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ABSTRACT 
This paper studies the workspace of a six-DC)F 

parallel manipulator of three-PPSR (prismatic-prismatic­
spheric-revolute) type. It is well recognized that the most 
significant drawback of parallel manipulators is their 
limited workspace. To develop new parallel mechanisms 
with a larger workspace is of interest to additional 
applications. The mechanism of the three-PPSR 
manipulator and its variations are briefly analyzed first. 
The workspace is then determined and the effects of joint 
limit and limb interference constraints on the workspace 
shape and size are studied. The constituent regions of the 
workspace corresponding to different classes of 
manipulator poses are discussed. It is shown that the 
workspace of this parallel manipulator is larger than that 
of a comparable Stewart platform especially in the vertical 
direction. 

INTRODUCTION 
In the recent decade, many researchers have shown 

interest in parallel manipulators. Compared with the more 
commouly used serial manipulators, the parallel ones have 
attractive advantages in accuracy, rigidity, capacity and 
load-to-weight ratio. A parallel manipulator consists of a 
moving platform, a base platform and several branches 
connecting both platforms through appropriate kinematic 
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joints with appropriate actuators. The most well-known 
parallel manipulator is the Stewart platform (Stewart, 
1965), which has been widely studied. In a Stewart 
platform, six bars connecting moving and base platforms 
are extensible to control the position and orientation of 
the moving platform. 

Many different six-DOFparallel manipulators have 
been proposed. More recently, a novel parallel 
manipulator is introduced and studied (Tsai and 
Talnnasebi, 1993; Talnnasebi and Tsai, 1994a, 1994b). 
This mechanism consists of an upper and a lower 
platforms and three inextensible limbs. The lower end of 
each limb connects through a ball-and-socket joint to an 
actuator. The actuator is of a linear stepper type but 
capable of moving in both x and y directions 
simultaneously on the base platform. The upper end of 
each limb is connected to the moving platform by a 
revolute joint. The manipulator is therefore a three-PPSR 
mechanism, where P denotes the prismatic pair, S the 
spherical pair, and R the revolute pair. The output 
motion of the planar linear stepping motors is similar to 
that of two cross prismatic pairs on the base platform. 
The desired motion of the upper platform is obtained by 
moving the actuators, to which the lower ends of the three 
limbs are attached, on the base platform. Besides the 
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merits of the general parallel mechanisms over their serial 
connteq>arts mentioned before, this three-PPSR 
mechanism has added advantages, including simpler 
structure, and higher stiffness. It is also less likely for its 
limbs to interfere with each other, since it has only three 
inextensible instead of six extensible limbs as in a 
Stewart platform. 

Talunasebi and T sai perceived this mechanism as 
being used as a minimanipnlator, which can be mounted 
between the wrist and the end-effector of a serial 
manipnlator for error compensation as well as delicate 
position and force control. Therefore, the required 
workspace is rather small such that the motion of each 
actuator is limited within a small circnlar area on the base 
platform when its workspace is considered (Talunasebi and 
Tsai, 1994b). The actuators carrying the limbs, however, 
do not have to be so restricted, they can move over the 
entire base platform, resulting a much larger workspace. 
As a result, this three-PPSR mechanism can be used as a 
stand-alone manipulator. In addition, its special assembly 
of kinematic pairs makes it possible to have a much 
different and much larger workspace than that of a 
comparable Stewart platform. The stndy of workspace of 
a manipulator is one of the fundamental problems in the 
design of robot arms. As many researchers have pointed 
out, the major drawback of parallel mechanisms is their 
limited workspace. This three-PPSR parallel mechanism 
can help overcome the limitations of traditional parallel 
manipulators and extend the applications of parallel 
mechanisms. This paper analyzes the size, shape, 
comJX>sition, and constraints of the workspace of the 
three-PPSR parallel manipulator. 

The workspace of parallel manipulators has attracted 
the attention of many researchers over the past decade. 
Much reported work on parallel mechanism workspace 
dealt with two-DOF or three-DOF planar and spherical 
manipulators. Asada and Ro (1985) analyzed the 
workspace of a closed-loop planar two-DOF five-bar 
parallel mechanism. Gosselin and Angeles (1989) stndied 
the workspace of planar and spherical three-DOF 
mechanisms. Lee and Shah (1988) demonstrated the 
workspace of a spatial three-DOF in-parallel manipulator. 

Much less work has been reported for the workspace 
of six-DOT' parallel manipulators. Yang and Lee (1984), 
and Fichter (1986) described the workspace of the six-DOF 
parallel manipnlators, through a method based on 
discretization of the Cartesian space. Gosselin (1990) 
used geometric properties to introduce an algorithm for 
determining the workspace of the six-DOF Stewart 
platform. His result showed that the workspace was the 
intersection of six annular regions. Masory and Wang 
(1992) more systematically studied the workspace of the 
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six-DOF Stewart platform. Their report discussed several 
constraint conditions for calculating its workspace, 
including the region of rotational angle of kinematic pairs 
and the interference between any two limbs of the 
mechanism. In addition, they analyzed the shape of the 
workspace and the relationship between the workspace and 
the geometric parameters of the mechanism. Talunasebi 
and Tsai (1994b) stndied the workspace of this new three­
PPSR parallel manipulator, where motion of each of the 
three actuators attached to the lower end of each limb is 
limited to a small circular area. This paper is focused on 
analyzing the workspace of the three-PPSR parallel 
manipulator. In the analysis, limb interference and joint 
limitations are considered, and the restrictions on the limb 
lower end movement is relaxed. Instead of allowing each 
actuator only to move within a small circle, all three 
actuators are allowed to move within a much large, 
common circle of diameter d (Fig. 1). The composition 
of the workspace is also stndied by identifying constitnent 
regions according to different classes of manipulator 
poses. 

