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Recursive Calibration of 
Industrial Manipulators by 
Adaptive Filtering 
The calibration scheme of robot forward kinematics presented in this paper has a 
number of features. Firstly, robot kinematic errors are modeled in a recursive format 
and as such, the number of measurements that need to be taken for calibration can 
be determined by studying the rate of convergence of estimation error covariance. 
Secondly, a simplified adaptive filtering algorithm is used to deal with unknown 
measurement noise statistics and unknown robot motion repeatability characteristics 
in estimating the kinematic errors. Thirdly, a laser interferometry system is used to 
measure positions of a robot end-effector in world coordinates. The measurement 
system was implemented in experiments involving a three degree-of-freedom gantry 
robot. The adaptive filtering of the experimental data identified 0.5 to 1.5 percent 
errors in representative kinematic parameters of the given robot by taking into ac­
count measurement noise and robot repeatability. 

1 Introduction 

The open chain mechanism of robots determines that their 
end-effector's positioning accuracy relies on how well the kine­
matics is known. The goal of robot kinematic calibration is, 
therefore, to improve the accuracy of the kinematics. The inac­
curacies in robot kinematics could be due to manufacturing 
deviations. They may also be attributed to slight changes or 
drifts, such as wear of parts, dimensional drifts and component 
replacement effects after a robot being in service for a period 
of time. 

In general, robot calibration involves three steps: (7) deriving 
an error model to relate end-effector's positioning errors to 
robot kinematic errors, (2) measuring the end-effector's posi­
tioning errors in the world coordinates by an external system, 
and {3) using the measurement data to estimate the kinematic 
errors. The last step usually involves a numerical search proce­
dure, since the kinematic errors are not an explicit function of 
the end-effector's positioning errors. 

The most popular method to derive a kinematic error model 
is based on homogeneous transformations [1]. This technique 
has been used in [2, 3] to investigate robots with variations in 
their kinematic model. Numerical instability arises when two 
consecutive revolute joint axes are parallel. For this reason, 
Veitschegger and Wu [4] proposed to post multiply each trans­
formation matrix by an additional rotation. These methods, like 
the Euler angle formulation used by Whitney et al. [5] and S-
Model proposed by Stone et al. [6] , are nonrecursive. There­
fore, the adequate number of measurement data may be deter­
mined only on a trial and error basis. 

The simplest approach to the estimation problem is to ignore 
the statistics of measurement noises, such as the least squares 
estimate [5, 7 ] . More accurate estimate can be expected, if 
probabilistic approaches are used, such as the minimum vari­
ance estimate employed by Wu and Lee [3] , and Hayati and 
Mirmirani [8] . But the noise statistics is difficult to obtain. 

In comparison with the methods reviewed above, the forward 
calibration scheme presented in this paper has the following 
advantages. Firstly, recursive formulation of robot calibration 
provides a framework to study the issues of the number of 
measurements that need to be taken as well as the effect of 

robot repeatability on estimation quality. Secondly, an adaptive 
filtering is used to deal with the unknown measurement noise 
statistics and robot repeatability characteristics in estimating 
kinematic errors. To take advantage of the special structure of 
the problem in question, an existing adaptive filtering scheme 
[9] was simplified for the calibration scheme. Thirdly, a mea­
surement system capable of continuous path measurement of 
positional errors of robot end-effector was used in experiments 
involving a three degree-of-freedom gantry robot. The system is 
based on laser interferometry. Error models are first discussed. 
Simplification of the adaptive filtering is then shown. Finally, 
representative experimental results are presented and discussed. 

2 Error Models 
Define a 6 by 1 vector p = [pxpypz <frx<j>y<f>z]

T,to describe the 
position/orientation of the end-effector in world coordinates, p 
could be given by 

PO') = g(x(j)) (1) 

where x = [ @ T d r a T A T ] r i s a 4Nby 1 kinematic parameter 
vector and N is the degree-of-freedom of the robot. @ = [6\, 
. . . , 6N]T represents joint angles, d = [dit ..., dN]T joint off­
sets, a = [a,, . . . , aNY link lengths, and A = [a,, . . . , aN]T 

link twist angles. For a revolute joint, 9 is the joint variable 
while for a prismatic joint, d is the joint variable. 

