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Abstract 
   Previous work has reported numerical and experimental results pertaining micro-scale laser 
shock processing, which imparts compressive residual stresses in metallic targets with higher 
spatial resolution.  In this paper, the more detailed physical process of laser-liquid-solid 
interaction is considered to achieve more accurate simulation results of shock pressure and to 
provide values for coefficients which otherwise need to be arbitrarily chosen.  The expansion of 
plasma is modeled as one-dimensional laser supported combustion wave.  The 1D results are 
then modified to consider radial and axial expansion effects.  The influence of pulse duration and 
beam size is also considered.  Three-dimensional simulation of shock pressure-solid interaction 
is carried out as opposed to axisymmetric simulation reported previously.  Finite extent of target 
geometry is also considered as opposed to the semi-infinite geometry assumed previously.  The 
model and simulation improvement is experimentally validated.  

 
1. Introduction 

   The expanding applications of micro devices make the mechanical properties of such 
devices an increasing concern.  Processes that can improve the mechanical properties at micro 
scale are required.  Laser Shock Processing (LSP) has been used to improve the hardness, fatigue 
life and residual stress distributions of metals at mm scale (Claurer, et al., 1981; Peyre et al., 
1995; Berthe, et al., 1998).  Laser shock processing of aluminum and copper at micro-scale has 
been studied in previous papers (Zhang and Yao, 2000a & b).  This paper continues the study of 
micro-scale LSP, reporting improvements in modeling, simulation and experimental validation. 
   Efforts have been made in shock pressure modeling by Claurer et al. (1981), Fabbro et al. 
(1990) and Zhang and Yao (2000a & b).  Previous models assume that a certain amount of 
plasma exists instantaneously once laser is on.  A constant fraction of plasma internal energy is 
assumed to increase the pressure of the plasma.  The value of this constant, α, has to be decided 
indirectly from back velocity measurement or arbitrarily chosen, and it varies from 0.1 to 0.4 in 
literature.  The reason is that in previous models there is no consideration of mass exchanges 
between plasma and water or plasma and the ablated coating layer over the target metal, only 
energy and momentum conservation are considered.  In reality, there are mass exchanges from 
water and coating layer into plasma.  A model considering these physical processes has the 
potential to represent the process dynamics more realistically, which, along with the spatial 
distribution of the shock pressure, is important for the micro-scale LSP.  
   The dynamic deformation process of the target under the action of shock load had been 
simulated using finite element method (FEM), but only 1D flat plate case (Claurer, et al., 1981; 
Peyre et al., 1995; Berthe, et al., 1998) and 2D axisymmetric round disc case (Zhang and Yao, 
2000a & b) were studied.  In both cases, semi-infinite boundary conditions were implicitly 
assumed.  Effects of finite size and complex geometry are important in practice, especially for 
LSP of small components and LSP near the edges of the components.  In this paper, the 
expansion of plasma is modeled as 1D laser supported combustion wave.  The 1D results are 

Larry Yao
Typewritten Text
ICALEO 2001 Congress Proceedings

Larry Yao
Typewritten Text



 

then modified to consider spatial expansion effects.  Copper and nickel samples were processed 
using micro-scale LSP.  The improvement of the new model is validated by comparing the 
predicted and measured deformation of the shocked samples.   

 
2. Modeling of Laser Induced Shock Waves 

   When a high intensity laser beam is irradiated on a solid surface, the solid target vaporizes 
into plasma due to direct laser irradiation and plasma thermal coupling.  Shock waves are 
induced as a result of the fast expansion of the plasma.  If laser energy is not high enough or if 
the confining medium (air or water, etc.) is too dense as in the case of LSP (water confinement), 
the speed of plasma expansion is lower than the shock speed, thus shock wave proceeds plasma 
expansion.  This is the case of laser supported combustion (LSC) wave (Root, 1989).  Detailed 
modeling of laser shock processing should be based on physical laws of LSC wave.  LSC wave 
in air and vacuum has been studied (Pirri et al., 1978) assuming that all laser energy is absorbed 
by the plasma, but modeling work of LSC wave in LSP configuration was not found.  This paper 
extends the LSC model to water confined laser shock processing, and the laser energy is assumed 
to be partially absorbed by the plasma, which is more practical. 

