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ABSTRACT

As a different approach to the condition monitoring of
machining processes by sensor fusion, which has been of great
interest over the recent time, this paper presents a novel approach
of utilising a single data source to evaluate in-process the overall
machining performance in finish turning. The overall machining
performance includes the variations of machining performance
(chip breakability, surface roughness, dimensional accuracy and
cutting forces) with progressive tool wear of various types of tool
wear (major flank, crater and minor flank wear). The 3-D cutting
force measured by a tool dynamometer, perhaps the most reliable
data source available for machining processes, is fully utilised
through the combination of multivariate time series models and
neural network techniques. Dispersion analysis based on the
established multivariate time series model of 3-D cutting force is
introduced to single out signal features corresponding to particular
types of tool wear, and four dispersion patterns along with others
are used to train the neural network to quantify the compiex
interrelationship -between machining performance (chip
breakability, dimensional accuracy and surface roughness) and
progressive tool wear for cutting tools with different chip control
geometry. The approach has demonstrated to be a simple yet

effective means in on-line monitoring of the overall machining-

performance for finish-turning operations.

1. INTRODUCTION

Effective in-process estimatton of the machining performance is
the prerequisite for effective control of machining process in
automated machining systems, particularly in finish-turning
operations where the surface quality and dimensional accuracy of a
finished product take their final form. In general, the machining
performance in finish-turning can be characterised by surface
roughness, chip breakability, dimensional accuracy, cutting forces
and various types of tool wear at major flank, minor flank and rake
face. It may change significantly primarily due to the progressive
too] wear formed at different tool faces.

Since the present knowledge of machining process and
traditional modelling techniques are inadequate to quantify the
complex interrelationship between the varying machining
performance and progressive tool wear, the neural metwork
technique provides an attractive yet feasible altemative to tackle the
problem. Recently, neural networks have been applied to problems
associated with machining processes, such as tool wear estimation
[1-3], analysis of cutting dynamics [4] and process optimisation
i3). An early work has shown that using neural networks is an
effective method for assessing chip forming patterns and surface
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roughness with tool wear progression for a flat-faced tool [6].

Time series methods have demonstrated to be effective 10
describe quantitatively the complex machining process and have
found a number of applications in machining process monitoring
and control [7-10]. However, some types of complex
interrelationship, such as varying machining performance with
progressive tool wear, can not be found by time series method
alone. Dispersion analysis [7, 11-12] based on the multivariate
time sertes. models of three-dimensional (3-D) cutting forces has
demonstrated to be an effective way to quantitatively discriminate
among various modes of process variations [12,13]. Dispersion
analysis bas been used ir previous work [13] to estimate multiple
types of tool wear including major flank, crater and minor flank
wear, and to extract key features to train neural networks and to
assess chip forming patterns and surface roughness with tool wear
progression {6].

In condition monitoring of complex processes and systems,
monitoring a single variable by proper combining information from
several data sources has been known as sensor fusion [1-3, 14].
Although synthesising information from several sensors may
provide more reliable estimates of the process variable, it increases
the complexity as well as the cost of the monitoring system. The
unique feature of the method presented in this paper is that a single
but perhaps the most reliable sensor is fully utilised to evaluate the
overall machining performence in-process.

With the aid of neural networks an on-line monitoring strategy
has been developed by using 3-D cutting force signal to evaluate in-
process the overall machining performance including the variations
of surface roughness, chip breakability, dimensional accuracy and
cutting force with progressive tool wear of various types {major
flank, crater and minor flank wear). The 3-D cutting force .
measured through a single sensor (tool dynamometer), is fully
utilised to form a simplified yet multi-functional monitoring
system. . '

2. EXPERIMENT AND MACHINING CONDITIONS
Three types of cutting tools were used to conduct a series of

machining experiments to study the patterns of progressive tool

wear and the corresponding paiterns of surface roughness, chip

breakability, dimensional accuracy and cutting forces. The.

experiments were conducted under typicai finish-turning
conditions, as shown in Table 1. The cutting conditions are
arranged into two groups, one for training the neural networks and
the other for testing. For training the neural networks, the degrade
tool tests [15] were adopted to shorten the expensive and time-
consuming taol wear experiments Dy using softer tool material for
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TABLE 1 MACHINING CONDITIONS USED FOR TRAINING AND TESTING

