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SUMMARY
This paper presents a new method to analyze the closed-
form kinematics of a generalized three-degree-of-a-freedom
spherical parallel manipulator. Using this analytical method,
concise and uniform solutions are achieved. Two special
forms of the three-degree-of-freedom spherical parallel
manipulator, i.e. right-angle type and a decoupled type, are
also studied and their unique and interesting properties are
investigated, followed by a numerical example.
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1. INTRODUCTION
A parallel manipulator consists of a moving platform, a
basis platform, and several branches connecting both
platforms through appropriate kinematic joints with actua-
tors. Compared with the more commonly used serial
manipulators, the parallel one has attractive advantages in
accuracy, rigidity, capacity, and load-to-weight ratio. Six-
DOF spatial parallel manipulators have been widely
discussed. 3-DOF spherical parallel manipulator (SPM),
however, can serve as a compact orientation unit with high
stiffness. Potential usage includes as a robotic wrist, or as a
mechanism for orientation of machine tool beds and
workpieces, solar panels, radar antennas, telescopes, and
artificial hips in biomedical engineering.

SPM has attracted the attention of researchers over the
past decade. Asada and Cro Grauito in 1985 suggested to
use it as a robot wrist.1 Using it, Cox and Tesar2 designed a
robot shoulder; Kim and Tesar3 realized a force reflecting
manual controller; Yi, Freeman, and Tesar4 studied the
redundantly actuated mechanisms; Gosselin and Angeles5–7

investigated the optimal kinematic parameters, singularity
and incompletely specified tasks; Gosselin and Lavoie8 gave
a kinematic design. The closed-form kinematics of a 3-DOF
SPM is relatively more complex than that of a 3-DOF serial
manipulator. It is interesting to note that more work has
been published on 6-DOF spatial parallel manipulators than
3-DOF SPM. Gosselin, Sefrioni, and Richard9–10 studied the
kinematics of several 3-DOF SPM’s. This paper presents the
kinematics of a more generalized SPM, using spherical
analytical theory11 and the more concise and uniform
solution. This paper also analyzes two special types of
3-DOF SPMs which are of the right-angle type and of the

decoupled type, using the screw theory12 and the existent
principle of rotatable axis.13,14 Their special properties are
investigated and illustrated further through numerical
examples.

2. STRUCTURE, COORDINATE SYSTEM, AND
GEOMETRY
A 3-DOF SPM consists of a fixed pyramid, Ob1b2b3, a
moving pyramid, Om1m2m3, and three spherical serial
chains, bicimi (i=1,2,3) as shown in Figure 1. Each of the
chains in turn consists of two links, bici and cimi, and three
revolute joints bi, ci, and mi. All the axes of revolute pairs
intersect at a common point O, and the nine points b1 b2 b3,
m1 m2 m3, c1 c2 c3 are all on a unit spherical surface. In
general, both triangles, b1b2b3 and m1m2m3, are non-
equilateral. The angles between adjacent joint axes in
pyramids and in chains are not equal to each other, that is,
g 11 ≠g 12 ≠g 13, g 21 ≠g 22 ≠g 23, and ai1 ≠ai2 (i=1,2,3) where

Fig. 1. A 3-DOF Spherical Parallel Manipulator.
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g 11, g 12, and g 13 are the angles between Ob1 and Ob2, Ob2

and Ob3, and Ob3 and Ob1, respectively, g 21, g 22 and g 23 the
angles betweem Om1 and Om2, Om2 and Om3, and Om3 and
Om1, respectively ai1 the angle between Obi and Oci, and ai2

the angle between Oci and Omi, as shown in Figure 2. This
represents a very general case. The 3-DOF spherical
mechanism has three independent actuators, which are
attached to the fixed pyramid and actuate the first link, bici,
of each branch by an input angle, u i. Once three input
angles, u 1, u 2, and u 3, are given, the orientation of the
moving pyramid is determined. Thus, this is a spherical
mechanism, i.e., any point on the moving pyramid or on a
link of a chain moves on a spherical surface. In addition, any
link in this mechanism can only have relative rotational
motion and no translational motion is permitted.

The origin O of a fixed global coordinate system, Ox0y0z0,
is located at the common intersection point of the axes of
the revolute joints, passing through the edges of the
pyramids. The z0-axis is chosen to pass through the centroid
H of the bottom triangle b1b2b3. The x0-axis is normal to the
plane defined by vectors Oz0 and Ob1. The moving
coordinate system, Oxyz, is attached to the moving
pyramid. Its z-axis passes through the centroid of the upper
triangle m1m2m3. It’s y-axis is inside the plane defined by
vector Oz and Om2 and its x-axis is determined by the right-
hand rule.