 
                                          (a)                       (b) 

Figure 1 (a) Experimental setup of laser shock processing (LSP); and (b) Five regions in water 
confined LSP modeling. 

 
   Water is transparent to the laser beam if laser intensity is below the breakdown level at the 
wavelength used.  Water converts into plasma due to plasma and laser induced water breakdown 
(Vogel, et al., 1996).  For UV lasers at λ = 355nm, the breakdown level is around 4 GW/cm2 
(Berthe, et al., 1998).  In LSP using water as confining medium (Fig. 1 (a)), laser irradiation 
vaporizes the coating layer of the solid target, and the vaporized material quickly evolves into 
plasma.  Water near the plasma outer edge is quickly ionized and becomes strongly absorbent to 
incident laser irradiation.  Thus water is changed into plasma due to plasma irradiation and direct 
laser irradiation.  The pressure of the plasma increases quickly and the expansion of the plasma 
imparts shock pressure into water and target.  Mass, momentum and energy are conserved across 
the shock wave.  To model this process, the following assumptions are made:  
   (1) The early stage of plasma expansion is one-dimensional, i.e., plasma expands only in the 
axial direction.  Density, internal energy and pressure of the plasma are uniform within the 
plasma volume but can vary with time.  Particle velocity of the plasma changes linearly from the 
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water-plasma interface to the plasma-solid interface;  (2) Plasma obeys ideal gas laws and 
absorbs a constant fraction of laser irradiation energy;  (3) Only the coating layer is vaporized, 
the metal target experiences negligible thermal effects.  The melting layer, Knudsen layer and the 
transition region from vapor to plasma of the coating layer are so thin that the thickness is 
negligible compared with the thickness of plasma.  Their influence can be represented by the 
phase change energy in the energy conservation relation;  (4) The coating layer is thin and well 
coupled with the metal target, thus the shock pressure and the particle velocity of the coating 
layer and the metal target are equal. 
   Let subscripts w denote water, m metal, c the coating layer, p plasma, L the side of plasma 
near water, R the side of plasma near solid, and 0 the property of unshocked region.  Also let D 
be shock velocity, U particle velocity, E internal energy, ρ density, P pressure.  For convenience, 
the water-plasma-target system is divided into five regions (Fig. 1(b)): unshocked water (ρw0, 
Pw0, Ew0, Uw0, Dw0), shocked water (ρw, Pw, Ew, Uw, Dw), plasma (ρp, Pp, Ep, UpL, UpR), coating 
layer and shocked solid (ρc, Pc, Uc, ρm, Pm, Em, Um, Dm), and unshocked solid (ρm0, Pm0, Em0, Um0, 
Dm0).  The unshocked properties are known.  All the unknowns are functions of time.  
   The shocked and unshocked properties of water are related by mass, momentum, and 
energy conservation, and shock speed constitutive relations: 
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   For water, Uw0 = 0 m/s, Pw0 = 105 Pa, Ew0 = 0 J/kg, ρw0=997.9 kg/m3, Dw0=2393 m/s, and 
Sw=1.333 (Assay and Shahinpoor, 1992).  Sw is the coefficient relating particle velocity and 
shock velocity of water, while Dw0 is the shock speed at infinitesimal particle speed. 
       Replacing subscript w with m in Eq. 1-4, one gets the relations between shocked and 
unshocked properties of metals (Eq. 5-8).  Um0 = 0 m/s, Pm0 = 105 Pa, Em0 = 0 J/kg.  For copper, 
ρm0=8939 kg/m3, Dm0=3933 m/s, and Sm=1.489.  For nickel, ρm0=8874 kg/m3, Dm0=4581 m/s, and 
Sm=1.463 (Meyers and Murr, 1981).   
   The above 8 equations can be solved after considering water and coating layer interactions 
with plasma.  Mass and momentum conservations at the interfaces at any instant require: 
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The mass flow from water is )( wpLww UUMF −= ρ .  The mass flow from the coating layer is 