NEURAL NETWORKS

Machine Tool Colchester Mascot 1600 (9.3kW)

Work Material AISI4140 (BHN=300): C04% Mn0.8% Mo02% Cr09% I &

Tool Inserts iy TNMA160408F flat-faced
if) TNMGI160408 groove-style
iif) TNMG160408 obstruction-style

Tool Material For training : carbide SECO 883 F% :
For testing :  carbide SECO 883 and carbide P10

Tool Geometry 0°, 5°,-6°2,90°, 60°,0.8

Cutting Cutting Speed : 115m/min  145m/min  180m/min

Conditions Feed : 0.06mm/rev 0lmm/rev  0.15mm/rev

for Training Depthof Cut: 0.5mm 1.0mm

Cutting Cutting Speed : 100 - 200 m/min

Conditions Feed : 0.06 - 0.20 mm/rev

for Testing Depthof Cut: 025-15mm

harder workpieces.

A tool dynamometer (Kistler 9257A) was used to measure the
3-D cutting force, i.e., main cutting force F,, feed force Fy and
thrust force Fy. Scanning electron microscope (SEM), sterco
microscope with camera attachment: and surface measuring
instrument {Surfcom 550AD) were jointly used to measure various
tool wear parameters. A portable surface measuring instrument
was used to assess the surface roughness in terms of the arithmetic
mean deviation R, by taking the average from four measurements
around the periphery but along the same circle of workpiece.
Dimensional accuracy AD was assessed by using a coordinate
measuring machine (CMM) in terms of the error on the workpiece
diameter. A fuzzy membership rating system [16-17] was
introduced to quantify the chip breakability within a range (0, 1)
according to the chip shapefsize produced. The membership value
is assigned in such a way that the larger the membership valuve is,
the better the chip breakability.

3. Multivariate Time Series Model for Progressive Tool
Wear Patterns :

To estimate multiple types of tool wear, trivariate time series
model ARV(n) was developed to based on the 3-D cutting forces,

Fx(®) o ¢ pOITF (1)) [ax(t)
Fyt|=3 o0 ¢ s pu-b|Ham| W
Fi(0 p%) o oD | Ftt-0] a0

where the elements of the matrix ¢(%) are the autoregressive
coefficients which describe the instantaneous dynamics of the
machining process and [ax(t), ay(t), a,(t)}T the independent random
variables. The model order n can be determined by the F-test [7] or
AIC method [18].

Based on the multivariate time series model, the dispersion
analysis can be introduced to single out features in the signals
corresponding to particular types of tool wear. As the calculation
of dispersion {d;) is directly related to the eigenvalues (A;) of each
time series of the ARV(n) model, the dispersion percentage (D)
can be intreduced to quantify the contribution of each eigenvalue to

the variation (Yo} of the time series concerned, as shown below :

di n Ta 8 ‘
Di=—=(g % ———)¥,
Yo k11— Ay A
{i=1, 2, ..., n for each time series) (2)
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where d; is the dispersion value and G, the covariance of the
random variables, and g; is caiculated as follows ;

.;l.in_l
§=—% (3)
I (L= Ax)

k=1k=a

Particularly, the eigenvalues appearing in complex conjugate
pairs contribute to the oscillating variations of the machining
process. The most interesting findings, as shown in Fig. 1, are the
close interrelationship existing among (i) various types of forces
acting on different tool faces; (ii) various types of wear formed at
different tool faces; and (iii) various modes of dispersion patterns
of 3-D cutting force. From Fig. 1, it was also found that all LF
{low frequency) dispersions are related to the normal forces and
HF (high frequency) to the tangential forces.

Earlier work [12-13] has consistently shown that two dominant
percentage dispersions, Dy(LF) in low frequency related to the idle
frequency of machine-tool and D;(HF) in high frequency related to
the natural frequency of the tool/tool-holder/dynamometer system,
exhibit patterns agreeable with that of the wear rate patterns of
major flank wear VB, crater depth KT and minor flank wear VB',
The general trends found from this work between the progressive
patterns of tool wear rates and dispersion patterns are shown in

‘Fig. 2.