From spherical trigonometry, three sides, g 11, g 12, and g 13

of a spherical triangle b1b2b3 are given in Figure 2. The
exterior angle of this triangle can be obtained by the cosine
law, as

cos bi =
cosg1icosg1k 2cosg1j

sing1ising1k

(1)

where subscripts i, j and k represent numbers 1, 2 and 3 in
a cyclic manner. The corresponding interior angle is equal to
p-bi, respectively.

For the spherical triangle b1b2F2, sides b1b2 and b2F2 are
g 11 and g 12/2, respectively. The interior angles b1 and F2 of
the triangle b1b2F2 can be obtained using Napier’s formula
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The interior angle b3 of triangle b2b3F1, interior angle b2 of
triangle b1b2F3, and interior angle b2 of triangle b2b3F3 can
be solved similarly. The arcs, b1H, b2H, and B3H are denoted
by b 11, b 12, b 13, respectively, and can be solved by Napier’s
rule as well

tan
b 11 +b 12

2
=

cos
b1 2b2

2

cos
b 1 +b 2

2

tan(
g 11

2
)

tan
b 11 2b 12

2
=

sin
b1 2b2

2

sin
b 1 +b 2

2

tan(
g 11

2
)

(3)

The interior angle, m2, of triangle b1b2H can also be written
as

tan
m2

2
=

cos
1

2
(b11 2b12)

cos
1

2
(b11 +b12)

cot
1

2
(b1 +b2) (4)

The geometric derivation of the moving pyramid can be
carried out in a similar manner.

The general formulations above can be simplificed for
special cases:

• In the case of g11 =g12 =g13 =g1, and g21 =g22 =g23 =g2, two
tragopans become regular, and three exterior angles of the
bottom triangle are equal, e.g., b1 =b2 =b3. In addition,
b11 =b12 =b13 =b1, therefore

sin b1 =
2Ï3

3
sin

g 1

2
(5)

• In the case of g1 =g2 =
p

2
, sin b 1 =Î 2

3
.

Fig. 2. A Spherical Pyramid.
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• In the case of g1 =g2 =
2p

3
, the upper and lower pyramids

become two planes and thre revolute joints of the same
pyramid become coplanar, and thus sinb=1.

• In the case of g1 =0, g2 =
2p

3
, tt becomes Asada’s 3-DOF

spherical wrist1 with b1 =0 and b2 =
p

2
.

• In the case of g1 =
p

2
, g21 =0, and g22 =g23 =

p

2
, it

becomes an interesting case of a decoupled 3-DOF
spherical parallel manipulator.

Some of the special cases exhibit unique and interesting
characteristics which will be discussed in more details after
the formulation for the general case is presented.

3. THE CLOSED-FORM INVERSE KINEMATICS
The inverse kinematics of 3-DOF spherical parallel manip-
ulators is to solve the three unknown input angles, u1, u2,
and u3 while the orientation of the moving platform is given.
The orientation of the mobile platform is expressed by
direction cosines of its three unit edge vector, M1, M2, M3.

3.1 Direction cosines of vectors C1, C2, C3

In order to determine the direction cosines of the above
mentioned unit vectors, the Duffy’s spherical analytical
theory is applied here, including both notations and
formulas.11 First, vectors C1, C2, C3 are expressed as (Figure
3).

3.1.1 Vector C1, (C1x, C1y, C1z)
T. Vector C1 is in the first link

of the first branch of the SPM as shown in Figure 3. Three
points c1, B1, z0, in the spherical surface form a spherical
triangle. The direction cosine of vector C1 can be written as

C1x =X3 =sa11su1

C1y =Y3 =2 (sp2b11ca11 +cp2b11sa11cu1)

=cb11sa11
cu1

2sb11
ca11

(6)

C1z =Z3 =cp2b11ca11 2sp2b11sa11cu1

=-cb11ca11 2sb11sa11cu1

where angles ui, û 1, aij, and mi are illustrated in Figure 3.
The notations, X3, Y3, Z3, have special definitions, as seen in
reference 11, and sa11 =sina11, su1 =sinu1, ca11 =cosa11, and
cu1 =cosu1.

