[sicicr 92 |

Singapore
Intermational
- Conference on
- Intelligent Control
and Instrumentation

PROCEEDINGS

- 17-21 FEBRUARY 1992
MARINA MANDARIN HOTEL SINGAPORE

#TccY Instumentation and ;P2&s  The Instimtion of Enginee
Rmee? Control Society, (NMO, IFAC) NSRS Smgapore
paa -t .



< <A

e

SYMBOLIC DERIVATION AND DYNAMIC SIMULATION OF
FLEXIBLE MANIPULATORS

M.E. Korayem”, Dr. Y. Yao' and Dr. A. Basy™

*Department of Mechanical Engineering, University of Wollongong, NSW 2500 Australia

*School of Mechanical and Manufacturing Engineering, The Universiry of New South Wales,
Kensington, NSW 2033 Australia

e ABSTRACT .

This paper presents development of a symbolic
derivation and dynamic simulatdon package for flexible
manipulators using a PC-based symbolic language
MATHEMATICA. The package, which takes the full
advantages of the symbolic language, is meant to be
versatile and applicable 10 multi-link flexible
manipulators. A case smdy involving a two-link
flexible manipulator by using recursive Lagrangian
assumed mode method is presented. The advantages
of expanding the dynamic equations into symbelic
form and simulation results are discussed. Techniques
for overcoming computer memory limitation,
sirnplifying intermediate derivation, and improving
efficiency of equarion generation are also discussed.
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kinetic energy of the system
gravitational potential energy
elastc potendal energy
generalized forces
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dynamics from the joint equation j
dynamics from the deflecdon equadon jf
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the deflection variable {amplimde) of the k-th
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r; the vector locating the centre of mass of link i
Xi» Vip %;  the dispiacement component of mode j of link |
i's deflection along X, y;and z,

[

am.,eyi j,e 2 the x., y; and z rotation components of link i,
along x;, y, and z, axes the length of link i
number of degrees of freedom

number of degrees of mode

Joint ransformation relates system i the poimt
before deflection to system i-1

Iink ransformation relates the defiection of

SIS R

system i to system E
the ransformaton from the base to the i-th link
4 vector from the base origin 1o a point fixed in
link i
N spatial variable along element i

Wi the transformation from the base to the system 7

g

1. INTRODUCTICN

The advantages of symbolic derivation of dynamic equations of
modon for robetic manipulators have been recognized in
relation to the needs for insight to understanding of the system
dynamics and for computational efficiency. The influence of
various parameters, such as masses, lengths, different modes,
flexural rigidities, eic., can be examined with relative ease.
Expanding the vector/matrix equations of motion resuits
equations which are even more computationally efficient than
the efficient recursive Newton-Euler formulation in
vector/matrix form [1].

Manual symbolic expansion of manipulator matrix equations is
tedious, time-consuming, and error-prone, because of the
significant complexity of intermediate steps. Automated
derivation of the equarions using a suitable symbolic langnage
is desirable. Symbolic derivation of dynamic equations of
manipulators has been reported and various computer programs
have been written. For instance, Leu and Hemati 1] have
presented a general computer procedure using the symbolic
language MACSYMA. These programs are applicable only o
Tigid manipulators.

For flexible manipulators, it is nearly impossible to expand the
equatons symbolically by hand. The much greater complexity
of flexible manipulator dynamics literally forbids any pracrical
manual symbolic derivations. Therefore, the advantages
promised by symbolic manipulation programs are even
desirable for flexible manipulators., The symbolic derivation of
flexible manipulator dynamic is a relatively new area.
Cetinkunt and Book [2-3] have written a symbolic
manipuiation program based on SMP and simnulated with a
VAX-11/750 micro computer.