WORKSPACE ANALYSIS 
A fixed reference frame 0 X YZ is attached to the base 

platform as shown in Fig. 1. The origin 0 is located at 
the centroid of the large circle with diameter d The X and 
Y axes lie on the same base platform and the Z axis is 
upward perpendicular to the base. The moving reference 
frame Guvw is attached to the moving platform. The 
point G is located at the centroid of the equilateral 
triangle. The u axis is parallel with P ;)"3 , and v axis 
passes through point P1• Thew axis is perpendicular to 
the moving plane. 

To determine the workspace of a mechanism, its 
direct kinematics is normal! y needed. Inverse kinematics, 
however, has always been applied for this pmpose when 
parallel mechanisms are concerned, although the inverse 
kinematics requires the use of a numerical solution. 
Given a pose (position and orientation) of the 
manipulator, the reference point of the upper platform 
determines an allowable point within the workspace, if the 
inverse kinematics of the given pose exists under all the 
kinematic constraints. By giving a series of poses and 
obtaining a series of allowable points of the upper 
platform, the workspace forms as the assembly of all the 
allowable points. 

Inverse Kinematics 
The coordinates of point P, in the moving platform 

can be calculated via coordinate transformation when the 
pose of the upper platform is known. The orientation of 
the moving platform is given by Euler's angles yaw(&.), 
pitch(&,), and roll (Ow). The coordinates of center point G 
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with respect to the fixed frame are X
8

, Y, and z,. The 
coordinate transformation matrix is YPR(8,,8,,8.) = 

[

c8,c8. s8.,s8,c8. - c8,s8. c8,s8,c8. + sB,sB. x,l 

c8,s8. s8.,s8,s8. + c8,c8. c8,s8,s8. -s8,c8. y, 

-sew s8vsew ceucev z, 

0 0 0 1 

(1) 
where s8 = sinS andeS = cos8. 

The coordinates of points P1, P2, and P3 with respect 
to frame Guvw are 
P\ = (0, m, O)' 
P',= (-112, -0/2)tan30°, O)T (2) 
P' 3 = 0/2, -0/2)tan30°, O)' 
where m = 0/2)cos30°. The coordinates of point P, with 
respect to the fixed frame are 

P, = YPR(Bu, 8,, B.) ({) i = 1, 2, 3 (3) 

From the geometry of the martipulator shown in Fig. 
1, two simultaneous equations can be obtained. The first 
equation is 
(X, .• - x,.J' + (Y, .• - Y •. J' + (z,,, - k)' = r' (4) 

whereconstantk is the Z coordinate ofpointR,. The 
subscripts p,i and r,i denote points P, and R,, respectively. 
This is the equation for a circle on the base. The second 
equation follows from the perpendicularity of vector R,P, 
and vector P i+Jp i+2 • Since the joint at point Pi is 
revolute, point R, is the intersection of the circle of Eq. 
(6) with the plane that contains vecto~ R,P, and is normal 
to vector P ,+ 1P i+ 2 . That is, 
Pi+lpi+2 ;:;;;(n,.,ny,nz) 

= {xp,i+2 -xp,i+t•Yv;+z -yf;i+l'zl\i+2- zp,i+t} 
(5) 

The equation of the plane is given as 
n,(x,_, -x,,,)+n,(y,_,- y,_,)+n,(z,, -k)= 0 

(6) 
Eqs. (4) and (6) are solved for x,, and v,,, 

2 3 2 • f . 
Xr.i = [-kn:Ilz + n,.XI\; + llxllyXp,i + nxnzzp,i 

+n n (-Jrnz - kznz- kznz + nzrz + 
xy X y Z X 

Because Eq. (4) is a second-order polynomial, the x,,, 
and Yr,i could have two values. These two values are valid 
as long as they satisfy the joint limit and interference 
conditions, and are within the allowable footprint space. 
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Kinematic Constraints 
In determining the workspace of a three-PPSR 

martipulator, three types of kinematic constraints are 
considered. They are the diameter of the footprint circle, 
joint angle limits, and link interference. 

Footprint Circle. The positions of the lower ends of all 

three limbs need to be inside the footprint circle (Fig. 1), 
that is 
IR1 I ,; d/2 (8) 
where dis the diameter of the footprint circle and R, 
denotes the radius vector of point R, with respect to the 
origin 0. 