3.1.2 Vector C2, (C2x, C2y, C2z)
T. Let us define the local

reference frame (x’y’z’), with z’-axis to coincide with z0,
and x’-axis to be perpendicular to the plane defined by Obi

and Oz0. Thus. C2x, C2y, and C2z have the same form as that
in Equation (6)

C2x9

C2y9

C2z9

=

sa12su2

cb12sa12cu2 2sb12ca12

2cb12ca12 2sb12sa12cu2

(7)

The direction cosines of vector C2, with respect to the globe
system can be found by rotating coordinate frame about z0-
axis for an angle 2m2, that is, premultiply C2 by a
transformation matrix [R2m2], where mi is the angle between
planes biOZ0 and biOZ0

C2x

C2y

C2z

= [R2m2]

C2x9

C2y9

C2z9

=

cm2sa12su2 2sm2cb12sa12cu2 +sm2sb12ca12

sm2sa12su2 +cm2cb12sa12cu2 2cm2sb12ca12

2cb12ca12 2sb12sa12vu2

(8)

3.1.3 Vector C3, (C3x, C3y, C3z). The direction cosines of
vector C3 can easily be written by replacing m2 with m3.
Thus, the direction cosines of any one of the three vectors
C1, C2, and C3 can be written in a uniform equation as

Cix

Ciy

Ciz

=

cmisa1isui 2smicb1isa1icui +smisb1ica1i

smisa1isui +cmicb1isa1icui 2cmisb1ica1i

2cb1ica1i 2sb1isa1ivui

(9)

where i=1,2,3 and m1 =0.

3.2 Direction cosines of unit vectors M1, M2, M3

As vector M2 lies in plane YOZ as shown in Figure 4, its
direction cosines with respect to moving coordinate frame
(X Y Z) are M92 =(0, sinb22, cosb22). Exterior angle m2 of
spherical triangle m1m2h can be similarly derived using
equation (1). Edge m1y in spherical triangle m1m2y is given
by the cosine law

cos(m1y)=cosg21cos(
p

2
2b22)2sing21sin(

p

2
2b22)cos m2

=cosg21sinb22 2sing21cosb22cos m2Fig. 3. Vectors C1 and C2.
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Similarly, one has

cos(m3y)=cosg22sinb22 2sing22cosb22cosm3

The other two direction cosines with respect to a moving
frame can be written as

M91 =(Ï12 (cos2b21 +cos2m1y), cos(m1y), cosb21)
T

M93 =(Ï12 (cos2b23 +cos2m3y), cos(m3y), cosb23)
T

(10)

When the orientation of the moving platform is given, the
moving frame (X Y Z) is known, the direction cosines of
M1, M2, and M3 with respect to fixed frame X0Y0Z0 can be
written as

[M1 M2 M3]=[M Y Z][M91 M92 M93] (11)

3.3 Inverse kinematics
As mentioned above, the inverse problem solves for the
three input angles, u1, u2, and u3, given the orientation of the
moving pyramid with respect to the fixed system. These
three input angles are involved in equation (9). As there are
three unknowns, three equations should be set up. Consider
the center links a21, a22, and a23 connecting the moving
platform and three input links a11, a12, and a13, respectively,
three constraint conditions can be written as

Mi · Ci = cosa2i (12)

where i=1, 2, 3 and a21, a22, and a23 are known constants.
Substituting equation (9) and equation (11) into equation
(12), one obtains

cosa21 =(cmisa1isui 2smicb1icui +smisb1ica1i)Mix

+(smisa1isui +cmicb1isa1i 2cmisb1ica1i)Miy (13)

2 (cb1icali 2sb1isa1isui)Miz

where i=1, 2, 3. Rearranging equation (13) into the
following form

Aisinui +Bicosui +Ci =0 (14)

where i=1, 2, 3 and

Ai =cmisa1iMix+smisa1iMiy

Bi =2smicblisa1iMix+cmisblisa1iMiy2sb1isaliMiz (15)

Ci =2smisblica1iMix+cmisblica1iMiy2cb1icaliMiz2ca2i

Further let

tan
ui

2
= xi, then sinui =

2xi

1+x2
i

, and cosui =
12x2

i

1+x2
i

(16)

Finally substituting equation (16) into equation (14) the
following quadratic equation is arrived at

(Ci 2Bi)x
2
i +2Aixi +(Ci +Bi)=0 (17)

therefore

xi =
A1 ±ÏA2

i +B2
i 2C2

i

Bi 2Ci

(18)

where i=1, 2, 3.

4. THE CLOSED-FORM FORWARD KINEMATICS
The forward kinematics is to calculate the position and
orientation  of the output links when the three inputs, u1, u2,
and u3 are given. Here the first branch, b1c1m1, of the parallel
mechanism is shown in Figure 5. Firstly, the direction
cosine functions of vectors M1, M2, and M3 with respect to
parameters u1, a11, w, a12, and d are derived.

4.1 Direction cosines of vector M1

The direction cosines of vector M1 can be directly set up
from a spherical quadrilateral, M1C1B1Z0, in terms of
Duffy’s notation as quadrilateral 4321, as shown in Figure
5.