Given x, the known functional structure g predicts the end-
effector position/orientation p . Due to kinematic error Ax, 
the actual end-effector position/orientation will differ from the 
predicted one, say, by Ap 

p + Ap = g(x + Ax) (2) 
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where Ax = [A© 7 Ad 7 Aa7AAT]Tcontains the4Nkinematic 
errors generally. Ap is comprised of three translational error 
components, 6px, 6py and 6pz, and three orientational error com­
ponents, 6(j>x, 6<f>y and 6<f>z, all expressed in the world coordinate 
system. These errors are caused by the AN kinematic errors. 

The calibration is a process that uses the error between pre­
dicted and actual world coordinate measurements Ap to esti­
mate more accurate kinematic parameters x + Ax. To enable 
a recursive estimation procedure, Eq. (2) may be perturbed with 
respect to nominal value x, yielding a linear relationship h 
between errors Ap and Ax by neglecting higher order terms 
[2], 
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Ap = hAx (3) 

where h is a 6 by AN matrix, which depends on nominal kine­
matic parameters. It has been shown that the effect of the linear­
ization on accuracy is negligible as the kinematic errors in 
question are usually small [10]. 

For simplicity without causing confusion, the incremental 
signs A are dropped, yielding 

hx (4) 

A minimum variance estimate of the kinematic error x based 
on m measurements of p taken by an external measurement 
system is given by [3] 

x = (X"1 + H r R - 1 H ) - 1 H r R lZ (5) 

where R and £x are the covariance matrices of the measure­
ments noise v and kinematic error x, respectively. Both x and 
v are assumed to be Gaussian with zero mean and statistically 
independent. H and Z are equal to 

H = (hT(l),...,hT(m)V 

Z = (xT(l),...,zT(m))T 

(6) 

(7) 

and 

zO') = PO') + v(j) = hO')x + v( ; ) 

for; = 1,2, ...,m (8) 

The estimation error covariance for Eq. (5) is given by [3] 

M = E[(x - x)(x - \)T] = ( I " 1 + H r R H) ' (9) 

which relates the estimation error M to measurement noise R 
and the a priori kinematic error covariance £„. The drawback 
of the nonrecursive estimation, Eq. (5), is that it is usually 
impossible to determine a minimum set of measurement data 
that need to be taken in order to meet a pre-specified accuracy 
in estimation without trial and error. 

A recursive estimation scheme is shown below. Define a 4N 
by 1 vector w, that represents the effects of robot repeatability 
on estimation of kinematic error x, together with Eq. (8) rewrit­
ten here, the recursive error model is: 

x(j + 1) = x(j) + w( i ) 

zU) = h ( ; ) x a ) + v(7) 

(10) 

(8) 

If it is assumed that w(y) and \(j) are independent Gaussian 
with zero mean and covariance matrices, Q and R (Q > 0, R 
> 0) , that is 

£{w( / )} = 0; £ { w ( 0 w r ( i ) } = Qfi„ (11) 

E { v ( i ) } = 0 ; E{\(i)vT(j)} =R6ij (12) 

£ { w ( i ) v r U ) } = 0 ; for all i , j (13) 

and further assuming that the initial state x(0) is normally 
distributed with zero mean and covariance Sx(0), and x(0) , 
w(y') and v(j') are mutually independent, the following well 
known solutions [11] can be obtained: 

x(i + \li) = x{ili) (14) 

x(i/i) = x(i/i - 1) + K ( J ) [ Z ( 0 - hx(i7( - 1)] (15) 

where 

K(») 

= M( / / ; - l)hT(i)(h(i)M(i/i - l)hT(i) + R)" 1 (16) 

M(i/i - l ) h r ( j ) ( h ( 0 M 0 7 ( - l ) h r ( i ) + R)~ ' 

X h T ( i )M(i / i - 1) - Q = 0 (17) 

and M is the covariance matrix of the estimation error, namely 

M(i/i - 1) 

= E{[x(i) - x{ili - l ) ] [x( j ) - x(ili - \)Y\ (18) 

Therefore, the adequate number of measurements can be deter­
mined by examining the rate of convergence of the estimation 
error covariance M after each iteration. One way to do that is 
to take the sum of diagonal elements of matrices M(«) and M(i 
- 1) first and then check the difference between the sums 
against a present value C, that is 

\KMn(i) - Mjj(i - 1))| <C (19) 

where M,,s are diagonal elements of the covariance matrix M. 
Equation (19) only takes into account the variances of the 
estimation errors not the entire M matrix because the diagonal 
terms are usually more significant in comparison with the off 
diagonal terms. When Eq. (19) is satisfied, a calibration proce­
dure may be terminated. 