VrecUUMF ccpRcc ρρ =−= )( , where Vrec is the recess velocity of the melting coating surface 
relative to the coating layer itself.  In this paper, the coating layer is aluminum foil, ρc = 2700 
Kg/m3.  According to assumption 4, Um = Uc and Pm = Pc.  The current mass of plasma is equal 
to the integration of the mass flows into plasma: 
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   The energy conservation of plasma should consider the absorption of incident laser 
irradiation, the total energy stored in the plasma (Ept), the work done by the plasma, and the 
energy exchanges through mass flows.  Ept consists of kinetic energy and internal energy.  Based 
on the assumption of linear distribution of particle velocity, the unit mass kinetic energy of 
plasma is 6/)( 22

pRpLpRpLpk UUUUE −+= .  Using the ideal gas law, the internal energy of plasma 
is related to its density, specific heat ratio γ (about 1.3), and pressure: 
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where Qw and Qc are the phase change energy of water and coating layer, respectively.  The 
internal energy is incorporated into the phase change item. 
   Let AP be the fraction of laser energy absorbed by plasma, which may be experimentally 
determined but is taken as a constant in this paper for simplicity, I(t) be the laser intensity, then 
the energy conservation of plasma requires: 
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   Now the equations of this 1D model are closed and all the variables involved can be solved 
as a function of time.  Once plasma is created, radial expansion of plasma commences.  A 
rarefaction wave propagates into the plasma from the edge at the sound speed of the plasma.  
After a characteristic time Tr = R0 / a, where R0 is the radius of the laser beam and ais the sound 
speed of the plasma, the rarefaction wave coalesces at the center of the spot, and the pressure of 
the plasma drops and deviates from the 1D values.  Axial relaxation starts after the laser pulse 
terminates, thus the characteristic time for axial expansion is Tz = Tp, where Tp is pulse duration.  
The temporal evolution of the plasma depends on the value of the Tr and Tz.  Based on the work 
of Pirri (1978), Simons (1984), and Root (1989), the following power scaling laws are used in 
this paper.   
  Case 1: Tr < Tz, radial relaxation happens earlier than axial relaxation 
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  Case 2: Tr > Tz, axial relaxation happens earlier than radial relaxation  
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where P1D is the plasma pressure from 1D model described above.  For the laser used in current 
research, R0 = 6 microns, Tz = Tp = 50 ns, and sound speed of plasma a = 300 m/s, Tr = 20 ns, 
thus radial relaxation occurs earlier than axial relaxation (Case 1). 
   For laser shock processing in micro scale, the spatial profile of the laser beam should also 
be considered.  Following the work of Zhang and Yao (2000a), shock pressure obeys Gaussian 
spatial distribution, but with its 1/e2 radius equals to )(2 tR , where R(t) is the radius of plasma 
in Eq. 16.  Let r be the radial distance from the center of the laser beam, the spatially uniform 
shock pressure P(t) relates to the spatially non-uniform shock pressure as 
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where r is the radial distance from the center of the laser beam. 
 