M1 =

x32

y32

z32

=

x3c2 2y33s2

c12(x3s2 +y3c2)2s12z3

s12(x3s2 +y3c2)+c12z3

(19)

x3

y3

z3

=

sa21sw1

2 (sa11ca21 +ca11sa21cw)

ca11ca21 2sa11sa21cw

(20)

where notations x32, y32, z32, x3, y3 and z3 follow.11 Exterior
angle “2” and edge “12” in equation (19) are u1 and p-b11

respectively. Substituting equation (20) into equation (19),
one has

Fig. 4. Direction Cosine of M1, M2, and M3.
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M1 =

M1x

M1y

M1z

=

sa21swcu1 +sa11ca21su1 +ca11sa21cwsu1

2cb1sa21swsu1 +cb1sa11sa21cu1 +cb1ca1sa2cwcu1

2sb11ca11ca21 +sb11sa11ca21cw

sb11sa11swsu1 2sb11sa11ca21cu1 2sb11ca11sa21cwcu1

2cb11ca11ca21 +cb11sa11sa21cw

(21)

4.2 Direction cosines of vector M2

The direction cosines of vector M2 can directly be set up
from the spherical pentagon, M2M1C1B1Z0, denoted as
54321 (Figure 5).

M2 =
x432

y432

z432

=
x43c2 2y43s2

c12(x43s2 +y43c2)2s12z43

s12(x43s2 +y43c2)+c12z43

(22)

x43

y43

z43

=
x4c3 2y4s3

c32(x4s3 +y4c3)2s32z4

s32(x4s3 +y4c3)+c32z4

(23)

x4

y4

z4

=
sg1sd

2 (sa21cg21 +ca21sg21cd)

ca21cg21 2sa21sg21cd

(24)

where X432, Y432, and Z432 follow Duffy’s notations11 and
c3 =cw, s3 =sw, c32 =ca11, and s32 =sa11. Substituting equation
(23) and equation (24) into equation (22) one obtains

M2 =

M2x

M2y

M2z

sg21sdcwcu1 +sa21cg21swcu1 +ca21sg21cdswcu1

2ca11sg21sdswsu1

+ca11sa21cg21cwsu1 +ca11ca21sg21cdcwsu1

+sa11ca21cg21su1 2sa11sa21sg21cdsu1

2cb11su1sg21sdcw 2cb11su1sa21cg21sw

2cb11su1sa21sg21cdsw 2cb11cu1ca11sg21sdsw

+cb11cu1ca1sa2cg21cw +cb11cu1ca11ca21sg21cdcw

+cb11cu1sa11ca21cg21

=
2cb11cu1sa11sa21sg21cd 2sb11sa11sg21sdsw

+sb11sa11sa21cg21cw

+sb11sa11ca21sg21cdcw 2sb11ca11ca21cg21

+sb11ca11sa21sg21cd

sb11su1sg21sdcw +sb11su1sa21cg21sw

+sb11su1ca21sg21cdsw +sb11cu1ca11sg21sdsw

2sb11cu1ca11sa21cg21cw 2sb11cu1ca11ca21sg21cdcw

2sb11cu1sa11ca21cg21

+sb11cu1sa11sa21sg21cd 2cb11sa11sg21sdsw

+cb11sa11sa21cg21cw

+cb11sa11ca21sg21cdcw 2cb11ca11ca21cg21

+cb11ca11sa21sg21cd

(25)

Fig. 5. Vectors M1, M2, and M3.
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4.3 Direction cosines of vector M3

Considering another spherical pentagon, m3m1c1b1z0

(5’4321), there are four edges, g23, a21, a11 and p-b11 and
three exterior angles, u, w, and d9 (Figure 5). The angle d9 is
between sides a21 and g23 and therefore d9=p2 (m1 2d),
where m1 is the exterior angle in vertex m1 of the spherical
triangle m1m2m3 and can be derived using the cosine law
similar to equation (1). Thus,

sin d9 = sin m1 cosd2cos m1 sin d
(26)

cos d9 = 2cos m1 cosd2sin m1 sin d

Similarly, the direction cosines of vector M3 can also be
expressed from the spherical pentagon, 5’4321,. In fact, this
can be done by only replacing angles g21 and d in equation
(25) by g23 and d9.