4. NEURAL NETWORKS FOR MODELLING THE
OVERALL MACHINING PERFORMANCE '

As it is difficult to develop the interrelationship between the
variations of machining performance and progressive tool wear by
using multivariate time series model alone, neural networks were
employed to take the advantage that the complex mechanisms
involved can be quantified based on the observed data. In addition,
once a neural network is trained off-line, it can be readily
implemented into an on-line monitoring system. Applying neural
network in this paper starts with leamning the mapping between

inputs (tool wear progression along with others) and outputs (chip - .

breakability, dimensional accuracy and surface roughness) by
using the given input-output data sets. '

Once the mapping from the inpuis to outputs has been learned,
the neural networks will be capable of predicting outputs for any
inputs which were ever not previously presented to the system.
Back-propagation (BP) algorithm is a leaming strategy which trains
the input-output relation through a muiti-layered feed-forward
neural network [19-20].

In applying neural networks for the prablem in question, it is
vital to select appropriate inputs. They must be sensitive to the
particular types of tool wear, which are the dominant factors
influencing the chip breakability, dimensional accuracy and surface
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th (tangential to minor flank} <~—-> minor flank wear V8" & nose wear N <—> Dispersion D, {HF)

FY (tangential to rake race} <---> crater wear KT <—> Dispersion D y(HF)

FBV (tangential to minor flank) <—~-> minor flank wear VB' <—» Dispersion D _(HF)

Fup (normal to major flank) <-—> major flank wear VB <--> Dispersion P ,{LF)

FIG. 1 INTERRELATIONSHIP BETWEEN VARIOUS TYPES OF FORCES/WEAR AT DIFFERENT TOOL
FACES AND THE FOUR DISPERSION PATTERNS RECOGNISED FROM 3-D CUTTING FORCE

= — = wear development = dispersion pattern v wear deve'lopment e dispersion pattem

* The behaviour of Dx(LF) is in agreement Z * Maximum value of Dy(HF) falls into
with the well-known major flank wear rate 7 the accelerating range of crater wear

VBamivesat its  Dx(LF) decreases to 4
critical point for s minimom value /
replacement

accelerating

wearstage .
7 accelerating 7
steady wear stage wear stage steady wear | accelernting
' Lot | - stage - wear stage steady wear stage
e o ot ——
{a) Dispersion D ,(LF) via Major Flank Wear VB {b) Dispersion Dy(HF) via Crater Wear KT
= wm = wegr development w— dispersion pattern ——— wear developmant —— dispersion pattern
+ The dispersion pattem of Dx(HP) * The dispersion pattem of DztHF)
resembles the rate of minor flank wear resembles the rate of minor flank wear
» The maximum value of Dz(HF) ) .
indicates the accelerating start * Maximum value of Dy(HF)

falls into the accelerating
range of crater wear

of minor flank wear

—— -

steady wear

7/
|, accelerating steady wear P accelerating

stage - wear stage steady wear stage stage - wear stage steady wear stage
e — 1 — - ol -
(d) Dispersion D,(HF) via Minor Flank Wear VB' (d) Dispersion D ,(HF) via Minor Flank Wear VB'

FIG. 2 FOUR DISPERSION PATTERNS RELEVANT TO THE PROGRESSIVE TOOL WEAR '
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Input Layer
{ 8 input units)

Hidden Layer
( N hidden neurons)

Output Layer
( 3 output neurons)

FIG. 3 THE STRUCTURE OF A 3-LAYER BP NEURAL NETWORK

W (Bias : used as treshold for training)

!
S| _—‘l>

Wy

i Linear Weighted
Xz : Neuron
) Sumnstauon Output
3 Z=Z W%+ ¥ [ Trinster | y;=F(Z)
Function {——
F(Z)
— _:_ ~——
Xg ETr'{pe_i"s'En?éﬁr N Type 2 ;I'anHz r Type 3 : Sine
1 gc - £
1 F(Z)= i F(Z) = ——— =i
W 0ez (D2t (PO