Joint Angle Constraints. The links are attached to the 
upper and lower plates by kinematic pairs which have 
physical limits. For instance, a ball joint is theoretically 
free to rotate 360° about each of the three orthogonal axes. 
In practice, however, its motion is restricted by the joint 
physical construction within a relatively small range. 
Thus, there is a need to impose the maximum rotational 
angle e_ for each joint. The rotational angle and its 
limitation can be expressed as 
e, = cos1((v,•u,) /lv,l),; ei.=x (9) 
where v; is the vector of link li, and u; is a vector 
representing the line which bisects the rotational range of 
each kinematic pair with respect to the fixed frame. 

link Interference. Since links have physical dimensions, 
interference might occur. Assume that each link is 
cylindrical with a diameter d1, and D the shortest distance 
between two adjacent links li and li+I• the interference 
limitation can be expressed by 
<\ ,; D (10) 

The shortest distance between the center lines of two 
links is the length Dn of their common normal n,. That 
IS 

D.= In, • P1P1• 11 (13) 
where the unit vector n, of the common normal direction 
between two adjacent links 11 andl1• 1 can be obtained as 
n, = (v, x v,.1) /lv, x v,.11 (12) 

Note that, the shortest distance between links is not 
always eqnal to the length Dn of the common normal. It 
could be larger than Dn. The shortest distance is the 
distance from point Pi to the link li+I• if the intersection 
point C, of the link 11 and the common normal of the two 
links is situated beyond the link I, itself, or the 
intersection point M, of the link 1, and the perpendicular 
line from point P,.1 to link Z. is situated beyond link 11 

itself. The shortest distance is directly the distance 
between the two end points P, and P,.1 , if the two 
intersection points, M; and Mi+I• are both beyond links l; 

andli+I· 
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Three lines, including two adjacent links and their 
common normal, define two planes. The normals of these 
two planes are 

ll1 XV; 

D; X V;+t 

jn, x v,,,j 
The equations of the two planes are 

(13) 

a, (x- x,,,) + b, (y- Y,,,) + c,(z- z,,,) = 0 (14) 

a, ... 1(x- ~.i+t} + b, ... 1(Y- y~, ... 1) + c, ... , {z- zp,i+t) = 0 

(15) 
A line in 3D space can be represented as 

x-x. y-y. z-z. 
--I!.J. = .::............ = -------B.!.. 

v,., vy,; v.,, 
(16) 

The equations of two center lines of two adjacent legs 
can be resolved from 

v,,,(x-x,,)-v,,(y-y,,,)=O (17) 

v '·' (y- y ,,,)- v,,, (z- z,.,) = 0 (18) 

v ,,,,(x- x,,,,,)- v ,,,,,(y- Y,,,,,) = 0 (19) 

v ,,,(y- Y,,,,,)- v,,,,,(z- z,,,,) = 0 (ZO) 

where Eqs. 17 and 18 represent the center line oflink l,, 
andEqs. 19 and Z1 the centerline of link 11, 1• 

The intersection point C, between line l, and the 
common normal is obtained by solving Eqs. 15, 17 and 
18 simultaneously, 
X;n!e""'!"',i = [a,vlt,i+txp,i + b,(vy,i+txp,i+t + Vx,i+tYp,; 

-vx.i+tYp,i+t)+c,(vz,lXJ\;+t +v,., ... ,zR,­

vx,i+lzp,i+l )] /[a,v x,i+l + b,v y,i+l + c,v z.J 
Y,nte=t:t,i = [a,(vy.i+txp,; -vy,i+t~,, ... t + vx,i+tYp,i+t) 

+h, vy,i+tY p,; + c, (v .,,y p,i+t + v y,i+tzp,; -

Vy,i+lzp.J] /(a1V x,i+l + h;V y,i+l + C1V z.J 
zilllercept,i = [a,(vz,ixp,i- vz,ixp,i+l + vx,i+lzp,i+l) 

+h, (vz,iY Ri - vz,S Ri+l + vy,i+lzRi+l) + 

civz,izp)/[a,vx,i+I +b;vy,i+t +c,vz.J 
(Z1) 

Eqs. 14, 19 and ZO are solved simultaneously to 
obtain the intersection point ci+l on line i+l. 
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X;nteroept,i+l;;; (a;+tV,..,;Xp,i+t + bi+t(vy,i~,; + Vx.;Yp.i+l 

-vx,;Y p.) + ci+t(vz,i+txp,i + v x;izp,i+t­

v,..,,zp,;)]/[a,+ 1vx,i +h;+tvy,i +ci+1Vz.;+1] 

Y;o~e~.i+t ;;; [a,+t(vy,ixp,i+l - v y,,xp,; + vx,,Yp) 

+h,+J vy,;Y p.i+t + ci+I(vz,i+tY ~~ + vy,;zp,i+I -

vy,izp,i+l )] /[ai+lv x,i +hi+ I v y,i + ci+l v z,i+l] 

zinte!Cqlt,i+l;;; [ai+l(vz,i+lxp,i+l - vz,i+lxp,i + v ,..,,zp.) 

+bi+l(vz,i+JY p,i+l - V z,i+tYp.i + V y,izp,;) + 
ci+,vz,i+lzp,i+l]/[a,+l v ;or;i + bi+l vy,i + ci+l vz,i+l] 

(ZZ) 
For the three-PPSR mechanism considered in this 

paper, all six links are located between two plates. 
Interference is therefore impossible if Zc ;:, Zp and Zc ;:, 

i i i+l 

NUMERICAL CASES & DISCUSSION 
The workspace subject to the above-mentioned 

constraints is numerically studied. Each link is assumed 
to be cylindrical, aod the geometric parameters are given 
as r = Z.S uoits, I = 1.0 uoits, d = 6 uoits, d, = 0.15 units, 
e,_ = 75°, e,.~ = 60°, andk = 0, Where rdenOteS the leg 
length of P,R,, l the length of each side of the moving 
triangle, dthe diameter of the footprint circle on the base 
platform, d, the diameter of the links. e,.~ and e .. ~ are 
the allowable maximum angles of rotation for the revolute 
joint aod the spherical joint, respectively, and constant k 
denotes the Z coordinate of point R,. 