3 A Simplified Adaptive Filtering 
The recursive error model, represented by Eqs. (8) and (10), 

requires an exact knowledge of robot repeatability covariance 
matrix Q and measurement noise covariance matrix R, which 
are normally little known. Determination of Q and R analyti-

Nomenclature 

C 
C 
d 

H = 
K = 

M 

the link length vector 
the covariance matrix of v 
the error threshold 
the joint offset vector 
the mapping between x and p 
the linear relationship between er­
rors Ap and Ax 
augmentation of h matrices 
the number of measurement loca­
tions 
the number of repeated measure­
ments at one measurement location 
the covariance matrix of the estima­
tion error 
the total number of measurements 
taken 

N = the degree-of-freedom of the robot 
p = the position/orientation error vector 

of the end-effector in world coordi­
nates 

Q = the covariance matrix of w 
R = the covariance matrix of v 
v = the noise vector 

w = the error vector representing robot 
repeatability 

x = the kinematic parameter error vector 
z = the measurement with noise 

A = the link twist angle vector 

Ap = the end-effector position/ 
orientation deviations ex­
pressed in the world coordi­
nates (simplified as p) 

8px, Spy 

and 8pz = translational components, 
and 

6<j>x, 6<f>y 

and 6<f>z = orientational components of 
Ap, all expressed in the 
world coordinate system 

Ax = kinematic error vector (sim­
plified as x) 

v = the innovation sequence 
© = the joint angle vector 
Ex = the covariance matrix of x 
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Fig. 1 Block diagram of simplified adaptive filtering 

cally could be a difficult task. To properly model Q, one may 
have to consider machining tolerances of certain robot links, 
axis misalignment, encoder mounting, quantization noise, and 
many others. R depends on the accuracy and resolution of the 
end point sensors, machining tolerances of the calibration fix­
tures, the method by which the sensor data are processed. 

Nishimura [12] has considered the effect of errors in Q and 
R on the performance of the estimation. Several other investiga­
tors [9, 13, 14] have proposed schemes, known as adaptive 
filtering, to identify Q and R. Shown below is a simplification 
of the adaptive filtering method proposed by Mehra [9]. Since 

Fig. 2 IBM 7565 manipulator kinematic arrangement [16] 
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Fig. 3 Experiment setup 

the method is only suitable for time-invariant models, Eq. (5) 
is first converted to a time-invariant model below [15]. Let 

m = kpkr (20) 

where m is the total number of measurements taken, kp the 
number of measurement locations, and kr the number of repeated 
measurements at one measurement location. The end-effector 
measurements, z(j'), may be ordered in the following fashion 
with no loss of generality 

z*„(0 = {zT[(i - \)k„ + 1] , . . . ,zT[(i -l)kp + k„]} (21 ) 

and 

nki, = (hT(l),...,hT(k„))T (22) 

\ti, = {vJ{l),...,vT(kp))
T (23) 

then Eq. (8) becomes a time-invariant version as follows 

z t ; (0 = H ^ x ( 0 + \kp(i) (24) 

where i = 1, 2 , . . . , kr. Although all hs depend on instantaneous 
robot configurations and therefore are time variant, Hk is time 
invariant when / advances from 1 to kr, because it includes hs 
for all kp locations of measurement. It can be seen that, with 
this formulation, the value of kp has to be predetermined while 
that of kr is determined by applying the criterion shown in Eq. 
(19) after each iteration. 

The simplification was made possible because the coefficient 
matrices of x(i) and w(z') in Eq. (10) are identity matrices. 
The simplified version retains the property of asymptotically 
unbiased and consistent estimates of Q and R possessed by 

Fig. 4 Laser interferometry measurement system 
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Table 1 Summary of measurement results at end-effector displacement errors mm ( 1 / 
1000 in.) 

