
 1 Copyright © 2004 by ASME 

Proceedings of IMECE04 
2004 ASME International Mechanical Engineering Congress 

November 13–20, 2004, Anaheim, California USA 

IMECE2004-60597 

EFFECTIVE AUTOMATIC RECOGNITION OF CULTURED CELLS IN BRIGHT FIELD IMAGES 
USING FISHER’S LINEAR DISCRIMINANT PREPROCESSING 

 
 

Xi Long 
Mechanical Engineering Department 

Columbia University 
New York, NY 10027 USA 

xl2002@columbia.edu 

W. Louis Cleveland 
The Department of Medicine at St. 
Luke’s Roosevelt Hospital Center 

and Columbia University 
 New York, NY 10019 USA 

wlc1@columbia.edu 

Y. Lawrence Yao 
Mechanical Engineering Department 

Columbia University 
New York, NY 10027 USA 

yly1@columbia.edu 

 
 

ABSTRACT 
Cell recognition in bright field microscopy is an inherently 

difficult task due to the immense variability of cell appearance. 
In general, an experienced human observer is required for 
reliable recognition. The requirement for a human observer can 
greatly restrict the throughput of systems that assay cells at the 
single cell level, especially when the assays require 
micromanipulation of cells. In this paper, we describe an 
algorithm for automatic recognition of cultured cells in bright 
field images. To develop this algorithm, we used two statistical 
data processing techniques, Principal component analysis 
(PCA) and Fisher’s linear discriminant (FLD) in conjunction 
with a feed-forward neural network. Both PCA and FLD were 
employed as preprocessing and systematically studied under 
various conditions, including variations in focus, illumination, 
cell size and image noise. The algorithm based on FLD 
preprocessing is shown more effective in all cases primarily 
owing to its ability to maximize the ratio of between-class 
scatter to within-class scatter. The optimized algorithm has 
sufficient accuracy and speed for practical use in robotic 
systems capable of automatic micromanipulation of single 
cells. 

Keywords: Cell recognition, Fisher's linear discriminant, 
Principal component analysis, Neural networks. 

1 INTRODUCTION 
Recent progress in the development of methods for 

molecular genetic analysis (e.g. RT-PCR (reverse transcription-
polymerase chain reaction), microarrays) has brought 
sensitivities to the level where single cells can be analyzed [1]. 
However, to carry out assays on significant numbers of cells, 
high throughput robotic systems are needed. These systems 
require identification of individual cells (often in cell cultures) 
for micromanipulation and subsequent molecular analysis. 
Identification of cells in cultures is a difficult task that is 
normally done by an experienced human observer using an 

optical microscope. However, the use of human observers 
represents a severe impediment to the development of high 
throughput robotic systems. Therefore, there is a major need for 
algorithms that permit automatic recognition of cells in images 
obtained with computer- controlled microscopes equipped with 
electronic cameras. 

One approach to automatic cell recognition is to use 
fluorescent probes that have a chemical specificity for cell 
organelles. For example, DNA intercalators are routinely used 
to stain nuclear DNA for cell identification [8]-[11]. However, 
this approach can consume one or more fluorescence channels 
just for the purpose of cell identification. It is highly desirable 
to identify cells with a method that uses transmitted light 
illumination, thereby permitting all of the fluorescence 
channels to be used for other purposes.  

Given the variability of cell size and morphology, the 
presence of “trash”, as well as variations in microscope 
parameters, such as focus and illumination, it is a challenging 
task to develop a robust algorithm for automatic cell 
recognition. Early work on automatic cell recognition has been 
dominated by attempts to identify image information that is 
relatively invariant [4],[5] and which, therefore, facilitates 
algorithms based on heuristic rules. These approaches tend to 
be very sensitive to changes in cell type. For example, cell lines 
with different morphologies require independent optimizations 
that involve consideration of detailed features. In addition, 
these approaches appear to have poor tolerance to variations in 
focus and illumination conditions. 