The three-dimensional workspace is presented in two 
graphical forms, i.e., a two-dimensional topview, and a 
three-dimensional isometric view of the workspace 
bouodary without showing the upper aod lower portions 
of the booodary for viewing convenience. Since the 
workspace involves both position and orientation, it has 
six dimensions in nature and therefore three invariable 
Euler's angles are specified for each case below. In order 
to demonstrate different situatioos and the effects of 
constraints on workspace size and shape, five typical cases 
are studied, 
Case1 {8,,8,,8.}={0,0,0} 

CaseZ 

Case3 

Case4 

CaseS 

{8,,8,, 8.} ={20,0,0} 

{8,,8, ,8.} ={-ZO,O,O} 

{8.,8,, e.} ={O,zo,o} 

{e,,e., e.} ={Zo,zo, o} 
Please note that, since the platform is symmetric 

about the v-axis of the moving platform, the case of { e"' 
e, ew}={0°, -zoo, 0°} will be the same as {e., e, ew}= 
{0°, zoo, 0°}. In addition, ew remains zero in all five 
cases because the shape of the workspace will remain the 
same for any ew value. This is in turn be~ause the 
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workspace will simply rotate by ew for any non-zero fiw 
value without shape change. 

Fig. 2 shows the topview of the workspace for case 
I where{fi •• e •. fiw}={0°, 0°, 0°}. Fig. 3 includes 
isometric views of the practical workspace for cases 1 and 
5 where all the kinematic constraints are considered. It is 
seen that the shapes and the structures of the workspaces 
of this three-PPSR parallel mechanism are completely 
different from that of traditional parallel mechanisms. It 
especially allows a larger range of motion in the Z 
direction. 

It should be pointed out that the actual shape of the 
reachable workspace of this parallel manipulator is not 
these shown in Fig. 3, where fiw bas been kept zero. 
Since fiw can rotate by 360°, the actual shape of the 
workspace is resulted by rotating the shape shown in Fig. 
3 about the Z axis for 360° (Fig. 4). Comparing with a 
comparable Stewart platform, which usually has a 
workspace in the shape of a mushroom cap, this 
workspace has a cylindrical shape and therefore a larger Z 
range as well. This will bave significance in some 
applications. 

The workspace is further examined to understand its 
composition. The examination is achieved through 
decomposing the workspace into its constituent regions 
according to different classes of manipulator poses. The 
workspace shown in Fig. 2 (case 1) is used as an example. 
Let Z = !.0 for the system, four types of regions which 
constitute the workspace can be identified: 1) region that 
corresponds to the pose in which one leg points toward 
the platform and the other two legs point outward from 
the platform; 2) region that corresponds to the pose in 
which two legs point toward the platform while the third 
points outward from the platform; 3) region that 
corresponds to the pose in which all tluee legs point 
toward lhe platform; and 4) region tl1at corresponds to the 
pose in which all three legs point outward from the 
platform. The fourth type of region has no practical effect 
on workspace determination since it is always a subset of 
the type-3 region. All these regions are plotted in Fig. 5, 
where a footprint circle of diameter of 6 units is also 
plotted. It is clear tl1at the intersection of these regions 
forms an area which is identical to that shown in Fig. 2. 
It is, therefore, clear that they are the constituent regions 
of the workspace. 

CONCLUSION 
In this paper, the workspace of the three-PPSR 

manipulatoris analyzed. It is shown that the workspace 
consists of three types of regions, each corresponding to a 
class of manipulator poses. The effects of various 
kinematic constraints, including revolute and spherical 
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joint limitations and limb interference on workspace 
structure are numerically explored. In terms of size, the 
three-PPSR manipulator has a larger workspace than that 
of a comparable Stewart platform. Its actual workspace 
assumes a cylindrical shape while a Stewart platform 
usually bas a mushroom -cap type of workspace which 
only allows limited motion in the Z direction. 
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FIG. 3 WORKSPACEBOUNDARY WITH JOINT UMIT AND 
INTERFERENCECONSTRAINTS(fHETOPANDBOTTOM 
PLATESOFTHEBOUNDARY NOT SHOWN FOR VIEWING 

CONVENIENCE) 

FIG. 4ACTUAL WORKSPACEBY REVOLVING THE 
BOUNDARY SHOWN IN FIG. 3B ABOUTTHEZAXISFOR 

360° (CASE 5) 

X 

FIG. 5INTERSECTIONOFTHECONSTITUENTREGIONS 
FORMSTHEWORKSPACE(CASEl) WITH FOOTPRINT 

CIRCLE SHOWN 
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ABSTRACT 
This paper studies the workspace of a six-DOF 

parallel manipulator of three-PPSR (prismatic-prismatic­
spheric-revolute) type. It is well recognized that the most 
significant drawback of parallel manipulators is their 
limited workspace. To develop new parallel mechanisms 
with a larger workspace is of interest to additional 
applications. The mechanism of the three-PPSR 
manipulator and its variations are briefly analyzed first. 
The workspace is then determined and the effects of joiut 
limit and limb interference constraints on the workspace 
shape and size are studied. The constituent regions of the 
workspace corresponding to different classes of 
manipulator poses are discussed. It is shown that the 
workspace of this parallel manipulator is larger than that 
of a comparable Stewart platform especially in the vertical 
direction. 