M3x = sg23cwcu1sm1cd 2sg23cwcu1cm1sd +sa21cg23swcu1

2ca21sa23swcu1cm1cd 2ca21sg23swcu1sm1sd

2ca11sg23swsu1sm1cd +ca11sg23swsu1cm1sd

+ca11sa21cg23cwsu1 2ca11ca21sg23cwsu1cmlcd

2ca11ca21sg23swsu1sm1sd +sa11ca21cg23su1

+sa11ca21cg23cu1cmlcd +sa11sa21sg23su1smlsd

M3y = 2cb11su1sg23cwsmlcd +cb11su1sg23cwcmlsd

2cb11su1sa21sg23sw +cb11su1ca21sg23swcmlcd

+cb11su1ca21sg23swsmlsd 2cb11cu1ca11sg23swsmlcd

+cb11cu1ca11sg23swcmlsd +cb11cu1ca11ca21cg23cw

2cb11cu1ca11ca21sg23cwcmlcd 2cb11cu1ca11ca21sg23cwsmlsd

+cb11cu1sa11sa21cg23 +cb11cu1sa11sa21sg23cmlcd

+cb11cu1sa11sa21sg23smlsd 2sb11sa11sg23swsmlcd

+sb11sa11sg23swcmlsd

+sb11sa11sa21sg23cw 2sb11sa11ca21sg23cwcmlcd

2sb11sa11ca21sg23cwsmlsd

2sb11ca11ca21cg23 2sb11ca11ca21sg23cmlcd

2sb11ca11ca21sg23smlsd

M3z = sb11su1sg23cwsmlcd 2sb11su1sg23cwcmldd

+sb11su1sa21sg23sw 2sb11su1sa21sg23swcmlcd

2sb11su1ca21sg23swsmlsd +sb11cu1ca11sg23swsmlcd

2sb11su1ca11sg23swcmlcd

2sb11cu1ca11sa21cg23cw +sb11cu1ca11ca21sg23cwcmlcd

+sb11cu1ca11ca21sg23cwsmlsd

2sb11cu1sa11ca21cg2sb11cu1sa11sa21sg23cmlcd

2sb11cu1ca11ca21sg23smlsd

2cb11sa11sg23swsmlcd +cb11sa11sg23swcmlsd

+cb11sa11sa21cg23cw 2cb11sa11ca21sg23cwcmlcd

2cb11sa11ca21sg23cwsmlsd 2cb11ca11ca21cg23

2cb11ca11sa21sg23smlcd 2cb11ca11sa21sg23smlsd (27)

4.4 Compensative equations and resolution
Equations (21), (25), and (27) specify the relationship
between the direction cosines of vectors M1, M2, and M3 and
geometrical parameters, b11, a11, a21, g21, and kinematic
parameters, u1, w, and d. While b11, a11, a21, g21, and u1 are
known, the angles w and d are still unknown. Therefore it is
necessary to solve unknown angle w and d as follows: Two
compensative equations are generally given

Mi ·Ci = cosa2i i=2, 3. (28)

In these equations, a22 and a23 are known constants. C2 and
C3 expressed by equation (9) are functions of known
geometric quantities, mi, a1i, b1i, and inputs u2 and u3.
Therefore the two equations can be used to solve two
unknown angles, w and d. Substituting equations (9), (25),
and (27) into equation (28) and rearranging, the two
equations in equation (28) now take the following form

Ai sinw + Bicosw + Ci =0 i=1,2 (29)

where the coefficients, Ai, Bi, and Ci contain the unknown
angle, d as well as all known parameters. The full expression of
the coefficients is not written out here due to space constraint
but in order to eliminate one of the unknowns from equation
(29), one has

sinw =
C2B1 2C1B2

A1B2 2A2B1

cosw =
C2A1 2C1A2

A1B2 2A2B1

(30)

Using the identity, sin2w+cos2w=1, one obtains

2B2
1A

2
2 +C2

1A
2
2 +2A1A2B1B2 2A2

1B
2
2 +C2

1B
2
2

22A1A2C1C2 22B1B2C1C2 +A2
1C

2
2 +B2

1C
2
2 =0 (31)

This equation contains only one unknown, d but it is not in the
form of sind and cosd.

Let x=tan
d

2 
then sind=

2x

1+x2 , and cosd=
12x2

1+x2 and

substitute sind and cosd into equation (31), an eighth-order
polynomial equation is arrived at
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O8

i=1

Eix
i =0 (32)

where Ei are functions of known quantities only. x and then the
unknown, d, can be solved. As a result, coefficient A1, Bi, and
ci will become known. The last unknown, w, can be solved
from equation 30 which is rewritten as

tanw =
C2B1 2C1B2

C2A1 2C1A2

(33)

Vectors M1, M2, and M3 of the moving pyramid can be then
solved using equations (21), (25), and (27).

5. A SPECIAL SPHERICAL PARALLEL
MECHANISM OF RIGHT-ANGLE TYPE
Figure 6a shows a special case of the 3-DOF spherical
parallel mechanism where g1 =g2 =p/2 and a1 =a2 =p/2.
Ob1b2b3 is the basis pyramid, and Om1m2m3 the moving one.
Three spherical dyads, b1c1m1, b2c2m2, and b3c3m3 connect
two pyramids. b1c1, b2c2, and b3c3 are the three input links.