FIG. 4 ALGORITHM OF A PERCEPTRON NEURON IN BP NEURAL NETWORK

roughness. In this work, 8 features were selected to construct a
three-layer BP neural network for predicting 3 process outputs,
ie., chip breakability po(k-1), surface roughness R, and

dimensional accuracy AD, as shown in Fig. 3, The first four input
features are dispersion patterns which are related to the overall tool
wear at different tool faces. The fifth input feature is the chip
breakability u;(k). Based on the assumption that no sudden change
in chip breakability will occur as tool wear normally progresses
gradually, it is reasonable to use the output of chip breakability
from the neural network at previous time interval py(k-1) as the
value of current input pi(k), that is

fork=12,.. 4)

Wilk) = pofk-1)

where the initial value p;(0) is predicted from the established chip
breakability database for unworn tool inserts. Three important
machining process parameters, cutting speed, feed rate and depth
of cut, were chosen as input features as well due to their close
relationship with overall tool wear progression, chip breakability,
surface roughness and dimensicnal accuracy.

The function of and the algorithm associated with a perception
neuron, such as the one in hidden Iayer or output layer, used in this
work are shown in Fig. 4.

As the atm of using neural networks is to predict the evolving
patterns of chip breakability, dimensional accuracy and surface
roughness with different progressive stage of tool wear, the input
data should be presented to the neural networks by group, as
shown in Table 2 for three representative groups of input-output
data,

As no prior knowledge about how many hidden neurons and
which transfer function would produce the best performance for the
problem in question, a trial-and-error approach has to be used in
this work to train the neural network with three common trarisfer
functions (Sigmoid, TanH and Sine) and different number of
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neurens in the hidden layer (maximum to 16). From the training
process, it was found impossible to achieve the expected accuracy
by using a single neural network structure for all three types of
cutting tools.- Therefore, 2 neural network structure was used for
each type of tool insert based on the minimum RMS error generated
during the training process. Shown in Table 3 are the neural

- network structures from the results of training for three different

types of cutting tools. A neural computing software, NeuralWorks
Professional II was wsed for training. Once such neural networks
are established off-line, the corresponding non-linear functions and
the identified weights can be readily implemented into an on-line
monitoring system.

5. SYSTEM INTEGRATION AND PERFORMANCE
TESTING

By integrating all the algorithms developed for evaluating the
different aspects of overall machining performance including major
flank, crater and minor flank wear, and the variations of surface
roughness, chip breakability, dimensional accuracy and cutting:
force with progressive tool wear for different types of tool inserts,
a single sensor based in-process monitoring system is
schematically shown in Fig. 5. )

In order to test the performance of the established monitoring
system, a series of machining experiments were conducted under
the conditions which were not previously presented to the training
of neural networks. Shown in Fig. 6 (a soft flat-faced tool} and
Fig. 7 (a hard grooved tool} are two sets of representative results
for in-process evaluating the overall machining performance (the 3-
D cutting force which can be directly obtained from the tool
dynamometer is not included). As seen, the deviation of the neural
network outputs from the actual experimental results is smail
therefore the system would be effective in evaluating the overall
machining performance for finish-turning conditions,
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TABLE 2 THREE REPRESENTATIVE GROUPS OF INPUT-OUTPUT DATA
FOR TRAINING NEURAL NETWORKS

Input Feat-ures to Neural Networks Outputs
Dy'(LB)| Dy (i) Dy’ (4F] D7 @8)| pik) | Speed | Feed Dfegt*; uo(k)| Ry | AD
mirc?|. min?| minl] mind] | m/min|mm/eg? 0 pm | pm

¢ Group 1 : flat-faced tool

491 322 150 147 025 115 01 0.5 025 1.09 ¢
389 252 131 115 025 115 0.1 05 [030 114 15
303 192 114 087 030 115 a1 0.5 032 123 38
-1.15 062 078 027 032 115 0.1 0.5 035 132 60
073 -068 042 -033 035 115 0.1 0.5 041 178 105
261 -198 006 -093 041 115 01 05 [058 199 168
449 328 -030 -153 058 115 01 05 [051 235 209
o 605 s 36 <059 - -2.04 - 08113501051 046 250 . 243
778 -562 -095 -261 046 115 0.1 05 042 268 273

i » Group 2 : groove-style tool ]
i -1.75 264 132 264 047 115 0.1 05 (047 088 O
151 239 116 242 047 115 0.1 05 (048 1.02 14
-1.26 199 090 212 048 115 0.1 05 042 109 35
077 117 038 150 049 115 01 05 [051 121 65
-028 036 -014 089 051 115 01 05 1053 184 109
021 046 066 027 053 115 0.1 05 (054 207 153
070 -128 -118 -035 054 115 0.1 05 |D46 225 186
.19 209 -170 -09 046 115 0.1 0.5 1043 243 228
168 291 -222 -158 043 115 01 05 043 255 247