INTRODUCTION 
In the recent decade, many researchers have shown 

interest iu parallel manipulators. Compared with the more 
commoul y used serial manipulators, the parallel ones have 
attractive advantages inaccuracy, rigidity, capacity and 
load-to-weight ratio. A parallel manipulator consists of a 
moving platform, a base platform and several branches 
connecting both platforms through appropriate kinematic 
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joints with appropriate actuators. The most well-known 
parallel manipulator is the Stewart platform (Stewart, 
1965), which has been widely studied. In a Stewart 
platform, six bars connecting moving and base platforms 
are extensible to control the position and orientation of 
the moving platform. 

Many different six-DOF parallel manipulators have 
been proposed. More recently, a novel parallel 
manipulator is introduced and studied (Tsai and 
Talnnasebi, 1993; Talnnasebi and Tsai, 1994a, 1994b). 
This mechanism consists of an upper and a lower 
platforms and three inextensible limbs. The lower end of 
each limb connects throngh a ball-and-socket joint to an 
actuator. The actuator is of a linear stepper type but 
capable of moving in both x andy directions 
simultaneously on the base platform. The upper end of 
each limb is connected to the moving platform by a 
revolute joint. The manipulator is therefore a three-PPSR 
mechanism, where P denotes the prismatic pair, S the 
spherical pair, and R the revolute pair. The output 
motion of the planar linear stepping motors is similar to 
that of two cross prismatic pairs on the base platform. 
The desired motion of the upper platform is obtained by 
moving the actuators, to which the lower ends of the three 
limbs are attached, on the base platform. Besides the 
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merits of the general parallel mechanisms over their serial 
counterparts mentioned before, this three-PPSR 
mechanism has added advantages, including simpler 
structure, and higher stiffness. It is also less likely for its 
limbs to interfere with each other, since it has only three 
inextensible instead of six extensible limbs as in a 
Stewart platform. 

Talnnasebi and Tsai perceived this mechanism as 
being used as a minirnanipulator, which can be mounted 
between the wrist and the end-effector of a serial 
manipulator for error compensation as well as delicate 
position and force control. Therefore, the required 
workspace is rather small such that the motion of each 
actuator is limited within a small circular area on the base 
platform when its workspace is considered (falnnasebi and 
Tsai, 1994b). The actuators carrying the limbs, however, 
do not have to be so restricted, they can move over the 
entire base platform, resulting a much larger workspace. 
As a result, this three-PPSR mechanism can be used as a 
stand-alone manipulator. lu addition, its special assembly 
of kinematic pairs makes it possible to have a much 
different and much larger workspace than that of a 
comparable Stewart platform. The study of workspace of 
a manipulator is one of the fundamental problems in the 
design of robot arms. As many researchers have pointed 
out , the major drawback of parallel mechanisms is their 
limited workspace. This three-PPSR parallel mechartism 
can help overcome the limitations of traditional parallel 
manipulators and extend the applications of parallel 
mechanisms. This paper analyzes the size, shape, 
composition, and constraints of the workspace of the 
three-PPSR parallel manipulator. 

The workspace of parallel manipulators has attracted 
the attention of many researchers over the past decade. 
Much reported work on parallel mechanism workspace 
dealt with two-DOF or three-DOF planar and spherical 
manipulators. Asada and Ro (1985) analyzed the 
workspace of a closed-loop planar two-DOF five-bar 
parallel mechanism. Gosselin and Angeles (1989) studied 
the workspace of planar and spherical three-DOF 
mechanisms. Lee and Shah (1988) demonstrated the 
workspace of a spatial three-DOF in-parallel manipulator. 

Much less work has been reported for the workspace 
uf six-DOF parallelmartipulalors. Yang and Lee (1984), 
and Fichter (1986) described the workspace of the six-DOF 
parallel manipulators, through a method based on 
discretization of the Cartesian space. Gosselin (1990) 
used geometric properties to introduce an algorithm for 
determining the workspace of the six-DOF Stewart 
platform. His result showed that the workspace was the 
intersection of six annular regions. Masory and Wang 
(1992) more systematically studied the workspace of the 
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six-DOF Stewart platform. Their report discussed several 
constraint conditions for calculating its workspace, 
including the region of rotational angle of kinematic pairs 
and the interference between any two limbs of the 
mechartism. lu addition, they analyzed the shape of the 
workspace and the relationship between the workspace and 
the geometric parameters of the mechanism. Talnnasebi 
and Tsai (1994b) studied the workspace of this new three­
PPSR parallel manipulator, where motion of each of the 
three actuators attached to the lower end of each limb is 
limited to a small circular area. This paper is focused on 
analyzing the workspace of the three-PPSR parallel 
manipulator. lu the analysis, limb interference and joint 
limitations are considered, and the restrictions on the limb 
lower end movement is relaxed. lustead of allowing each 
actuator only to move within a small circle, all three 
actuators are allowed to move within a much large, 
common circle of diameter d (Fig. 1). The composition 
of the workspace is also studied by identifying constituent 
regions according to different classes of manipulator 
poses . 