An alternative to the classical image analysis approach 
described above is the use of algorithms based on machine 
learning techniques, of which several are currently available 
[2].  Algorithms of this type have the compelling advantage that 
end-user programming is largely eliminated. Variations in cell 
type and other conditions are simply accommodated by 
training.  
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Among machine learning techniques, Artificial Neural 
Networks (ANN) have been extensively explored and are 
considered advantageous because they are able to capture 
complex, even nonlinear, relationships in high dimensional 
feature spaces that are not easily handled by algorithms based 
on heuristic rules [3].  

Successful ANN-based cell recognition algorithms that use 
pixel values directly from primary gray-scale images (bright 
field) have been described [6],[7]. However, these networks can 
be very complex due to the large numbers of inputs. This leads 
to slow performance and difficulty in training. In response to 
this problem, powerful statistical data processing techniques 
have been used in preprocessing to generate more abstract 
representations that are better suited for subsequent neural 
network analysis. For example, Nattkemper et al. applied 
Principle Component Analysis (PCA) in evaluation of 
fluorescence microscopy images [8]-[10]. Kämpfe et al. 
combined Independent Component Analysis (ICA) and Self-
Organization Maps (SOM) for classification of cells with 
fluorescent nuclei [11]. These applications are successful in 
dealing with images in which nuclei, stained with a fluorescent 
probe, have a characteristic color and show considerable 
uniformity with respect to size and shape. In images obtained 
with transmitted light illumination, there is a greater variation 
of whole-cell size and shape. In addition, cellular debris and 
other forms of “trash” can be similar in appearance to intact 
cells. Therefore, bright field images of unstained cells represent 
a more difficult challenge which requires a novel approach for 
robust cell recognition. 
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Fig.1. Illustration of the recognition process. 

 
In our study, we have developed a cell recognition 

approach based on feed-forward neural networks in 
combination with improved preprocessing. Initially, we 
explored PCA preprocessing as described in [8]-[10] and found 
it unsatisfactory. Subsequently, we explored Fisher’s Linear 
Discriminant (FLD) preprocessing and found that FLD in 
combination with feed-forward neural networks gave 
performance sufficient for use in a practical robotic system for 
single cell level molecular analysis. Although FLD has been 

used in computer vision strategies by others [15]-[17], to our 
knowledge, it has not been used in combination with neural 
networks for cell recognition. In what follows, we present a 
quantitative and systematic evaluation of PCA and FLD as 
preprocessing steps for optimized feed-forward neural 
networks. This evaluation has used images of cultured cells as 
well as images of polymeric microspheres as models of cells. 

2 METHOD 
We followed the cell recognition strategy described by 

Nattkemper et al. [8]-[10]. The process involves two stages: 
preprocessing and classification. The major task of 
preprocessing is to derive a representation of cells which makes 
subsequent classification computationally effective and 
insensitive to environmental changes by providing the classifier 
only with information essential for recognition. In the 
classification stage, a neural network is trained to recognize if 
an image patch contains a centered cell body. This is done with 
image patches represented by feature vectors derived in 
preprocessing.  

As illustrated in Fig.1, cells in a digitized microscope 
image are detected in the following steps: First, for each pixel p 
in the microscopic image, a sub-image which consists of its 
m×m neighborhood is extracted and mapped to a so-called 

confidence value C[p]∈[-1,1] by the classifier, where the size m 
can be adjusted to accommodate cell size. After all the pixels 
are processed, a new image, called a confidence map is created. 
Pixels in the confidence map are the confidence values of their 
corresponding sub-images in the original microscope image and 
form “mountains” with large peaks that represent cell positions. 
The cell positions can then be easily found by identifying local 
maxima in mountains. To increase speed, only patches with 
average pixel intensities above a user-defined value are 
analyzed. In the following subsections, we introduce the 
methods adopted for each of the above two stages. 

2.1 Learning Set 
Figure 2 shows a learning set used for deriving the 

representation of cells and training of the ANN. This set was 
manually selected from the digitized microscope images. A 
similar set was used for microspheres (not shown). The 

learning set Ω is composed of two subsets (Ω = Ωpos+Ωneg). 