This paper presents a method for deriving flexible manipulator
dynamic equations using a PC-based symbolic language



MATHEMATICA. MATHEMATICA was used mainly due t©o
its versatile symboiic manipuladon capabilites, such as,
- symbolic simplification of polynomials and rational
expressions, linearizaition of trigonomewic functions,
auromated evaluation of the relatve significance of terms and
subsequently, neglecting the less significant terms, and
symbolic integration and differendation [4]. It was used also
because of the PC pladfiorm it runs on, its user friendliness and
its integrated graphics environment. It can also communicate at
a high level with other programs using the MathLink
communication smndard.
The first step in improving the performance of flexible
manipalators is the development of a mathemartical frame work
for the modeling of these arms. Several recent works have
addressed the general modeling problem. Book, and Majere

{5] developed a formularion fora two beam component flexible
arm, using Lagrange's equations of modon. Book [6] recentdy
deveiop -a recursive Lagrangian formulation for flexible
manipulator. --Interacdon between gross motion and elastic
deformation response is considered in the formmuiaton system
and inertia mamices are recursively calculated. However no
simulation resuits are reported. The method employed here
follows closely to that of [6]), with slight modifications.
Finally, a case study involving a two-link flexible arm is
considered, where different number of modes are assumed and
tesults are compared with the rigid case. '

2. DYNAMIC MODELING OF A MULTI-LINK
FLEXIBLE MANIPULATOR

To derive equations of motion for the manipulator, we describe
the positon of a point on the beam with a combinadon of a
rigid body motion and flexible deflecton using a Bernoulli-
Euler beam model. A point along the link is described in a
fixed reference coordinate system by two transformartions
between the coordinate systems. The joint transformation A,

relares system i, the point before deflecton, to system i-1. The
link mransformation E, relates the deflection of system i 10
system 1. Let ihI be a vector from a point fixed in link I with
respect 1o Oixyz, then h, a vecor from the base origin to a point
fixed in Bnk i is given by '

b =W i, W
where WJ. is the transformation from the base to the i-th link
waj-ljﬁj-rAj:Wj-!Aj @
1
E=H+ 2 q;M; &)
10007
L1 0
H2 0010 (42)
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To find the velocity of a point on link i take the time derivatve
of the position: _

ili=wiihi+wiihi &

By differentiating (2), one obtains
Wj-ﬂi’j_iAj«-Wj_lAj (6)
_ Wjéﬁ'j_}Aj-i-?. WJ._IA}.JWJ._IAJ 7
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where Aj=Ujdj )
R
A=Uya + U ©
Uj =<':)A}/Bqj

-2 -2

Uzj—a Ajlaqj

We also need W}., Wj and_ 'ﬁ?j. These can be compured:
Wj=WjEj (10)
WeWE.WE . ap
W.zW.Ej-i—ZW.E.q-WjE ' (12)

Once the kinematic' of the system is set up, by using
Lagrange's equations of motior, the dynamic equation of a
flexible manipulator is obtained with generalized coordinates,
1. The joint equarionaj is gaiven as

d 3K, 9K 9V, oV

dt aqj Qj qj qi 1
2. The deflecdon equation ifis given as

d oK, 9K Y, 9V |

&l Vaqtaq g0 (14)
ag, %t T “hr .
The resuliant sysiem of equations can be organised in matrix
form as :

m, . mpm,
2t Z 2 =R 15
my, ., mgmy

h§1 thkq'h +h§k§11jfhkqhk=1?"jf {16)
Jz=R ' an

or
The elements of J and R are given in the appendix A and B.

3. SYMBOLIC IMPLEMENTATION OF THE
ALGORITHEM.

The matix form of manipulator dynamic equation was
expanded symbolically for any desired manipulator using
symbolic manipulation programs Mathematica [2].
Mathematica was selected to implement this algorithm mainly
for simplification and linearizaztion of wigonometric function,
and production of Forran code ready for computation in
solving dynamic equation and implementation of result in
graphics form in reduced time. Based on the formuladons
described in the previous secdon, a user-friendly computer
program has been developed in MAC-II to symbolically derive
the dynamic equatons of the flexible manipulator using
MATHEMATICA.

Inputs to the program from the user are the following;

Dn number of degrees of freedom
2) nm number of degrees of mode
A joint transformation

4) Ei link transformation

5 g the gravity vector

6) r, link mass centre positon vector

Given these parameter and the development of the previous
secron, the algorithm implemented in Mathematica is as
follows;

1) Select modce shape

2} Compute the martrices Ci, Cij’ Cij.‘, Ki}.‘



3) Compute the ransformation matrices W, from Eg. 2
4) Compute derivative of W, from Egs. 6 and 9