WORKSPACE ANALYSIS 
A fixed reference frame OXYZ is attached to the base 

platform as shown in Fig. 1. The origin 0 is located at 
the centroid of the large circle with diameter d The X and 
Y axes lie on the same base platform and the Z axis is 
upward perpendicular to the base. The moving reference 
frame Guvw is attached to the moving platform. The 
point G is located at the centroid of the equilateral 
triangle. The u axis is parallel with P )"3 , and v axis 
passes through point P1 • The w axis is perpendicular to 
the moving plane. 

To determine the workspace of a mechanism, its 
direct kinematics is normally needed. luverse kinematics, 
however, has always been applied for this purpose when 
parallel mechanisms are concerned, although the inverse 
kinematics requires the use of a numerical solution. 
Given a pose (position and orientation) of the 
manipulator, the reference point of the upper platform 
determines an allowable point within the workspace, if the 
inverse kinematics of the given pose exists under all the 
kinematic constraints. By giving a series of poses and 
obtairting a series of allowable points of the upper 
platform, the workspace forms as the assembly of all the 
allowable points. 

Inverse Kinematics 
The coordinates of point P, in the moving platform 

can be calculated via coordinate transformation when the 
pose of the upper platform is known. The orientation of 
the moving platform is given by Euler's angles yaw(&.), 
pitch($,), and roll (&w)· The coordinates of center point G 
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with respect to the fixed frame are X,, Y8 and z,. The 
coordinate transformation matrix is YPR(S ,, S, ,S.) ; 

[

cs,ce. sS,.sS,cS. - cS,sS. cS,ss,ce. + sS,sS. x,l 
cS,sS. sS,.sS,sS, + cS,cS. cS,sS,sS. -sS,cS, y, 

-sew s8vs8w ceucev z, 
0 0 0 1 

(1) 
where sS; sinS andeS ; cosS. 

The coordinates of points P1, P2, and P3 with respect 
to frame Guvw are 
P' 1 ; (0, m, O)T 
P',; (-1/2, -(l/2)tan30°, O)T (2) 
P',; (1/2, -Q/2)tan30°, O)' 
wherem; Q/2)cos30°. The coordinates ofpointP, with 
respect to the fixed frame are 

P,; YPR(S., S"' SJ ({) i; 1, 2, 3 (3) 

From the geometry of the manipulator shown in Fig. 
1, two simultaneous equations can be obtained. The first 
equation is 
(x,.; - x,,;)

2 + (Y,.1 - Y •. J' + (z,.; - k)
2 

; r
2 

(4) 

where constant k is the Z coordinate ofpointR,. The 
subscripts p,i and r,i denote points P, and R,, respectively. 
This is the equation for a circle on the base. The second 
equation follows from the perpendicularity of vector R,P, 
and vector P i+Jp i+l· Since the joint at point Pi is 
revolute, point R, is the intersection of the circle of Eq. 
(6) with the plane that contains vector R,P 1 and is normal 
to vector P i+lp i+l· That is, · 

Pi+lpi+2 ={n,..,ny,nz} 
(5) 

= {xp.i+2 -xp,i+l•Yp,i+2 -y~i+l·z~;+z- zp.i+l) 

The equation of the plane is given as 
n, (x,.1 -x,. 1)+ n,(y ,. 1 - y,_ 1) + n,(z, 1 - k); 0 

(6) 
Eqs. (4) and (6) are solved for x,, and v,., 

2 3 2 ' f . 
x,,; = [-~11. + nxxpi + n><nyxp,i + nxnzzp,i 

+n n (-k2 n2 -k 2n2
- k 2n2 +n2r 2 + 

X 'J lt 'J Z X 

n:r2 + 2kn~zp,; + 2kn;zp,; + 2m:zp,; -

n 2z2
. -n2z2

. -n;2z2 .)"]/[n'+n n2
] 

X p,l 'J p,l P,l X -"'x 'J 

[
1m2 2 2 

Yr,i = -A....uyn. + llxYRi + nyyp,i +nynzzp,i 
±n (-kznz - kznz- kznz +nzrz + 

X X 'J Z X 

2 2 kn2 kn2 2 (7) 
nyr + 2 xzp.i + 2 yzp,i + 2Irn:zp,i -

nzzz. -n2zz.- nzzz .)o.s]/[nz + n nz] 
lt p,l 'J p,l Z !=II X -x 'J 

Because Eq. (4) is a second-order polynomial, the x,_, 
andy,_, could have two values. These two values are valid 
as long as they satisfy the joint limit and interference 
conditions, and are within the allowable footprint space. 
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Kinematic Constraints 
In determining the workspace of a three-PPSR 

manipulator, three types of kinematic constraints are 
considered. They are the diameter of the footprint circle, 
joint angle limits, and link interference. 

Footprint Circle. The positions of the lower ends of all 
three limbs need to be inside the footprint circle (Fig. 1), 
that is 
IR1 I ,; d/2 (8) 
where dis the diameter of the footprint circle and R, 
denotes the radius vector of point R, with respect to the 
origin 0. 

