the number of hidden neurons for three transfer functions. 
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FIG. 10. Evaluation of training effects on (a) chip breakability and (b) surface finish. 

finish for any new input data, which were not used in training and may come from 
different cutting conditions, can be achieved with quite acceptable accuracy• 

Although the results of this work are only for a flat-faced tool, they can be extended 
to complicated tool configurations by using the methodology presented in this paper• 
The method may be extended to rough-machining conditions as well where power 
consumption has to be included for its critical effect on change of machining perform- 
ance with tool wear progression. 

Integration of chip forming pattern prediction, comprehensive tool wear estimation 
as well as surface finish, through neural networks provides an effective means for on- 
line assessment of machining performance in automated machining systems• 
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