5) Compute the transformaton matices W from Eq. 10

'6) Comnrpute derivative of 'ﬁ’ from Eqgs. 11 and 12

7) Compure recursive cxpmsmon from Eqs. A9 and Al3

8) Compute R vector from Eqs. B1 and B13

9) Compute J vecior according to Eqs. Al and A8

9) Compute Eq, 17

With user inputs, such as the number of links and modes, the
cenre of mass and the gravitational field wvectors,
transformation matrices and jts derivatives are generated and so
are all coefficient matrices based on selecied mode shapes. The

recursive expressions -‘F 0 Q and PJ r_ggmr:d for R

and J matrices are then uenvcd Subsntunng them in Eq. 17
results in the dynamic model which usually rakes a very
complicated form. .
Table 1 MATHEMATICA program for.generating dynamic
equatons
“fThis program desives the equation of motion of a manipuiawor with flexible
fink using the Lagrmgxa.n formulation./”
For[j=1, j <=nj++,

TICI8(]]=/2 lﬂmsrm[{lll {=1.(0%.£00).4{1, xODH (=0, TI[B0G:

For(k=1, k <=nm.X++
Tlez)[BL]. B[k]].T{CHEU] BU:]L TIQIBGLAK]

For{f=1, { <=nm.f4+,
Tlez}B(5). B[ﬂ]—Dmﬂ[Bm BUTxLTIRIR(5]. 801 8{f]}=EL
Integrate{D[T{p2]B{j],B{f1].x]D[Tipz][B1}],80k]], =1}, TICI{L[5]. B{x], ST L TIDN(B
(01.81k]}=TICHB(). Bk [1+Sum{TIC) [8[j].B{k].Bf1]) T{ql[B[j1.8[f1]]{t]). [f1.1.nm
LT BG=TIMIBITIEBI. 8]+ TIMei[ BT T Be] B(j} 1+ Sum[TIA[B(j
1.802)TIg][813],8k2]][t]). (k2.1 ,nm } ], TEGH BLj3)=TICI[ B} +Sum{(TICI{B(i].8(
k11}+Transpose[TIC][R(]. 8k 1 1IN TIqI{B(]Blk11][d. (ki,1,nm]}]]

e LB DL L L ELE LTS ] Trmsfammoi-‘ M‘ml ELES DL LA ER L LR LT e LT} b
Forfj=1, j <=njtr,
T{Ai[BU]].‘ITHI[BUll TTUN (8] =DITTA] B Tiq} 8L (I TTUZHBGTI=D{TIVIl
B(iL Tl Bl (UL TIEY BT I=TTHI[B{])+Sum [TIMIIBLL. BIKII Tal(BL]. BKIN ) {
hl.nm}]:;'['E][Slmﬁml—'ﬁmpoum‘él[ﬂﬁll LTIDENB{=DITIEHBGLY 1
] <=
TOWIEGL  =TTWBIBG- 1L TIANBGILTIWIIBG] =TT l=Transpos<{ TCWIB(j11];
TOWBYBGII =TTWHB. TIEICGI L TIWBE[j) [ T]l=Transpose[T[WBI[B(7] J;
TIOWI[BG]]  =TIDWBI[B{j-11). TLAHB(]I+T(WB)(B}- 1]). TIDAYBL}:
TIOWB)E(I]  =TIDWIB[ILTIEBL]+TWIIBLIL.TIDEIBI);
TIDDW]IB{+1.B(])=TIDDWB][B[v].8[}-1]L.TTANB(I+ZTIDWB] (8-
1])-TIDAJB(]]+ TTWB1{B(}-1]]. TTU2][8[j] \Derivative [ LTI BUTNA2:
TIDDWEBHE(Y],BGR=TIDDW][B({v1, A1) TIEBE]+ZTIDWIB(I] TIDENBL 11
ha 2L T 2 DL L1} Rmivﬂ Expression jFthjﬁt md jgh RL L L LD EL DLl r L
TIFBH{Bn}={n]}=TIGI{Bln]};
Pur[;—n-l J>"'1 o
h>j, he,
T[FB][B{MJFGJ]—T[GHBD;]h'lTEgIBU]LT[A]EE[}+ll] 'I‘[FBI[B[h}.xﬁ-o-l]] 1%
-
T[FB][BUﬂ.ﬂh]]"T[FB][BD\H] 1=[h1] TTABG+1 T TEENRGLA(TIL ] 1;
For{hen-1. ho>=l, h-.
For{j=n.
TIFB][B[hl ﬂUJI—TTFBIEBEHilJID]] T[A][BUIHLR{TH TIELBMM,<{TII] L
For{f=l, j <=nj++,
For{h=1, b < b+,
TIFIBMH) ==TIGHBIh ]+ TIFBY A [h+1 ) m{i]L. TIANBh+1).m{TH] L
Forj=l, j=m,