Mean - 0 . 0 3 9 0 ( - 1 . 5 3 3 6 ) 0 .0074(0 .2909) 0 .0183 (0 .7208 ) 

P e a k - t o - p e a k 0 .1582 (6 .2276 ) 0 .1905(7 .5000) 0 .1670 (6 .5719 ) 

S t d . Dev. 0 . 0258 (1 .0139 ) 0 .0292(1 .1478) 0 .0294 (1 .1593 ) 

91.80 

91.05 -

90.30 

Q 

oi 89,55 -

88.80 -

88.05 

91.80 

91.44 -

91.08 -

v(i) = z(i) - Hx(// / - 1) (25) 

P> 90.72 

90.36 

90.00 

300 

Data Points 

Fig. 5 
01 U2 "I 

90 - Norminal Value 
- i • 1 • 1 ' r 

100 150 200 250 300 

Data Points 

Recursive calibration results of kinematic parameters [a, a2 a3 

Y (initial values are [90° 90° 90° 90° 90° 90 ] r) 

known as the innovation sequence, is a stationary Gaussian 
white noise sequence, that is, 

C(ifc) = HMHr + R k = 

C(k) = 0 ifc*0 

where C(k) is denned as 

C(k) = E{v{i)vT{i - k) 

0 (26) 

(27) 

(28) 

It has been shown [9] that the necessary and sufficient condi­
tion for optimality of the filter is that the innovation sequence 
v(i) be white. Therefore the non whiteness of the innovation 
sequence v(i) is an indication of suboptimality where the true 
value of Q and R are unknown. It can be shown that in a 
suboptimal case the covariance of v(i) corresponds to 

C(ifc) = HMHr + R k = 0 (29) 

C(k) = H ( I - K H ) " [ M H r - KC(0)] k>0 (30) 

where 

M = (I - KH)M(I - KH)T + KRKr + Q (31) 

and M is defined by Eq. (18). Therefore, the simplified adaptive 
filtering can be summarized as follows. 

(1) Calculate C(k) by using the ergodic property of a sta­
tionary random sequence 

C(k) = (1/m) £ v(i)v(i - k)1 (32) 

the original method. Moreover, it estimates Q and R in an 
independent manner as opposed to the coupled estimation re­
quired in the original method. 

From the innovation property of an optimal filter [9] , the 
sequence 

where m is the number of sample points and k = 0, 1, 2, 
... ,4N. 

(2) If the calculated C(k)s are not equal to zero for k + 
0, that is, the filter is suboptimal, the next step will be to obtain 
better estimates of Q and R. An estimate of Q and R can be 
obtained by using Eqs. (26) and (30) as follows: 

Q = K ( M H r ) 7 ' + M H r ) K 7 

KH(MH r)K 7 - KRK7' (33) 

Table 2 Summary of calibration results of kinematic errors (degrees) 

"2 "3 

Nominal Value 

Mean of the Last 
100 Estimates 

Terminal 
Estimate 

Std. Dev. 

% Error 

90 90 90 

90.959 88.447 89.399 91.474 90.724 

0.1232 0.1389 0.0431 

1.084 -1.642 -0.637 

90 

90.976 88.522 89.427 91.464 90.744 90.495 

90.474 

0.0757 0.0446 0.0203 

1.627 0.827 0.550 
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Fig. 6 Estimation errors of consecutive iterations against threshold C 

R = C(0) - H(MHT) (34) 

The simplified adaptive filtering scheme is illustrated in Fig. 1. 

4 Experimental Results and Discussions 
The manipulator used for experiments was an IBM 7565 

industrial manipulator, which is of a six-axis gantry configura­
tion. The first three are prismatic joints, while the next three 
are revolute intersecting at the robot wrist (Fig. 2). The experi­
ments were carried out by using the three prismatic joints, which 
determine the end-effector's position. A three axis laser interfer-
ometry measurement system was built using commercially 
available optical components as building blocks. The experi­
ment set up is depicted in Fig. 3, and Fig. 4 shows the optical 
system. 

4.1 Measurement. First, the robot was programmed to 
command x, y and z axes to move simultaneously at a constant 
speed of 12.7 mm/sec (0.5 in/sec). The commanded speed was 
chosen constant to be consistent with kinematic calibration. The 
laser interferometry system measured the actual displacement 
of the end-effector and 1,000 data points were collected for 
each of x, y and z axes at a sampling interval of 6 ms (166.7 
Hz). The displacement errors, defined as the differences be­
tween the programmed values and the actual measurements, 
have the means, peak-to-peak values and standard deviations 
as summarized in Table 1. 
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Fig. 7 Estimation results of robot repeatability characteristics (diagonal elements of matrix Q) 
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Table 3 Summary of estimation results of repeatability characteristics (squared degrees) 

111 122 1. 