Ωpos contains patches of centered cells and is labeled “Cell”. 

All images in Ωpos belong to a single class. Ωneg is labeled 
“Non-cell” and is divided into 10 classes according to the 
similarity of the images. For example, classes 1-8 contain a 
specific fraction of a cell. Images in class 9 are almost blank 
and class 10 includes images with multiple fragments of 
different cells. 

2.2 Preprocessing 
Images in the learning set are represented by viewing each 

image as a point in a high dimensional image space. 
Considering the complexity and vastness of image space, both 
PCA and FLD are employed to reduce it to a subspace with 
much lower dimensional. Our method begins with the 
following presuppositions: under various transformations, 
images of a particular class of objects occupy a relatively small 
but distinct region of the image space; different classes of 



 3 Copyright © 2004 by ASME 

images occupy different regions of image space. Both PCA and 
FLD preprocessing techniques exploit these assumptions, but in 
different ways and therefore exhibit significantly different 
properties. 

 

 
Fig.2. Sample cell patches in the learning set. All patches are 

sized 25×25 pixels. 

2.2.1 PCA method 
Principal component analysis (PCA) is a commonly used 

technique for dimensionality reduction in computer vision, 
particularly in object recognition [8]-[10], [12]-[14]. It uses a 
set of orthogonal vectors (known as Principal Components) 
pointing in the directions of maximum covariance in the data as 
the basis of the new subspace. If the dimension of the subspace 
is given, PCA minimizes the mean square reconstruction 
(projection) error, and provides a measure of importance for 
each axis.  

More formally, suppose the learning set x is composed of n 
sample images (x={x1, x2, … xn}), where each image is 
represented by a vector xi in an N-dimensional image space. 
The goal is to find a linear transformation that maps the input 
set to an M-dimensional subspace, where M<N. After defining  
x'={x'1, x'2, … x'n}={(x1-  ), (x2-  ),…(xn- )}, where   is 

the sample mean, the new feature vector set y={yi} can be 
defined by the linear transformation: 
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called total scatter. Note that the last term of (3) is equal to the 
variance of y: 
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Therefore, minimizing the mean square reconstruction 
error is equivalent to maximizing the projection variance. The 
optimal transformation matrix Wopt in PCA then can be defined 
as: 

Wopt = WSW
T

T

W
maxarg                                                     (5) 

A larger eigenvalue means more variance in the data 
captured by the corresponding eigenvector. Therefore, by 
eliminating all eigenvectors except those corresponding to the 
highest M eigenvalues, the feature space for recognition is 

reduced from the original N-dimensional image space to the 
subspace spanned by the top M eigenvectors. The eigenvectors 
have the same dimension as the original images and are 
referred to as eigenfaces in a face recognition context [14] and 
eigencells in a cell recognition context [8]-[10]. 

It is worth noting that although the PCA projection is 
optimal for reconstruction from a low dimensional basis, it is 
not optimal from a classification point of view, for it only 
considers the total scatter of the whole sample set and makes no 
discrimination within the sample points (images). In PCA, the 
total scatter is maximized. Therefore, there is not only 
maximization of the between-class scatter, which is useful for 
classification, but there is also maximization of the within-class 
scatter, which should be minimized. Consequently, PCA retains 
or even exaggerates unwanted information such as illumination 
variation and out of focus blur during the projection process. 
This unwanted information, unfortunately, may play a 
dominant role in many classification applications. Points from 
individual classes in the low dimensional feature space may 
therefore not be well clustered, and even worse, the points from 
different classes could be mixed together. 

2.2.2 FLD method 
As described above, the PCA method treats the learning set 

as a whole. This leads to the following consideration. Since the 
learning set is labeled in different classes, it should be possible 
to use this information to build a more reliable representation 
for classification in the lower dimensional feature space. The 
key to achieving this goal is to use class specific linear 
methods. Fisher's linear discriminant (FLD) is one of the most 
popular examples of a class specific method. It considers not 
only between-class variation but also within-class variation, 
and optimizes the solution by maximizing the ratio of between-
class scatter to within-class scatter. This can be expressed in 
mathematical terms as follows.  