Joint Angle Constraints. The links are attached to the 
upper and lower plates by kinematic pairs which have 
physical limits. For instance, a ball joint is theoretically 
free to rotate 360° abont each of the three orthogonal axes. 
In practice, however, its motion is restricted by the joint 
physical construction within a relatively small range. 
Thus, there is a need to impose the maximum rotational 
angle e_ for each joint. The rotational angle and its 
limitation can be expressed as 
s, = cos1((v,•u,) /lv;l),; s, mox (9) 
where vi is the vector of link li, and ui is a vector 
representing the line which bisects the rotational range of 
each kinematic pair with respect to the fixed frame. 

link Interference. Since links have physical dimensions, 
interference might occur. Assume that each link is 
cylindrical with a diameter d1, and D the shortest distance 
between two adjacent links li and 11+1, the interference 
limitation can be expressed by 
~,; D (10) 

The shortest distance between the center lines of two 
links is the length D. of their co=on normal n,. That 
IS 

D.= In, • P,P,.11 (13) 
where the unit vector n, of the co=on normal direction 
between two adjacent links I, and 1,.1 can be obtained as 
ni = (v1 x vi+J) /lv1 x v1+11 (12) 

Note that, the shortest distance between links is not 
always equal to the length D. of the co=on normal. It 
could be larger than D.- The shortest distance is the 
distance from pointP, to the link 1,.1 , if the intersection 
point C, of the link 1, and the co=on normal of the two 
links is situated beyond the link 1, itself, or the 
intersection point M, of the link 1, and the perpendicular 
line from point P,.1 to link 1, is situated beyond link 1, 
itself. The shortest distance is directly the distance 
between the two end points P, and P,.1 , if the two 
intersection points, M1 and M1+ 1, are both beyond links 11 

andl1+1• 
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Three lines, including two adjacent links and their 
conunon normal, define two planes. The normals of these 
two planes are 
n, x v, 

n, x v,+1 

In; x v;.,l 
The equations of the two planes are 

(13) 

a;(x- X,.;)+ b;(y- Y,,;)+ c;(z-z,,;)~o (14) 

a;.,(x- X,.;.,)+ b;.,(y- y ,;.,) + c;., (z- z,,;.,) ~ 0 

(15) 
A line in 3D space can be represented as 

x-x. y-y. z-z. 
--21.1. ::;: ~ = ------Ill. 

v,., vy,; v'l,, 
(16) 

The equations of two center lines of two adjacent legs 
can be resolved from 

v,,;(x-x,;)-v,;(Y-Y,,;)~o (17) 

v,;(Y-Y,,;)- v,,;(z-z,,;)~o (18) 

v ,,;+1(x- x,,.,)- v ,,;.,(Y- Y,,;.,) ~ 0 (19) 

v,,;.,(y- Y,,;+,) -v,,;.,(z- z,;+,) ~o (20) 

where Eqs. 17 and 18 represent the center line of link /1, 

and Eqs. 19 and 21 the center line oflink 1,.1 • 

The intersection point C; between line /1 and the 
conunon normal is obtained by solving Eqs. 15, 17 and 
18 simultaneously, 
X 1~~~ercep;,; = [a,v x,i+tXp; + b,(v y,i+txp,i+t + v,.,i+tYp,; 

-vx,i+tY p,i+t) + c, (vz,ixfli+t + v x.i+tzp,i -

vx,i+Izp,i+t)]/[a,vx,i+t + h,vy,i+t +c,vz.;] 

YinleJc<pt,i = [a,(vy,i+txp,i -vy,i+txp,i+t + v,.,;+tYp,i+t) 

+h, vy,i+tYp,; + c, (v z.iYp,i+t + v y,i+tzp,i -

vy,i+lzp.J] /[a,v x,i+l + b,vy,i+l + c,v z.J 
z. . ~[a. (v .x . - v .x . 

1 
+ v . 

1
z . ,) 

Ul!t'l<:ept,l J Z,l p,t Z,L p,l+ X,l+ p,t+ 

+b,(vz,,y~'~,- vz,;Yfli+t +vy,i+tzp,i+t) + 
c,vz,izp.JI[a,vx,i+t +h,vy,i+t +c,vz.,] 

(21) 
Eqs. 14, 19 and 20 are solved simultaneously to 

obtain the intersection point ci+l on line i+ 1. 
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X;mereq:t,i+t = [a;+t Vx,ixp,i+t + bi+t(v y.i~,; + Yx,iYp,i+t 

-vx,;Yp,)+ Ci+l(vz,i+lxp.i + V J<;izp.i+l­

vx,izp.J]/[a,+lvx,i + bi+lvy,i +ci+lvl.i+l] 

Y;q~er;:cp_,i+l = [a,+t(vy,ixp,i+l -vy,,xp,i + vx,,Yp,,) 

+b;+I vy.iYp.i+l + ci+l(vz.i+tY p.i + vy.izp,i+l -

vy,izp,i+t)]/[a;+Jvx,i + bi+lvy,i +ci+lvz.i+tl 

zilllercept,i+l = [a,+Jvz,i+lxp,i+l - vz,i+lxp,i + v x.izp,,) 

+bi+l(vz,i+tY p,i+t - V z.i+IY p,i + V y,izp,;) + 

ci+l vz,i+lzp,i+l ]/[ai+l v J<;i + b, +I vy,i + ci +l vz,i+l] 

(22) 
For the three-PPSR mechanism considered in this 

paper, all six links are located between two plates. 
Interference is therefore impossible if Zc <: Zp and Zc <: 

i i i+l 

NUMERICAL CASES & DISCUSSION 
The workspace subject to the above-mentioned 

constraints is numerically studied. Each link is assumed 
to be cylindrical, and the geometric parameters are given 
as r~ 2.5 units, l ~ 1.0 units, d~ 6 units, d, ~ 0.15 units, 
e,.~ ~ 75°, e .. ~~ 60°, andk ~ 0, where rdenotes the leg 
length of P,R,, l the length of each side of the moving 
triangle, d the diameter of the footprint circle on the base 
platform, d, the diameter of the links. e,.~ and e,_ are 
the allowable maximum angles of rotation for the revolute 
joint and the spherical joint, respectively, and constant k 
denotes the Z coordinate of point R,. 