3. Experimental and Simulation Conditions 
   Micro-scale LSP can be applied to a wide variety of metals.  Copper and nickel are chosen 
in this study because the mechanical properties of nickel and copper differ, and they are often 
etched and deposited on silicon substrates as part of micro devices.  Nickel is also used as a 
metallic MEMS material.  The Young's modulus of copper and nickel are 120 and 220 GPa, 
respectively.  The ultimate strengths of annealed copper and nickel are 215 and 400 MPa, 
respectively.  The LSP model can be better validated when the LSP effects of copper and nickel 
are compared.   
   Copper foils of 90-micron thickness and nickel foils of 120-micron thickness were used in 
LSP experiments. The samples were adhesively attached to bulk copper columns for rigid 
support and easy handling.  The samples were polished and the sample size was about 8 mm 
square.  To apply the coating, a thin layer of high vacuum grease (about 10 microns) was spread 
evenly on the polished sample surface, and the coating material, aluminum foil of 25 microns 
thick, which was chosen for its relatively low threshold of vaporization, is then tightly pressed 
onto the grease.  The sample was placed in a shallow container filled with distilled water around 
3 mm above the sample.  A frequency tripled Q-switched Nd:YAG laser in TEM00 mode was 
used, the pulse duration was 50 ns, and pulse repetition rate could vary between 1 KHz to 20 
KHz.  Laser beam diameter is 12 microns.  After shock processing, the coating layer and the 
vacuum grease were manually removed.  Pulse number at each location was varied from 1 to 6 at 
1 KHz repetition rate, and pulse energy was varied from 160 µJ to 240 µJ corresponding to laser 
intensity of 2.83 to 4.24 GW/cm2.  LSP at individual locations (similar to drilling) and 
overlapped locations (similar to grooving) was carried out.  The geometry of the shocked region 
was observed and measured using optical microscope, SEM, and optical profiler.   
   The space- and time-dependent shock pressure was solved numerically based on the 
equations described in Section 2, and used as the loading for the subsequent stress/strain 
analysis.  As seen, these equations are coupled, non-linear, and include several integrals.  They 
were numerically solved using Matlab Simulink toolbox.  The same constitutive relations as in 
(Zhang and Yao, 2000a) are used in the stress/strain analysis, in which work hardening, strain 
rate and pressure effects on yield strength are considered assuming room temperature.  This is 
reasonable because only the coating is vaporized and minimal thermal effects are felt by the 
sample.  A commercial FEM code, ABAQUS, is used for the stress/strain analysis as a dynamic 
implicit nonlinear process.  First, axisymmetric modeling was carried out to compare the effects 
of the current shock pressure model with the previous model on deformation (Zhang and Yao, 



 

2000a) assuming semi-infinity in geometry.  Single and multiple pulses at individual locations 
were simulated.  Secondly, 3D simulation was carried out assuming finite geometry (100 
microns in thickness, 1 mm in width, and 2 mm in length).  Pulses at overlapped locations with 
50 micron spacing were simulated.  Shocks are applied on the top surface along a narrow strip in 
the width direction.  The bottom surface is fixed in position, while all the other side surfaces are 
set traction free.   
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(a)                                                                                     (b) 

Figure 2 Dent geometry comparisons between current model and previous model (Zhang and 
Yao, 2000a),  (a) copper, and (b) nickel.  E = 220 µJ, I = 3.89 GW/cm2, AP = 0.5, α = 0.2. 
 

 4. Deformation Geometry and Validation of Current LSP Model  
  Micro scale LSP can induce plastic deformation on metal target as evidenced by dented 

geometry on the target surface (Zhang and Yao, 2000a).  SEM observations have shown that the 
dent was due to shock pressure and not due to thermal effects.  To quantitatively characterize the 
deformation, an interferometry based optical profilometer with a vertical resolution of 3 nm was 
used to profile deformed regions.  Fig. 3(a) and (b) show the variation of dent depth and slope 
angle with the increase of pulse number at E = 220 µJ (3.89 GW/cm2) for copper and nickel 
samples, respectively.  The slope angle is defined as the angle between the surface normal and 
the average tangential line of the dent slope.  Each experimental data point is the average of more 
than three dents and the error bar represents standard deviation.  Simulation results of current and 
previous shock pressure model (Zhang and Yao, 2000a) are also superposed.  The stress/strain 
analysis of the simulation is the same as reported in Zhang and Yao (2000a). 
   The current model agrees well with the experimental results while the previous model 
overestimates the dent depth especially at the larger number of pulses.  This is primarily due to 
the fact that the previous model overestimated the shock pressure duration by neglecting the 
radial and axial expansions of the plasma (Fig. 5 (b)).  When the number of pulses increases, the 
effect of such overestimation accumulates.  This explains why the discrepancy gets larger with 
the number of pulses.  The discrepancy in the slope angle can be similarly explained.  
Simulations and experiments under a wide range of other conditions showed similar trends.  In 
summary, the current model gives better predictions of the deformation geometry than the 
previous model for two materials that have different mechanical properties. 
 