Forlh=1, h<n h++,
TISNBR]Lx{}=TIAIB(+1]].TIFB]Bh+1]x{j+1]]. 'ITA][5[J+1] La{T]] 1
“**Yecwr of mnunmg dy'xmcs and external forcing terms R #eswssaznnan

Forlj=n, j <=nj++
'I'{QHBEn]}-TEDDW]{B{V] B{nl, o T]]+2Sum(Derivative{11[T{q){B{n}.BOk]1I{t]
TIDI1i8[n}.B{kk]],{xk.1.nm 1. T(OW](B(n}:r[T]] STIPIB(m]=TIx}{BG]]:
: Fer{f=1, f <=nm.f++,
TIRI[B[x}.B[{]}=2Trace{ (TIDDW{B{v].B{n]]. TIDIB{n]. B{1+2TIDWI(B{a]], Sum
[Derivative{ 1 T{q}{B{n]. Bk I[GTICI Blnl BEkk].BI£]], (k. 1.nm ).
TIWI[BIn),®([T]]]-Sum({Tlq)(8{n]. B TTKI(BIn1,BLi].BIA].{ if.1.am ) J+11L:
Forfj=1. j «n,jt+.
TIQB(]=TIDDW]IB{v1,8{j] Rm]*-?-s“ml'DmVluvemmtﬂ[B[lI B{kk1]1(t]
TDABL,Blkk]], (kk, 1 nm L TIDWIB(j1, ={T]1+TENB(]]. TIQUB +11);
TIENBLI=TIeIB {11+ TIEN(BE1) . TTAI[B+L1]. TIPI{B{H+11]
For{f=1. { <=nm.f++,
'TTRHBEJ'].B[ﬂ]'=-ZI‘nce{'I‘I WB[1L.TIMILBL].8f1]. TTA) B(j+1]]. TIQI{ B{j+11}+
(TIDDW){B{v),B{j11.T{D}[B{]).BLE}+ZTIDW][B{i]). Sum({Derivative[ 11T TIqi8(j],
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Bk ITIC) L BIKK)LBI ], [k L onen ) L TTWII8L3),%(T]) 1-
Sum{T[q](B3).BH1) (I TIKIIBEEii). 81, {1j, Lam ) }+T{gH=({T]). TEWIB(]].
TIAIBL+L. TIPHBG+H I+ Tigl{ATI TIWIBLL TICQBULEAI 1) )
For{i=1. j <=mj+
TTR}[EUH—ZTMUFWB][SU U] TIUNRGILTICIB I+
Tiglf{T.TIWB]I8-1 1. TIUY RGN TIPHEI+TIENBGI 1]
FanesseEEreume Compon:m of Inestia Mlﬂ'lx FAEEFEANYASANUSRAEN N R"
For{j=1. j <=n.j++,
For{h=j, h <=nh++,
TUNAL1.A(R]1=2TraceTIWBI[B(j1]]. TIUNR]. TIFBI[BLh],={i]]. TRV Bh}.x{T]
L.TIWE][Bh-11,7{TT] I, TUIBR].B(11=TIT}{BG)L.BH1 ] 1 ]
For{k=1. k <==nm.k+r.
For(j=1. j <=mj++
TIT8{]].8(x}.Bik]l= 2T: mcc[’T'[WB}[BLI 111 TIUN A1 TTW AN B(n].a{jl.
TO}B{n}LEk-TIWI[BIn],x{T]] }TINB(]BIn]80II=TITIBLI.B(n].B0k]] 1]k
For{k=1, k <=nm.X++,
For{j=1, j <=n-1j++,
For{h=j, h <=n-1h++,

~TUIBG).EMR], B[k]]-ﬂrmmWB][BLylll T{UNB L (TIFBER].nl5]}. TIM]{BLhR]