Again, assume that each image in the learning set belongs 
to one of c classes {C1, C2,…, Cc}. The between-class scatter 
matrix SB and within-class scatter matrix SW can be defined as: 
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where  is the grand mean, i is the mean of class Ci and 
mi denotes the number of images in class Ci. 

The objective of FLD is to find the Wopt maximizing the 
ratio of the determinants of the above scatter matrices: 
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Wopt is known to be the solution of the following 
generalized eigenvalue problem: 

0 WSWS
WB

                                                             (9) 

where Λ is a diagonal matrix whose elements are the 
eigenvalues. The column vectors w i (i = 1,…, m) of matrix W 
are eigenvectors corresponding to the eigenvalues in Λ. Note 
that the upper bound on m is c-1, because there are at most c-1 
nonzero generalized eigenvalues. 

It should be pointed out that the solution of the generalized 
eigenvalue problem in (9) is known, but many standard 
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methods fail in our case due to the high dimensionality. 
Therefore, the choice of a stable numerical algorithm is non-
trivial. In this work, we implemented the well-known QZ 
algorithm introduced and described in detail by Moler and 
Stewart [18].  

 
(a) 

 
(b)  

Fig.3. Comparison of PCA and FLD by projecting the learning 
set to 3D linear subspace with PCA and FLD respectively. X1, 
X2 and X3 are directions corresponding to the first three 
components of the projected learning set. (a) Projected with 
PCA; (b) Projected with FLD. 

 
Compared to the PCA method, the representation yielded 

by FLD tries to reshape the scatter instead of conserving its 
original details. It emphasizes the discriminatory content of the 
image. To illustrate the benefit of FLD projection, we projected 
the learning set described in Section II-A to a three dimensional 
subspace using PCA and FLD respectively. Results are shown 
in Fig.3. One can clearly see that although the point distribution 
range of PCA projection is greater in all three directions, (i.e. 
the total scatter is larger), the points from different classes are 
somewhat mixed together. On the other hand, the points from 
different classes in FLD projection are better separated and, 
therefore, more suitable for classification. 

2.3 Classification 
The classifier we used in this paper is a feed-forward 

Artificial Neural Network (ANN). It has been widely used and 
proven to be a powerful tool for classification tasks. The ANN 
uses the input-output mapping learned from a set of training 

samples to generalize to data not “seen” before. The training of 
an ANN involves gradually modifying the synaptic weights 
according to the back-propagated output error for each sample 
until the desired average responses are obtained on the entire 
set.  

The network structure was designed to obtain maximal 
flexibility by allowing the size of the network to be adjusted by 
easily changing only a few parameters. Besides the input layer, 
three layers were used: two hidden layers, and one output layer. 
The size of the neural network can be adjusted according to the 
size of training set and dimension of input vectors. In order to 
be able to establish all possible representations, a bias weight in 
addition to the inputs was included in each neuron. The 
hyperbolical tangent sigmoid function, TANSIG(x), was used 
as the transfer function throughout the network. 

When a network is trained by examples, the most 
important issue is how well it generalizes to new data. It is 
known that the capacity for generalization greatly depends on 
the structure of the neural network [2]. Generally, more neurons 
in the hidden layers give the system more capacity to partition 
the data. However, if the network has too many neurons, it will 
learn insignificant aspects of the training set and lose its 
generalization ability, a phenomenon termed overfitting. 
Unfortunately, there is no simple rule to determine how many 
hidden units are required for a given task. A rule of thumb is to 
obtain a network with the fewest possible neurons in the hidden 
layer. Using the smallest possible size not only helps improve 
generalization, it also increases the computational speed of the 
system for there is roughly a linear relationship between 
network size and speed [19]. 