The three-dimensional workspace is presented in two 
graphical forms, i.e., a two-dimensional topview, and a 
three-dimensional isometric view of the workspace 
boundary without showing the upper and lower portions 
of the boundary for viewing convenience. Since the 
workspace involves both position and orientation, it has 
six dimensions in nature and therefore three invariable 
Euler's angles are specified for each case below. In order 
to demonstrate different situations and the effects of 
constraints on workspace size and shape, five typical cases 
are studied, 
Case 1 {e",e,e.} ~{0,0,0} 
Case2 

Case3 

Case4 

CaseS 

{e",e~, e.} ~{20,0,0} 
{e",e" e.} ~{-2o,o, o} 

{e",e~, e.} ~{0,20,o} 
{e "' e~, e.}~ {20, 20. o} 

Please note that, since the platform is synunetric 
about the v-axis of the moving platform, the case of {e., 
e, e.}~ {0°' -20°' 0°} will be the same as {e., e, e.}~ 
{0°, 20°, 0°}. In addition, e. remains zero in all five 
cases because the shape of the workspace will remain the 
same for any e. value. This is in tum be~ause the 
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workspace will simply rotate by ew for any non-zero ew 
value without shape change. 

Fig. 2 shows the topview of the workspace for case 
1 where{& •. e •. Bw}={0°, 0°, 0°}. Fig. 3 includes 
isometric views of the practical workspace for cases 1 and 
5 where all the kinematic constraints are considered. It is 
seen that the shapes and the structures of the workspaces 
of this three-PPSR parallel mechanism are completely 
different from that of traditional parallel mechanisms. It 
especially allows a larger range of motion in the Z 
direction. 

It should be pointed out that the actual shape of the 
reachable workspace of this parallel manipulator is not 
these shown in Fig. 3, where Ow has been kept zero. 
Since Ow can rotate by 360°, the actual shape of the 
workspace is resulted by rotating the shape shown in Fig. 
3 about the Z axis for 360° (Fig. 4). Comparing with a 
comparable Stewart platform, wltich usually has a 
workspace in the shape of a mushroom cap, this 
workspace has a cylindrical shape and therefore a larger Z 
range as well. Tl:ris will have significance in some 
applications. 

The workspace is further examined to understand its 
composition. The examination is achieved tbrough 
decomposing_the workspace into its constituent regions 
according to different classes of manipulator poses. The 
workspace shown in Fig. 2 (case 1) is used as an example. 
Let Z = 1.0 for the system, four types of regions wltich 
constitute the workspace can be identified: 1) region that 
corresponds to the pose in which one leg points toward 
the platform and the other two legs point outward from 
the platform; 2) region that corresponds to the pose in 
wltich two legs point toward the platform wltile the third 
points outward from the platform; 3) region that 
corresponds to the pose in which all three legs point 
toward the platform; and 4) region that corresponds to the 
pose in wltich all three legs point outward from the 
platform. The fourth type of region has no practical effect 
on workspace determination since it is always a subset of 
the type-3 region. All these regions are plotted in Fig. 5, 
where a footprint circle of diameter of 6 units is also 
plotted. It is clear that the intersection of these regions 
forms an area wltich is identical to that shown in Fig. 2. 
It is, therefore, clear that they are the constituent regions 
of the workspace. 

CONCLUSION 
In this paper, the workspace of the three-PPSR 

manipulator is analyzed. It is shown that the workspace 
consists of three types of regions, each corresponding to a 
class of manipulator poses. The effects of various 
kinematic constraints, including revolute and spherical 
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joint limitations and limb interference on workspace 
structure are numerically explored. In terms of size, the 
three-PPSR manipulator has a larger workspace than that 
of a comparable Stewart platform. Its actual workspace 
assumes a cylindrical shape wltile a Stewart platform 
usually has a mushroom-cap type of workspace wltich 
only allows limited motion in the Z direction. 
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moving platform 
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base platform 

AG.l THREE-PPSRPARALLELMANIPULATOR 

AG. 2TOPVIEWOFWORKSPACE(CASE1: {8u, 8v, 8w}= 

{0°, 0°, 0"}) 

(A) CASE 1: {8u, 8v, 8w}= {0", 0", 0"} 
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(B) CASE 5: {8u, 8,, 8w}= {20", 20", 0"} 

AG.3 WORKSPACEBOUNDARY WITHJOINTUMIT AND 
INTERFERENCECONSTRAINTS(THETOPANDBOTTOM 
PLATESOFTHEBOUNDARY NOT SHOWN FOR VIEWING 

CONVENIENCE) 

AG. 4ACTUAL WORKSPACEBY REVOLVING THE 
BOUNDARY SHOWNINAG.3B ABOUTTHEZAXISFOR 

360° (CASES) 

y 

X 

AG.S!NTERSECTIONOFTHECONSTITUENTREGIONS 
FORMSTHEWORKSPACE(CASEl)WITHFOOTPRINT 

ORCLESHOWN 
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