Mean 0.0582 0.0355 0 

Maximum 0.7552 0.5375 0 

For cerfain accurate tasks, a robot is required to position its 
end-effector or trace a prescribed path in the order of thou­
sandths of an inch accuracy. The laser system has a sufficient 
resolution to carry out measurements to that order of accuracy. 
It also has the continuous path measurement capability as op­
posed to point-to-point measurement methods. As seen from 
Table 1, Y axis exhibits the largest error in terms of peak-to-
peak value because it has the longest travel span among the 
three axes (Fig. 2) . To investigate the coupling effects between 
axes, motion combinations of various axes were programmed. 
For instance, x, y and z displacement errors were measured 
while only the x axis was commanded to move. It was found 
that there is little cross talking existing in this robot mainly 
because only three translational axes were set to motion. Subse­
quently, it seems reasonable to consider only the diagonal terms 
of the estimation error in Eq. (19). 

4.2 Calibration of Kinematic Errors. For the experi­
ments involving three prismatic joints, there are twelve kine­
matic parameters, that is, twist angles « j , a2 and a3 , link lengths 
ax, a2 and a3, joint angles 6,, 92 and 03 and joint offsets dx, d2 

and h, where d\, d2 and d3 are joint variables. The following 
assumptions were made for simplicity. The commanded joint 
variables dlt d2 and d3 are assumed to be only offset by a 
constant lag because the translational drives are relatively accu­
rate. The link lengths au a2 and a3, whose nominal values are 
equal to zero since all x, y and z axes are prismatic, are also 
assumed to have no error because their effects on the end ef­
fector's accuracy is smaller than the angular parameters. There­
fore, the kinematic error vector is reduced to x = [Aa^ Aa2 

Aa3 A#i A92 A83]
T while the nominal values of a{, a2, a3, 

6\, B2 and f?3 are equal to 90 deg. as determined by the robot 
configuration. This simplification reduces the dimension of the 
repeatability covariance matrix Q to 6 by 6. Both Q and R are 
assumed to be diagonal matrices because little cross talking was 
observed in the foregoing measurements. The initial values of 
x and Q are taken as zero, while the initial values of diag(R) 
were taken as (10.16 X 10"6 10.16 X 10~6 25.4 X 10"6) mm 
o r ( 4 x 10~ 7 4x 10~710"6) inches for each measurement. The 
kinematic errors were recursively estimated using the adaptive 
filtering and a representative result is plotted in Fig. 5. The 
result is also summarized in Table 2. Although 300 iterations 
are shown in Fig. 5, the estimates start to converge asymptoti­
cally after about 200 iterations. The number of iterations re­
quired depends on the value of the threshold C chosen in Eq. 
(19). Shown in Fig. 6 is an evolution of the number defined in 
Eq. (19) and the C value used. 

4.3 Estimation of Repeatability Matrix. During the esti­
mation, the innovation sequence, Eq. (25), was generated and 
its auto correlations were calculated using Eq. (32). Since the 
auto correlations of the innovation sequence were found not 
equal to zero for k * 0 [Eq. (27)], Eqs. (30), (32) and (33) 
were used to estimate the diagonal elements qu (i = 1 , 2 , . . . , 
6) of Q. The results are plotted in Fig. 7. As seen, most qits 
appear to approach a constant level after about 225 iterations, 
but this is not evident with qu and q22. This is due to the 
fact that robot repeatability is location-dependent. However, the 
estimation of Q provides a certain quantitative information on 

13 144 155 166 

0088 0.0118 0 .0031 0.0010 

1239 0.1608 0.0346 0.0520 

robot repeatability characteristics, which is summarized in Ta­
ble 3. 

5 Concluding Remarks 
The recursive estimation allows one to determine an adequate 

number of measurements for achieving a prespecified calibra­
tion accuracy. The recursive formation in conjunction with the 
adaptive filtering identified 0.5 percent to 1.5 percent errors in 
kinematic parameters of a given robot. The adaptive filtering 
also provided quantitative information about robot repeatability 
characteristics. 

Although robot accuracy is limited by robot repeatability, 
recursive determination of robot repeatability during the course 
of calibration offers better estimates of kinematic errors than 
other cases where repeatability characteristics are ignored or 
assumed. 

The laser interferometry measurement system is precise and 
suitable for continuous path measurement. Although the system 
was built for a gantry robot experiment, using a microprocessor-
controlled laser tracking system will extend the scheme to a 
wider range of applications. 
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