One commonly used method to train an ANN with good 
generalization ability is to start with a small initial network and 
gradually add new hidden units in each layer until efficient 
learning is achieved. This approach has many drawbacks, 
among which are: slow learning and difficult-to-avoid local 
minima. To avoid these drawbacks, we employed an alternative 
strategy referred to as pruning, which starts with a large 
network and excises unnecessary weights and units. The 
training results of our ANNs are shown in Section 4.1. 

3 MATERIALS AND EXPERIMENTAL CONDITIONS 
Both microspheres and living cells were used as testing 

materials in our study. The microspheres were 25μm-diameter, 
dry-red Fluorescent Polymer Microspheres from Duke 
Scientific (Cat. No. 36-5). The cells used were K562 chronic 
myelogenous leukemic cells (ATCC; Cat. No.CCL-243) grown 
at 37.0 oC in BM+1/2 TE1+TE2 +10% fetal calf serum (FCS) 
[20]. For microscope observation, cells and microsperes in 
culture medium were dispensed into polystyrene 96-well 
microplates, which have well bottoms that are 1mm thick. 

An Olympus Model-CK inverted microscope equipped 
with a 20× planachromat objective and a SONY DSC-F717 
digital camera was used to obtain digitized images.  

The image processing, ANN training and classification 
programs were written in MATLAB code and implemented in 
MATLAB Version 6.5.0.180913a (R13) supplemented with 
Image Processing Toolbox Version 3.2 and Neural Network 
Toolbox Version 4.0.2. A standard PC equipped with an Intel 
Pentium 4/1.6G processor with 256-MB RAM was used. 
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In order to train and optimize the neural classifier, a set Ф 

of 1700 input-output pairs (Ф = {(Ii, Oi)}, i=1,2,…,1700) was 

created by projecting the learning set Ω (containing patches of 
25×25 pixels) to linear subspaces using both PCA and FLD 
methods. Accordingly, the set was also composed of two 

subsets Ф = Фpos+Фneg. The positive subset Фpos = {(Ii
pos, 1)} 

consisted of feature vectors Ii
pos computed from the image 

patches in Ωpos, together with the target output classification 

value Oi
pos=1. The other subset Фneg = {(Ii

neg, -1)} consisted of 

feature vectors Ii
neg computed from image patches in Ωneg and 

the target output value Oi
neg= -1 of the classifier. This set was 

further split into a training set of 1400 samples and a test set of 
300 samples. The training set was used to modify the weights. 
The test set was used to estimate the generalization ability. 

4 RESULTS AND DISCUSSION 

4.1 ANN Optimization and Training 
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Fig.4. Effect of neuron number in the first hidden layer on the 

generalization properties of the ANN. The size of the second 

hidden layer was kept constant at five neurons. 

 
We first used an empirical method [19] to determine an 

upper bound for each layer. Then the optimal number of 
neurons in the two hidden layers was estimated by 
independently decreasing the number of hidden neurons in each 
layer from the upper bound to 1, and evaluating the 
generalization properties of the ANN on the test set at each 
step. To avoid entrapment in a local error minimum, every 
training session was repeated five times and the best weights 
were used for each number of hidden neurons.  

Figure 4 illustrates the generalization properties of the 
ANN for different numbers of neurons in the first layer, while 
keeping the size of the second hidden layer constant at five 
neurons. The mean squared error (the difference between the 
actual output and the desired output for the samples in the test 
set) was plotted vs. the number of neurons. The error rate 
improved as the number of hidden neurons was increased, but 
leveled out at around 40 neurons when preprocessed by PCA 
and 37 neurons by FLD. The experiment was repeated with the 
number of neurons in the second layer changed from 1 to 10 
and similar but worse results were obtained (not shown). Based 
on above results, we chose 40 neurons for PCA preprocessing 

and 37 for FLD preprocessing in the first hidden layer and 5 
neurons in the second hidden layer for our subsequent studies. 