Three input angles defined by the angle between the input
link bici and the plane biObj are denoted by ûi, i=1,2,3,
which are equal to ui 2p/4. Initially, they are all set zero as
shown in Figure 6a, with bici coplanar with plane biObj. This
case can be conveniently solved by directly substituting the
special geometric conditions into the formulas laid out in
the preceeding sections. The rest of this section, however,
will be devoted to discussions of its special kinematics
which exhibits some unique and interesting characteristics.
The discussions are based on a method presented in
references 12 and 13.

Figure 6a shows the initial configuration of the manip-
ulator. At this configuration three input angles û1, û2, and û3

are all zero. This means that three input links, b1c1, b2c3, are
coplanar with planes biOb2, b2Ob3, and b3Ob1, respectively.
In addition, they are coplanar with planes m2Om3, m3Om1,
and m1Om2, respectively. Three center links, c1m1, c2m2, and
c3m3 are also coplanar with planes m3 Om1, m1Om2, and

m2Om3, respectively. In addition, the three segments b1O,
b2O, and b3O are colinear with Om2, Om3, and Om1,
respectively.

Firstly, let the input link, b1c1, rotate alone about axis Ob1.
Input angle û1 increases gradually from zero, while the other
two input links are kept stationary, that is, û2 = û3 =0. In this
case, the 3-DOF mechanism becomes a 1-DOF six-bar
spherical mechanism. Three branches of moving pyramid
are different. The first branch, b1c1m1, still is a two-link
chain with links b1c1 and c1m1. The other two branches
which are passive chains, have only one moving link each,
that is, c2m2 or c3m3. In order to analyze the kinematic
characteristics of the pyramid in the six-bar mechanism, it
needs to find which axis the pyramid can rotate about when
only b1c1 is input.

It is necessary to conduct a constraint analysis now. Take
the first branch, b1c1m1, which has three non-coplanar
revolute joints b1, c1 and m1. If all the joint axes are denoted
as screws with zero pitch,12 the three axes in the first branch
comprises a three-system screw. Reciprocal screws, $r, of
the three moving screws for an appropriate coordinate
system may be written as

$r
1 =(1 0 0; 0 0 0)

$r
2 =(0 1 0; 0 0 0) (34)

$r
3 =(0 0 1; 0 0 0)

Therefore, the end pyramid loses three translational degrees
of freedoms. It is well known that, as a result, only three-
rotational motions are now possible, whose rotation axes
pass through the common point O.

The second or third branches only has one moving link,
that is, c2m2 or c3m3. Take link c2m2 for analysis. The
revolute joints in uvw system as shown in Figure 6b, may be
written asFig. 6a. A Right-Angle SPM (top view).

Fig. 6b. A Right-Angle Link.
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$c2 =(1 0 0; 0 0 0)
(35)

$m2 =(0 1 0; 0 0 0)

Therefore, for link c2m2 there are four reciprocal screws
constraining the motion of the pyramid, namely

$r
1 =(1 0 0; 0 0 0)

$r
2 =(0 1 0; 0 0 0)

(36)
$r

3 =(0 0 1; 0 0 0)

$r
4 =(0 0 0; 0 0 1)

Excluding those three constrained translations, there is a
constraining wrench with infinite-pitch $r

4 along the w-axis
which is perpendicular to the plane determined by the axes
Oc2 and Om2. Therefore the end effector can only rotate
about the axis which lies in the plane c2Om2 and passes
point O. In other words, the rotatable axis can be anyline of
the planar pencil determined by the two moving joint axes
of the link c2m2 with a central point O.

For the six-bar spherical mechanism, the branch c2m2

limits the selection of the rotatable axis of the pyramid in
the plane pencil c2m2. Branch c3m3 limits that in plane
pencil c3Om3. The only possible rotatable axis of the
pyramid is the intersecting line of the two planar pencils. At
the initial position, that is, û2 = û3 =0, and û1 is the active
input angle, the intersecting line of the two planar pencil,
c2Om2 and c3Om3 is line b1Om2 as shown in Figure 6a,
which is just the revolute axis of the pyramid. When
û2 = û3 =0 and û1 ≠0, the pyramid rotates about axis b1Om2,
link c2m2 is kept stationary, and c3m3 rotates about Ob1

while input link b1c1 rotates about Ob1. Thus, the inter-
secting line b1Om2 of two planar pencils c2Om2 and c3Om3

keeps invariable throughout rotation of link b1c1.
In order to determine the quantity of rotated angle of the

pyramid about b1Om2, a four-bar spherical linkage,
Ob1c1m1m2O, may be analyzed. The segments b1O and Om2

keep invariably colinear as mentioned before. The angle û1

is the input of the four-bar linkage, and the rotated angle of
the pyramid is the output of the four-bar linkage. The input-
output equation of the four-bar linkage as shown in Figure
7 is quoted15

cc =cacbcf +(sacbcw9 2casbcc)sf +sasb(sw9sc +cw9cccf) (37)

where angles a, b, c, f, w9, and c are shown in figure 7.