* Group 3 : obstruction-style tool
256 172 169 186 062 115 01 05 062 095 0
-233 160 154 172 062 115 0.1 05 060 1.06 12
-1.94 138 130 148 060 115 01 05 058 115 31
-1.17 095 08¢ 100 058 115 0.1 05 (054 129 57
032 048 026 047 054 115 01 05 050 195 84
037 009 -019 004 050 115 0.1 05 (048 205 123
114 -034 -062 -044 048 115 01 05 (045 219 161
191 077 -118 -092 Q45 115 0.1 05 (041 247 201
283 -1.29 -177 -150 041 115 0.1 0.5 1040 . 262 235

UL _l_ QUTPUT
T Multivariate Cutting Database for . .
B Time Conditions | | Evaluating the chip breakability
gl Series Model | | cutting speed | | Chip Breakability —-
g [ ed raue for unworn surface roughness
§ — ™ ] ».depth of cut cutting tools
A dimensioani accurac
I | dimensio: y
B
L TJ 1 Neural Networks

major flank wear
-

Patterns of l
Dispersiont - P crater wear
atterns of Various r_“‘_"'
Types of Tool Wear ;
—_ | minor flank wear
ey U

3-D cutting forces
e,

-

FIG.5 A SINGLE SENSOR BASED MULTI-FUNCTIONAL MONITORING SYSTEM FOR
IN-PROCESS EVALUATING THE OVERALL MACHINING PERFORMANCE
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Surface Roughness, Ra {ym)

AD (um)

Dimensional Accuracy,

Crater Wear, KT (ym)

TABLE 3 NEURAL NETWCRKS ESTABILISHED FOR DIFFERENT TOCL INSERTS

Tool Inserts Neural Network Structure Transfer RMS .
Input Hidden Output | Function Errors
Neurons '

flat-faced 14 3 TanH 0.013

groove-style 8 14 3 TanH 0.015

obstruction- 15 3. Sigmoid 0.024

style

2.5 067

g
o

—_
[

®  Actual Result
X Neural Network Output

Chip Breakability, p(x} -

9 Actual Result
X Neural Netwark Qutput

1.0 : 0.2 T
Q 5 10 15 0 3 10 15
1.0
[ (1)-(4): Prediction from Dispersion Pattern
[ @ Actual Result b
2007 % Neural Network Ouiput 0.8+ (3) severe wear stage
_ -~ 4} (VB =0,35-0.4 mm)
[ E C initial wear
= VB<0.2
150F s o6F (VB<0.2mm) &
>
[ § (2) normal wear !
100 = 0.4 {VB<0.35mm} excessive
‘:.é 1 wear stage
i ! (VB>0.4 mm)
50 502
1]
=
B Actual Result
QFE=—r T 0.0 T L B
0 3 10 15 o} 3 10 15
150
+ (1)~(2): Prediction from Dispersion Pattern [ {1)-(3): Prediction from Dispersion Patterns
b (2) accelerating stage \. 200 2} start of the
of crater wear 1 - L @) 3
I (KT = 100um) E accelerating stage
100 F { 3 of (VB' > 100 pm)
{1) mwitial steady stage || s s 3
« KT = 0-60 pm) ";-! : § [ (1) initial steady stage
A ; = 100k { VB' = 0-100 um) (3) severe’
sol 1 ':‘% L~ I wear
| ! T r stage
| & sof : (ve'=
) g 200pm)
’ 8 Actual Result B Actual Result
B T A e o . . T
Q 5 10 15 0 5 15
- Time (min) Time {min)