4.2 Microsphere Experiments 
 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Fig.5. Typical sample images for focus variation experiment. (a) 

Focused: the focal plane is at the equator of the microsphere; 
(b) 12.5μm: the focal plane is at the supporting surface; (c) 

25μm: the focal plane is 25μm below the equator and (d) 

37.5μm: the focal plane is 37.5μm below the equator. 
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(b)  

Fig.6. Misclassification rates with different focus conditions and 

preprocessing methods. (a) Scheme1: trained with only focused 

samples and applied to all samples; and (b) Scheme 2: trained 

with focused and 25μm focus variation samples and applied to 

all samples. 

 
In order to study systematically the factors that affect 

recognition accuracy and to compare the relative efficiencies of 
PCA and FLD preprocessing, we used microspheres as model 
cells. The microspheres are very uniform in size, shape and 
color and are stable over time. This facilitates experimental 
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reproducibility and makes it possible to create ideal scenes in 
which critical factors can be individually isolated and well 
controlled. Furthermore, the ability to create scenes with very 
small within-class variation by using microspheres permits a 
test of the hypothesis that FLD gives better performance 
because it controls within-class variation. 

 

 
(a) 

 
(b) 

 
(c) 

 
                   (d) 

 
                  (e) 

Fig.7. Typical sample images for illumination variation 

experiment. Images were taken under five light intensity levels 

of the microscope. (a) Intensity level 3: representing extremely 

weak illumination; (b) Intensity level 4: representing weak 

illumination; (c) Intensity level 5: representing normal 

illumination; (d) Intensity level 6: representing strong illumination 

and (e) Intensity level 7: representing extremely strong 

illumination. 
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(b) 

Fig.8. Misclassification rates with different illumination 

conditions and preprocessing methods. (a) Scheme1: trained 

with only level 5 and applied to all levels; and (b) Scheme 2: 

trained with level 4, 5 and 6 and applied to all levels. 

 
 

Many experimental factors can affect bright field images of 
living cells. Among these are variations in focus, illumination, 
and image noise. These factors could in turn affect cell 
recognition accuracy. For example, variation in focus is 
especially important, since it is often the case that there is no 
single focal plane that is optimal for all the cells in a 
microscope field. Another factor that could affect the 
recognition efficiency is the variation in size. In view of these 
considerations, we have systematically studied the effects of the 
above factors on recognition accuracy.  

For all microsphere experiments, recognition was 
performed as described in the METHODS section. For FLD 
preprocessing, the dimensionality was reduced to 10. For PCA 
preprocessing, results are shown when both 10 and 20 principal 
components were used since it has been suggested that more 
principle components can improve performance [17]. 

 1) Focus variation 
We created four image groups at different focal planes 

relative to the microsphere equatorial plane to quantify the 
effects of focus variation, with all other conditions unchanged: 
(a) Focused: the focal plane is at the equator of the microsphere 
(i.e. 12.5μm above the supporting surface); (b) 12.5μm: the 
focal plane is at the supporting surface; (c) 25μm: the focal 
plane is 25 μm below the equator and is within the plastic 
bottom of the microplate well and (d) 37.5μm: the focal plane is 
37.5 μm below the equator. Typical sample images are shown 
in Fig. 5. Two experimental schemes were performed on these 
images. In Scheme 1, each method was trained on the first 
group and then tested on all groups. In Scheme 2, each method 
was trained on the first and third group and then tested again on 
all groups, in which the test on the second group was an 
interpolation test and on the fourth group was an extrapolation 
test. Fig. 6 shows the experimental results. 

2) Illumination variation 
Images were taken under five light intensity levels of the 

microscope: (a) Intensity level 3: representing extremely weak 
illumination; (b) Intensity level 4: representing weak 
illumination; (c) Intensity level 5: representing normal 
illumination; (d) Intensity level 6: representing strong 
illumination and (e) Intensity level 7: representing extremely 
strong illumination. Typical sample images from each level are 
shown in Fig. 7. Two experimental schemes were performed 
using these images. To create the situation of small within-class 
variation, ANNs based on both PCA and FLD were trained 
with images only in Intensity level 3 and then tested with all 
levels in Scheme 1. In Scheme 2, within-class variation was 
purposely introduced by training the neural network with 
Intensity levels 4, 5 and 6 together and then tested again with 
all levels. Fig. 8 (a) shows the result of Scheme 1 and Fig. 8 (b) 
shows that of Scheme 2. 