5. Transient Phenomena of Water-Plasma-Coating Interaction  
   With the validation of the model in Section 3, more numerical results are extracted from the 
solution to the shock pressure model to help understand a number of transient phenomena.  Fig. 
3(a) compares the expansion speed of plasma (UpL, UpR) with the particle velocities of water and 



 

copper (Usw, Usm), in response to plasma absorbed laser intensity Ip=4 GW/cm2.  Please note the 
laser intensity profile normalized to the peak intensity is shown in Fig. 3(c).  It is seen from Fig. 
3(a) that the particle velocity of water is more than 10 times that of the target metal.  The 
significant difference in Usw and Usm (the same as the coating material particle velocity Uc) can 
be explained by examining Fig. 3(b), which shows the shock pressure increase of water 
(confining medium), aluminum (coating layer), copper and nickel (target material), with the 
increase of particle velocity based on the Hugniot relations (Eqs. 1 to 4).  It is clear from Fig. 
3(b) that the particle velocity of water should be much larger than the particle velocity of the 
coating material.  Please note the results (Fig. 3(b)) reflect the material properties and are 
independent of external effects. 
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Fig. 3 (a) Comparison of expansion speed of plasma and particle velocity of copper and water; 
 (b) Hugniot curves of nickel, copper, aluminum and water; (c) Mass flow from water to plasma; 

and (d) Mass flow from coating layer to plasma 
 
   From Fig. 3(a) it is also observed that Upl>Usw and UpR>Usm, and the differences decay to 
zero as time lapses.  The difference between plasma expansion speed and water/target particle 
velocity indicates that mass flow exists from water and coating layer to plasma.  Mass flow 
evolutions at four representative laser intensities are shown in Fig. 3(c) and (d) for water and the 
coating layer, respectively.  Normalized laser intensity profile is superposed in Fig. 3(c) to 
illustrate that even after the laser pulse is off, there is still mass flow from water into plasma and 
the mass flow peaks after laser intensity peaks.  The reason is that mass flow from water into 
plasma is caused by water breakdown, which is due to the combined effects of laser and plasma 
irradiation.  Even after the laser pulse is off, the plasma irradiation sustains the mass flow for a 



 

period of time until the plasma cools down.  As laser intensity increases, plasma accumulates 
more energy to irradiate.  This is why it takes longer for the mass flow to peak when laser 
intensity increases.   
   The mass flow from the coating layer into plasma shows similar patterns and is about one 
order of magnitude lower than the mass flow from water to plasma.  It�s interesting to note that 
mass flow from the coating layer shows a plateau after the mass flow peaks, while the mass flow 
of water has a much smoother transition to zero values.  The plateau is due to the different 
energy absorption of metal and water to laser and plasma irradiation.  The plasma irradiation is 
primarily in the extreme ultraviolet (Root, et al., 1979).  At such short wavelengths (<200nm), 
multi-photon ionization mechanism of water breakdown is dominant.  As laser intensity weakens 
after t = 30 ns (Fig. 3(c)), the deep UV irradiation weakens, thus mass flow from water has a 
smooth transition with the same trend as the laser intensity.  However, the total irradiation 
energy to the coating layer doesn�t change much because plasma has accumulated enough energy 
and decays much slower than the laser intensity.  And metals at high temperatures absorb 
strongly almost all the irradiation energy.  This caused the plateau in Fig. 3(d).   
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Fig. 4 (a) Shock pressure comparison between current model and previous model; and (b) 