Considering the given geometrical condition, a=b=c=p/2.
In the case of f=p, b1O and Om2 become colinear and one
has

cotw9=tanc (38)

where c is input angle between planes b1Oc2 and b1Ob2.w9
is output angle between planes m2Om3 and b1Ob2. If w=p/
22w9, then equation (38) becomes tan w=tanc.

It means that the rotated angle of the pyramid is just equal
to the input angle. Thus, one can say that for this kind of
3-DOF spherical parallel manipulator, the pyramid rotates
about one of the edges, m2O, if there is only one input angle,
û1 while the other two input angles are kept at zero, that is,
û2 = û3 =0. The same holds if input angle is û2 and û3 = û1 =0,
the pyramid will rotate about Om3. Similarly, the pyramid
will rotate about Om1 when û1 = û2 =0, and û3 is input. In all
three cases, the rotated angle of the pyramid is just equal to
the input angle.

In the case of û1 ≠0 and û3 =0, û2 is the input angle. The
only colinear two segments are c1O and Om3. Plane C1Om1

and Om1m3 are still coplanar so that the permitted kinematic
axis which the pyramid rotates about is the intersecting line
Om3 of two plane pencils c1Om1 and c3Om3. The inter-
secting line is invariable throughout when û2 is variable. In
this case, f≠p, the rotated angle of the pyramid is found by
using equation (37)

tanc = 2cotw9cos f (39)

In the case of û1 ≠0 and û2 =0, û3 is the input angle. The
permitted rotational axis of the pyramid should be the
intersecting line of planes c1Om1 and c2Om2. The inter-
secting line is not the line Om1. After an input angle û1 is
chosen, c2m2 is not coplanar with plane m1Om2. Om1 is not
coplanar with c2Om2. The edge of the pyramid itself is not
a rotatable axis any more. The intersecting line of planar
pencils c2Om2 and c1Om1 is another line in planar pencil
c1Om1, and its position in that planar pencil is variant
throughout when û3 is input.

In the case of û1 ≠0 and û2 ≠0, û3 is the input angle. None
of the three pyramids edges is the rotatable axis of the
moving platform. As the intersecting line of the two pencils
c1Om1 and c2Om2 is not the edge Om1 of the end effector.
Another line inside the pencil c1Om1 is the intersecting line
and its position is variant throughout. It is only an
instantaneous rotatable axis when û3 is input.

6. AN ENTIRELY DECOUPLED 3-DOF SPHERICAL
PARALLEL MANIPULATOR
Another special case, i.e., an entirely decoupled three-
dimensional spherical mechanism is shown in Figure 8. Its
basis pyramid Ob1b2b3 is of condition g11 =g12 =g13 =g1 =
p/2. Its moving pyramid takes the following special values:
g21 =0, g22 =g23 =p/2 and thus becomes a right-angle bar
m1Om3. It also has three kinematic chains ab, cd, and ef
connecting the base and the moving pyramid. The angle a
of every link is p/2. The major advantage of this mechanism
is that its three-dimensional movement is decoupled. The
input b1 or b2 determines the orientational angle, pitch or
yaw, of the output link independently, and the input b3

determines the output angle, roll, of the end effector alone.Fig. 7. A Spherical Four-Bar Linkage.
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The roll can be more than 2p. As a result, the kinematics for
this special case becomes very straight forward.

This 3-DOF spherical parallel manipulator can also be
decomposed as two submechanisms: a five-bar spherical
mechanism, abcd, and a four-bar spherical mechanism, efg.
The latter is analogous to that of a universal joint. The
spherical analytical theory11 will be used here to analyze the
five-bar mechanism and to show in an alternative way that
this special case is entirely decoupled. The cosine law of a
spherical pentagon 12345 showin in Figure 8, yields

Z3 =Z51 (40)

where

Z3 =c23c34 2s23s34c3 =2c3

Z 51 =s12(X 5s1 +Y 5c1)+c12Z 5

X 5 =s45s5 =s5 (41)

Y 5 =2s51c45 2c51s45c5 =0

Z 5 =c51c45 2s51s45c5 =2c5

where Z51 and others follow Duffy’s notations.11 Substitut-
ing equation 41 into equation 40 and considering all the g
and a are equal to p/2, one obtains

c3 =2s5s1 (42)

Let x2 = tanu2/2, then from the half-angle identity11 one
obtains

x 2 =
X51 2X3

Y51 2Y3

(43)

x2 =X5c1 2Y5s1 =s5c1

Y51 =c12(X5s1 +Y5c1)2s12Z5 =c5

X3 =s34s3 =s3

Y3 =2 (s23c34 +c23s34c3)=0

(44)