3) Size (scale) variation 
In the size variation experiment, computer generated 

images of microspheres with 0%, 5%, 10%, 15% and 20% 
variations in size were used as shown in Fig. 9. Again, two 
schemes were used to exam the effect of size variation on both 
PCA and FLD methods. In Scheme 1, ANNs were trained with 
only microspheres having 0% size variation and tested to all 
sizes. In Scheme 2, they were trained using images with both 
0% and 15% variation. The patch size used in both schemes 
was fixed to a value that was big enough to contain the biggest 
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microspheres. The experimental results of the two schemes are 
shown in Fig. 10 (a) and Fig. 10 (b), respectively. 
 

 
(a)  

 
(b) 

Fig.9. Typical sample images for size variation experiment. (a) 

Image of microspheres with no size variation; (b) Image of 

microspheres with 0%, 5%, 10%, 15% and 20% size variation. 
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(b)  

Fig.10. Misclassification rates with different size variations and 

preprocessing methods. (a) Scheme 1: trained with only 0% 

variation samples and applied to all samples; and (b) Scheme 2: 

trained with 0% and 15% variation samples and applied to all 

samples. 

 
4) Noise variation 
The noise used in noise variation experiments was zero-

mean Gaussian noise with different standard deviations. An 
image set with five groups of images, each have different noise 
levels was created by adding computer generated noise to 
original images. The original images (standard deviation equals 
zero) belonged to the first group. Groups 2, 3, 4 and 5 
contained images in which the standard deviations equaled 15, 
30, 45 and 60 respectively. Sample images from each group are 
shown in Fig. 11. The two experimental schemes were: first, 
both PCA and FLD were applied to only Group 1 and then 
tested on all groups. Second, the training set was expanded to 
include both Groups 1 and 4. Fig. 12 (a) shows the result of 
Scheme 1 and Fig. 12 (b) shows that of Scheme 2. 

 

 
(a) 

 
(b)  

 
(c)  

 
                       (d) 

 
               (e) 

Fig.11. Typical sample images for noise variation experiment. 

The noise used was zero-mean Gaussian noise described by 

different standard deviations. (a) STD=0; (b) STD=15; (c) 
STD=30; (d) STD=45; (e) STD=60. 
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(b)  

Fig.12. Misclassification rates with different noise conditions and 

preprocessing methods. (a) Scheme1: trained with STD=0 

samples and applied to all samples; and (b) Scheme 2: trained 
with STD=0, 45 samples and tested on all samples. 

 

Some interesting points were revealed in these 
experiments. First, as one can see from the results, both PCA 
and FLD preprocessing performed well if presented with 
images in the test set which were selected from the group(s) 
used for training. This is reasonable because the classifiers have 
learned very similar data during the training. Second, 
increasing the number of principal components in PCA 
preprocessing did improve the performance, but it was still no 
better than that of FLD. Furthermore, both preprocessing  
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(a) (b)  

 
(c)  

Fig.13. Sample images for living cell experiment. (a) Scenario 1: cells are almost completely separate and the background is clean; (b) 

Scenario 2: most cells are attached to each other and there are trash and debris in the background; (c) Scenario 3: most cells are 

aggregated together and the background is full of trash and debris. 

 
methods performed similarly in Scheme 1 for each of the 
factors studied, but very differently in Scheme 2, with the error 
rate of FLD being much less than that of PCA in both 
interpolation and extrapolation tests. The reason lies in that, for 
Scheme 1, all images in the training set came exclusively from 
a single group, in which all microspheres had very 
homogeneous appearance. Therefore, when we extracted 
patches from these images and classified them into classes 
similar to those in Fig. 2, the within-class variations were very 
small. As expected, FLD was not superior to PCA in this case, 
since the variation was almost entirely between-class variation. 
Scheme 2, on the contrary, purposely introduced within-class 
variation into the training set by using images from different 
groups. In this case, the FLD method could learn the variation 
trend from the training set and choose projection directions that 
were nearly orthogonal to the within-class scatter, projecting 
away variations in focus, illumination, size and noise; the PCA 
method could not. Consequently, the generalization ability of 
the neural network with FLD preprocessing was greatly 

improved and substantially better than a similar neural network 
with PCA preprocessing in Scheme 2-type experiments. 