BIKLA(TI+TIWAIB[R] A, TIDI[BA].BIKI]) T[W][B[hlﬁmn 1k
For[k=1, X <=nm.X++,
For{j=2, j <=n.j++
For[h=1, h <= -l.h-i-r
TIIHR(.8(h].B[k]I=ZTrace[T| {WB][B[JH] TTF1iB{h]n{i}l. TIM)[8{h],8{k].n{T]].
TOWBRL=[THLTIEGLAhL B =T B (). 8(h].8k]T1T1
Forfk=1.X <=nm.K+,
For{f=1. [ <=naLf++,
T} B{n]. B{f].8(n}. 8{k1]=2ZTrace[T]S]{B{n], 8{k].B{ 11+ TICI{B(n],B(k].B001) 1ik:
For{k=1Xk <=nmJ)++,
For{f=1, { <=mm.f++,
For{j=1. ] <=n-1.j++
TOEEG1.8(6),80) BTkl I=2Trace[TUJIBUT TISTB{1,B(k], B} )+
TIMI{BG]. B 1. TU B {]). TIMI{ U] 8Lk =TT+ TICI B BRI A1)
For[k=l.Xk <=nmX++, .
For{f=i. { <—nm.f-|+
For[j=1, j <=n-1 j++,
Tmlﬂﬁl.ﬂlﬂ.ﬁ[ﬂ]-ﬁ[kn-ﬁrmmk}lﬁlﬁn[si[ﬂﬁ].B[k].ﬂlm‘l'
TOWIBLHL-TIMIBG].8{E]).TIW[Blx].x(j]]). T{DIBEnl Bk }L.T (W1 B{n}. [T
T(8{n].B{k},B0LBUEN=TTIB(].860,66nl, BTk
For{j=L, j <=n-1,j++.
For{h=j+1, h <=n-1.h4+,
TIHBL).B(£].B(h.B{k])=2Tracef Tl (BHHITSI{B(7),.B1k].BLf])+
TOWMGGT TIMLBGL 0L T @B TIMBC) S T
T{WHEBR] =1L D8R Bk TIWI{B(R],n{T]] k

By using the available mathemarical simplification processes,
the model is reduced to 2 much simpler form and the relatively
less significant terms, such as the second order terms of
deflection are further nczlectcd amomatcally,

4. EXAMPLES

Two examples are presented for a flexible manipulator. To
compute dynamic equation, parameters such as density and
Young's module etc must be provided. The bending deflection
of links are approximated with two assumed mode shapes.
Mode shapes are chosen from anaiydcal solution of a Euler-
Bernoulli beam eigenfunction analysis. The selection of best
mode shapes for a given flexible beamn has not been a clearly
answered in problem [4]. One should be able to simuiate the
effect of different mode shapes on the system behaviour easily,
For simplicity, the terms including the squares of deflections

are neglected, since they are considerably smaller, compared
with other terms. The effect of different mode shapes on the
system are considered. To verify the model, results are
compared with the same system with rigid arm.

4.1 Example 1: One Link Flexible Manipulator.

In this example, for the sake of simplicity, we deal with a
single link, and planer manipulator arm. Graviry effect was

- ignored in this case study in order to isolate the dynamic

fiexibility effects. The flexible link is a 1 m steel beam, whose
cross section is 5 mm by 100 mm, mass density is p= 7.86 x
10" kg/mm?®, and Young's module is E=2.1x10'! pa. Figure
12 shows the torque pattern to be exerted by the acmator. The
Tesponses were computed by solving dynamic equation, where

" the arm is assumed to be completely rigid (Fig. 1b). Figure 2

shows the response of the flexible arm when the torque



commend in Fig. la is applied.
4.2 Example 2: Two Link Flexible Manipuiator.

- In this example, only the link flexibilides are considered and
the joint flexibilities are not included. The bending deflections
of links are approximated with simply supported mode shape
for cach link, Now, let us consider the case that one would
like to use different set of mode shapes. The necessary change
required in the model is to re-evaluate C,, C,, Ci;g, ij_ terms
with new mode shapes. For the case where tﬂc robot becomes
more rigid, EI becomes larger, joint variable response of the
sysiem converges to the rigid arm. The responses were
computed by soiving dynamic equation, where comparison of
the flexible responses of the system with rigid response are
shown in Fig. 3, Comparison of the flexible torques of the

- system with load and withourt payload are shown in Fig. 4.