Considerations of radial and axial expansion effects 
 
   Fig. 4(a) compares the 1D shock pressure determined using the current model and previous 
model (Zhang and Yao, 2000a).  The previous model assumed that a constant fraction α = 0.2 of 
plasma energy is used to increase the shock pressure during the expansion of the plasma.  In the 
current model such conversion is inherently considered in the energy balance relations.  As seen, 
the previous model determined a higher peak pressure at laser intensity of 2 GW/cm2, a 
comparable value at 4 GW/cm2, and a lower value at 6 GW/cm2 than the current model.  This is 
indicative of the shortcoming of using a constant value of α for different laser intensities in the 
previous model.  As the energy level increases, the plasma tends to expand faster but experiences 
a higher level of resistance by water.  As a result, the plasma spends a larger fraction of its 
internal energy on pressure increases and thus a larger value of α should have been used to 
account for this effect.  The pressures recover to zero values faster in the current model than in 
the previous model.  The reason is that in the current model, plasma energy is used for the 
breakdown of water and target material besides the expansion of plasma, while in the previous 
model only the 1D expansion of plasma was considered.   
   For laser beam size of micron scale, the radial and axial expansion effects on plasma must 
be accounted for.  Eq. 16 was used to calculate the final shock load used in stress analysis.  The 



 

temporal evolution of shock pressure and the radius of plasma at laser intensity of 4 GW/cm2 are 
shown in Fig. 4(b).  The radius of plasma is constant until the rarefaction wave merges at the 
center of the laser beam at about 20 ns.  After that, a non-linear increase of plasma radius occurs.  
The shock pressure decreases after the rarefaction wave merges at the beam center according to 
power laws shown in Eq. 16.  Obviously the shock pressure considering plasma expansion is 
more realistic and more suited for micro-scale LSP. 
 

6. Three-dimensional Stress/Strain Analysis with Finite Geometry 
  Axisymmetric stress/strain analysis was conducted for micro-scale LSP at individual 

locations (Zhang and Yao, 2000a & b), in which semi-infinite geometry was also assumed.  Such 
analysis results are used in Fig. 2 of this paper to compare with experimental measurements.  For 
LSP overlapped locations, 3D stress/strain analysis is necessary.  In addition, for complex 
geometry and for small-scale specimen, the semi-infinite geometry assumption needs to be 
removed.   

        
(a)       (b) 

Figure 5 Residual stress distribution of laser shock processed copper plate.  (a) S11, and (b) S22.  
A series of successive shocks (with spacing of 50 microns) is applied along the centerline 

(shown in dotted line) of the 1mm by 2mm by 0.1 mm copper plate.  Only half of the plate is 
shown due to symmetry.  2 pulses at each location with pulse energy 220 µJ. 

 
  Fig. 5 (a) and (b) illustrate typical residual stress distributions of S11 (along laser scanning 

direction) and S22 (vertical to laser scanning direction), respectively.  Two observations can be 
made.  First, the stress state at the edge areas is more complex than that in the interior area.  This 
is obviously due to the effect of finite geometry.  Typically less resistance to deformation is 
experienced at the edge areas.  The residual stress state at the edge areas has significant influence 
on crack initiation and propagation. Secondly, S22 is more uniformly distributed than S11.  Fig. 
5 (b) shows that LSP induced an area of surface compressive residual stresses perpendicular to 
the scanning direction, and the area extends 300 microns from the centerline.  The maximum 
compressive stress is close to �90 MPa.  If the specimen experiences a periodic load along the 
S22 direction, the surface compressive residual stress will help improve its fatigue life.   

  Edge and finite size effects are important for practical applications because cracks usually 
initiate from the edge.  Detrimental edge effects should be avoided and 3D simulation offers very 
valuable guidance for this purpose.   

 
7.Conclusions  

   A new model of shock pressure considering mass, energy and momentum conservation is 
formulated, in which plasma is modeled as laser supported combustion wave and its spatial 
expansion effects are accounted for.  The solution to the model enables better prediction of LSP 



 

induced deformation and at the same time provides valuable information on process transiency.  
3D stress/strain analysis is carried out and the finite size and specific geometry effects in 
practical LSP are explained.   
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