FIG. 6 A REPRESENTATIVE EXAMPLE OF THE TESTING RESULTS OF THE
OVERALL MACHINING PERFCRMANCE FOR A SOFT FLAT-FACED TOCL
(V = 140m/min, f=0.12mm/rev, d = 0.5mm, Tool Grade = SECO 883)
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Time (min}

6. CONCLUDING REMARKS

As contrasted to the mare recently popular approach of sensor
fusion, this paper presents a approach by using a single yet perhaps
the most reliable sensor to evaluate in-process the overall
machining performance through a novel combination of
multivariate time series analysis and neural network techniques.
How to fully utilise the single data source, ie., 3-D cutting force,
to achieve the on-line evaluation of overall machining performance
Including various types of tool wear, and cutting forces, chip
breakability, dimensional accuracy and surface roughness with
Pprogressive tool wear, has been illustrated. The results show that a
reasonable effectiveness was achieved under the selected cutting
conditions for three cutting twols of different chip control geometry.
Therefore, the approach described in this paper may serve as an
attractive alternative to sensor fusion in developing on-line
assessment strategy for automated machining systems,
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©  Actual Result ;
254 ¥ Neural Network Output
~EBao .8
=" % %
& S
g1sf Hoat
2 4 B [
E’i ol a':': o Actual Result
lg | ,g 03k ¥ Neural Network Output
x| 3 B
fost 5 |
= I b
w 3
........ QT T T T T T T 0.2 1 LB I St B B S e Sl B
Q0 10 20 30 40 50 60 70780907 0 'GO 10---20--30--4Q---50--60. 70-.-80..-90.........
200 : . "1 (1)-(4): Prediction from Dispersion Pattesn
s L
E [ K 0.5 )— (3) severe wear stage 3
= 150 ©  Actual Result I ; (VB =0.35-0.4 mm)
=] ¥ Neural Network Quiput E 04k init(ia? wear \
-E— ] (vB<0.2mm)
Y r > : (4
s 100 c 037 excessive
3 ] wear Stage
g L I (VB>0.4 mm)
= ¥ 0.
5 502t L >
.:E: 50 i ] ! (2) normal wear h
2 2 0.1 1 (VB<0.35mm). 1
5 g A
[=] B Actual Result
o T T T T T Y 00— T T L
0 10 20 30 40 50 &0 70 80 90 0 10 20 30 40 50 60 70 8C 90
200 —- - -
b (1)-(2): Prediction from Dispersion Pattern &5 200 b (1)=(3): Prediction from Dispersion Patterns 1
[ |
(2) accelerating stage [ (2) start of t‘he
150 of crater wear . [ T’:cfeler?ung stage |
— (KT = 100pm) 2150t (V8" > 100 um) [
g :5 |- (1) initial steady st \ !
: 1 initial steady stage I
£ 100 | (1) initial steady stage 5 1 (VB' 0.1 go i) _
e 1, (KT=0-60pm) ! E100 - -
g - 7 é" _‘ k
5 L : x® P (3) severe
W 50 1 E 50 |; wear
S 5 3 stage
£ V=
B__Actual Result 3 ®  Actual Result 200pm)
0 g | 0 r F v F v & 1 7 T

= T T M
0 10 20 30 40 350 60 70 80 90
Time (min)

FIG.7 A REPRESENTATIVE EXAMPLE OF THE TESTING RESULTS OF THE
OVERALL MACHINING PERFORMANCE FOR A HARD GROOVE-STYLE TOOL
(V = 170m/min, f=0.10mm/rev, d = 0.5mm, Tool Grade =180 P10}

However, the major drawback of the back-propagation (BP)
neural networks used in this work Is that the leamning algorithm is
based on a "supervised" strategy which needs desired output
patterns in each case. It is not economic to conduct extensive
experiments to find the target patterns for numerous combinations
of work materials and teol configurations/geometry. Therefore, a
strategy of "learning by self-organising” should be developed to
replace currently used “learning by being shown". The
significance of a self-organising neural network is its ability to
adapt to the environments where rules may change unpredictably,
that is, the ability to adapt through direct confrontation with its
"experiences” without a teacher to "supervise".

Yolume I, 1994




i
|
{
|
{

References

1.

10.