Substituting equation 42 into equation 44 and then into
equation 43 we get

x 2 =(s5c1 2s3)/c5 (45)

From the trigonometric function one obtains

s2 =
2x 2

1+x 2
2

c2 =
12x 2

2

1+x 2
2

(46)

s3 = ± Ï12c2
3

The direction cosines of unit vector Om1 are

Om1 =

X21

Y21

Z21

=

X2c1 2Y2s1

c15(X2s1 +Y2c1)2s15Z 2

s15(X2s1 +Y2c1)+u15Z 2

=

s2c1

c2

s2s1

(47)

where

X2 =s23s2 =s2

Y2 =s12c23 +c12s23c2 =0

Z2 =c12c23 2s12s23c2 =2c2

Finally, substituting equation (46) into equation (47) and
considering s3 =21, the direction cosines of vector Om1 can
be easily expressed as a function of input angles u1 and u5.
When u1 =0, Om1 =(c5 2s5 0)T. When u5 =0, Om1 =(c1 0 s1)

T.
This is obviously decoupled, which can also be shown by
using the method described in section 5.

7. NUMERICAL EXAMPLES
The following 3-DOF spherical mechanism is used in a
numerical example

g11 =g12 =g13 =g21 =g22 =g23 =p/2

a11 =a12 =a21 =a22 =a31 =a32 =p/2

Using the formulas given in sections 2 to 4, the direct
kinematics are solved for four cases:

Case 1: û 1 is input angle, û 1 =0 to 80°, û 2 =0, û 3 =0

Case 2: û 1 =30°, û 2 is input angle, û 2 =0 to 80°, û 3 =0

Case 3: û 1 =30°, û 2 =0, and û 3 is input angle, û 3 =0 to 80°

Case 4: û 1 =30°, û 2 =30°, and û 3 is input angle, û 3 =0 to 80°

where û i =u i 245°
The results are shown in Figure 9 and Figure 10. Figure

9 illustrates the change of angles between motive vectors Mi

and stationary vectors Bi (I=1, 2, 3), i.e., angles M1 2B1,
M2 2B2, and M3 2B3 with the respective input angle. It is
seen in Figure 9a that angles M1 2B1 and M2 2B2 remain
constant and angle M3 2B3 decreases linearily when input
angle û 1 changes from 0 to 80.̊ These trends are consistent
with physical understanding of the mechanism movement.
Similarily, M3 2B3 remains constant and M1 2B1 decreases
linearily for case 2 in Figure 9B in agreement with
predictions based on physical understanding of the mecha-
nism. Figure 10 illustrates the moving pyramid in
3-dimensional space. It is clear that, in case 1 (Figure 10a),

Fig. 8. A Decoupled SPM.
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the moving pyramid rotates about OM2. In case 3 (Figure
10b), none of the three edges of the moving pyramid serves
as a stationary rotating axis for the moving pyramid.

8. CONCLUSIONS
In this paper a new method to derive the kinematics of a
generalized 3-DOF spherical parallel manipulator is pre-

sented. This method is based on Duffy’s theory and
spherical trigonometry11 which enables the derivation be
more concise and uniform.

The kinematics of a special 3-DOF SPM with g1 =g2 =
p/2 and a1 =a2 =p/2 is studied and three types of kinematic
patterns are identified. In the case of any two of the three
input angles are kept zero while the third one varies, the

Fig. 9. Numerical Results of Angles Between Motive Vectors Mi and Stationary Vectors Bi (i=1,2,3).

Fig. 10. Numerical Results of Movement History of the Moving Pyramid OM1M2M3.
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moving pyramid can rotate about one of its three orthogonal
edges, and the rotated angle of the end effector will be just
equal to the input angle. In the case of one of the input
angles being kept at a non-zero position, one at the zero
position, while the third varies, two possibilities exist. The
edge Om3 can be a rotatable axis when the first input link,
b1c1, is kept at the non-zero position, the third input link,
b3c3, at the zero position, and the second one, b2c2, varies.
On the contrary, none of the three pyramid’s edges can be a
rotatable axis when b1c1 is kept at a non-zero position, b2c2

at a zero position, and b3c3 varies. In the case of two input
angles being kept at non-zero positions, none of the three
pyramid’s edge can be the rotatable axis.

Another special 3-DOF SPM with g1 =p/2, g21 =0,
g22 =g23 =p/2, a1 =a2 =p/2 is also studied. It is an entirely
decoupled 3=DOF SPM. Two of the three inputs determine
the orientation of the output Om1 in a three-dimensional
space, and the third one alone determines the roll angle of
the moving pyramid, which can be over 2p.
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