5. DISCUSSION

" The automatic equation derivadon process is highly desirable
while manual-symbolic expansion of manipulator maaix
equations is tedious, ime-consuming, and error-prone. The
derivadon of dynamic eguadons involves a large number of
symbolic operauons. Deriving the dynamic equatons
symbolically, insight on the dynamics of a manipulartor can be
generated in two ways; one is examining the terms of the
dynamic equadons and the other is using the dynamic equations
to simuiare individual force components.

Another merit of expanding the vector/matrix equations of
modon is that, if most manipulator Links are symmenic in
geomewy, the resuitant equations are more computationally
efficient than even the efficient recursive Newton-Euler
formulation in vector/matrix form which is in a numerical
approach. Efficiency in deriving the dynamic equations is
another factor to be considered. Improvement to the efficiency
can be achieved by exploiting the symmetry of the coefficients
and oniy operating on the diagonal elements of a product of
diagonal matrices, instead of multiplying them explicidy.

This paper presents a technigue for dertving the scalar form of
flexible manipulator dynamic equations by symbolically
expanding the Lagrange's equations using the symbolic
language Mathemanca. The denivation processes are shown in
Table 1. In the present method, other than the muldplication of
cach of the two mamices explicitly, the unnecessary operarion
parts which quickly reach a zero value are eliminated.
Especially, in the compuaton of JF,, -‘Fh, 2., Q_j and P,
using marrices, many terms are computed which eventually aré
dropped (since at the end of chain of marrix muldplications they
are high order of deformation). Moreover, the other
contibution of the paper is to simplify trigonomerwic function
by using Triglinear in each necessary step. Furthermore, it is
noted that the computer system applied in this paperis a MAC-
II only, and the present method becomes a very easy and
powerful 100l for deriving the dynamic equations of motion of
flexible muit-fink,

6. SUMMARY AND CONCLUSION

This paper presents a technique for deriving the scalar form of
flexible manipulator dynamic equatons by symbolically
expanding Lagrange matrix equations using MATHEMATICA.
The algebraic dynamic robot modeling program has been
implemented o enable the control engineer to formulate and
gain physical insight into Lagrangian dynamic robot models for
the systematic design. The advantages of the method presented
in this paper include less significant terms can be examined and
neglected in different phases of the symbolic derivation,
number of modes and mode shapes can be easily varied and
evaluated, and insights to influences of various terms on the
manipulator dynamics can be achieved. Simulation results are
discussed and shown that the method worked very well for this

example case.
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Appendix A
The elements of J marrices are given below;
T

g 31T
1,=2Tr (W, USF UTW] ) (A1)
For h=n ; j=l...n
Jp=2Tr (W, UJW D W]} (A2)
For h=j,..n-1 ; j=1,..n-1
T
35=2Tr (W, U IF, ML W, D 1W}) (A3)
For h=1..j-1 ; j=2...n
i waT ool
T =2Tr (W, UPF, M1 W) (A.4)
For h=j=
1, =2Tr{C_} (A.5)
For h=i=1,...n~1
i nqT
Ijﬁk=2Tr{Mij¢ijk+Cjkf} (A.6)
Forh=n ; j=1,..n-1
- T
Ley=2Tr(WMW D W, ) (A7)
For h=1,..n-1 ; j=i+l,..n-1
- T j T '
Lo =2Tr (WM, (I8, My, W, D, JW] (A.8)
For h=j=n
=G
A9
For j<h<=nn i @9
P .
F=EaA JF, (A.10)
For j==h<n
" =G +PF (EA. )T (A
A 1
Forh =lm.n-l & §ufion )
i _h T
JFh" Fh+1Ah+1 (A1)
For j=1,...n-’1 ; h=1,_“n ’
i =A B T a
Jgh"Aj-o-1 Fh-n-l(Ah-H) (A.13)



Appendix B
In this appendix the elements of R marrix are given below
R,=-2Tr{U,Q,)+g"U P +F,, ®.1)

— T
R= 2Tr{WJ._1UJ.QJ.}+g Wj-i UP+F, B.2)

g 1y,
R,=2Tr((W, D #2W, 34, C, W)

s T
-E-:E K78 W Q (B.3)

n “af
R=2Tr(WMA, Q.+

D_+2W. $4.C. JWT
(W, 03t 2W; 205 Cpd W -

e
T g
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supported mode shape.
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