Rangwala, S. and Dornfeld, D., 1990, "Sensor Integration
Using Newra! Networks for Intelligent Tool Condition
Monitoring”, ASME Trans., J. of Eng. for Ind., 112, pp.
219-228.

D.A. Dornfeld, 1990, "Neural Network Sensor Fusion for
Tool Condition Monitoring", Ann. CIRP, 39(1), pp. 101-
105.

Chryssolouris, G. and Domroese, M., 1988, "Sensor
Integration for Tool Wear Estimation in Machining"”,
ASME/WAM, Sensors and Controls for Manufacturing,
PED-Vol. 33, pp. 115-123.

Tansel, I. N, 1992, "Modelling 3-D Cutting Dynamics with
Neural Networks”, Int. J. Machine Tools & Manufacturing,
32(6), pp. 829-853,

Rangwala, S. and Dornfeld, D., 1989, "Learning and
Optimization of Machining Operations Using Computing
Abilities of Neural Networks”, IEEE Trans. on Systems,
Man and Cybernetics, 19(2), pp. 299-314.

Yao, Y, and Fang, X. D., 1993, "Assessment of Chip
Forming Patterns with Tool Wear Progression in Machining
via Neural Networks", Int. J. Machkine Tools &
Manufacturing, 33(1), pp. §9-102.

Pandit, S. M. and Wu, S. M., 1983, Time Series and System

Analysis with Applications, John Wiley, USA.

Pandit, .M. and Kashou, S., 1982, "A Data Dependent
Systems Strategy of On-line Tool Wear Sensing”, J. of Eng.
for Ind., 104, pp. 217-223.

Liang, §.Y. and Dornfeld, D.A., 1989, "Tool Wear
Detection Using Tirne Series Analysis of Acoustic Emission”,
J. of Eng. for Ind., 111, pp. 199-205,

DeVries, W. R., Dornfeld, D. A. and Wu, S. M., 1978,
"Bivariate Time Series Analysis of the Effective Force
Variation and Friction Coefficient Distribution in Wood
Grinding", ASME Trans., J. of Eng. for Ind,, 108, pp 181-
18s5. ‘

S.M. Wu Symposium

192

11

12.

3.

14.

15.
16.

17.

i8.

19..
20.

Pandit, 3. M., 1973, "Data Dependent Systems : Modeling
Analysis and Optimal Control via Time Series”, PhD Thesis,
University of Wisconsin, Madison, W1, U.S.A.

Yao, Y., Fang, X. D. and Arndt, G., 1990, "Comprehensive
Tool Wear Estimation in Finish-machining via Multivariate
Time-Series Analysis of 3-D cutting Forces", Annals of
CIRP, 39(1}, pp. 57-60.

Yao, Y. and Fang, X. D., 1992, "Modelling of Multivariate
Time Series for Tool Wear Estimation in Finish-Turning",
ggs J. Machine Tools & Manufacturing, 32(4), pp. 493-
Chryssolouris, G., Domroese, M. and Beaulieu, P., 1992,

"Sensor Synthesis for Control of Manufacturing Processes”,
ASME Trans., J. of Eng. jor Ind., 114, pp 158-174,

Milis, B. and Redford, A, H., 1983, Machinability of
Engineering Materials, Applied Science Publishers.

Fang, X. D. and Jawahir, I §., 1990, "An Expert System
Based on A Fuzzy Mathematical Model for Chip Breakability
Assessments in Automated Machining”, Proc. Int. Conf.,

ASME, MI'90, Vol. IV, Atlanta, Georgia, U. 8. A, pp. 31-

37.

Fang, X. D. and Jawahir, I. §., 1993, "The Effects of
Progressive Tool wear and Tool Restricted Contact on Chip

Breakability in Machining", Wear 160, pp. 243-252.

Jones, R. H., 1978, "Multivariate Autoregression Estimation

using Residuals”, Applied Time Sedeg Analysis, Academic

Press Inc., pp. 139-162.

Rumelhart, D. and McCleiland, J., 1986, Parallel Distributed

Processing, Vol. I, MIT Press, Canbridge, MA.

Dayhoff, I. E., 1990, Neural Network_Architectures, Van
Nostrand Reinhold, New York.

Volume I, 1994