4.3 Living cell experiments 
The method introduced in this paper was also 

systematically studied using digitized microscope images of 
living cells. The testing images were divided into three groups 
denoting three different scenarios. Scenario 1 is the simplest 
case where cells are almost completely separate (i.e. not 
aggregated) and the background is clean. Scenario 2 is more 
complex where most cells are attached to each other and there 
are trash and debris in the background. Scenario 3 represents 
the most complex case where most cells are aggregated 
together and there is more trash and debris in the background. 
The three microscope images used in the test are shown in Fig. 
13. These images show considerable out of focus blur, cells in 
clumps occupying multiple focal planes, as well as size 
variations.  
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(a)  

 

 
(b) 

Fig.14. Detection results of our classifier (scenario 3). The cell positions detected were denoted by white crosses in the images. (a) by 

ANN with PCA preprocessing (Sensitivity: 82.5%, Positive predictive value: 83.02%); (b) by ANN with FLD preprocessing (Sensitivity: 

94.38%, Positive predictive value: 91.52%). 

 
To obtain a standard for evaluation of our classifiers, pre-

selected microscope images were evaluated independently by 
three human experts. Experts were asked to identify objects 
with the normal appearance of a viable cell and to exclude 
ghosts of cells, i.e. objects having shape and size similar to 

viable cells but lower contrast. One list called “Human 
Standard” was created by merging the three lists of all human 
experts. To be included in the list, an object had to be identified 
as a cell by at least two experts. 
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In experiments with living cells, images were reduced to 
10-dimensional subspaces for both PCA and FLD methods. 
Results obtained with our classifiers were compared to the 
Human Standard by evaluating sensitivity (SE) and positive 
predictive value (PPV) as described previously [8]. The SE of a 
classifier is defined as the percentage of cells in the reference 
standard, which are identified by the classifier and the PPV is 
the percentage of classifier detected cells which are also listed 
in the reference standard.  

The cell positions detected by our classifier are denoted by 
white crosses in the images (see Fig. 14 for Scenario 3 result – 
Scenarios 1 and 2 are not shown). The detected cells were 
carefully compared with human standard. SE and PPV results 
of our classifiers are shown in TABLE 1. 

 
TABLE 1. SE and PPV results for images shown in Fig.13 

 
 

The results show that for Scenario 1, which presents a 
relatively simple case, both PCA and FLD produced very good 
results. For example, they both achieved SE values of 97.7% 
and PPV values of 100%. For Scenario 2, where the image is 
more complex, the SEs of PCA and FLD dropped to 87.7%, 
95.9%, respectively and PPVs dropped to 89.5%, 95.9%, 
respectively, which indicates that the FLD is superior to PCA 
when the image becomes more complex. This can be seen even 
more clearly in the very complex case represented by Scenario 
3. Here, the SE percentage for FLD is 11.9 greater than that for 
PCA and the PPV percentage is 8.5 greater.  

As noted previously, our results with microspheres suggest 
that FLD can better generalize from training sets with a single 
type of confounding factor. The experiments with living cells 
described in this section clearly show that FLD gives superior 
generalization even when multiple types of confounding factors 
are present simultaneously. 

When our current system is used with a 25×25 pixel patch, 
a 640×480 sized image requires a processing time of 1 to 8 
minutes, depending on the number of cells present. This is 
judged to be acceptable for some applications. Moreover, we 
expect substantial speed improvements if the Matlab 
environment is replaced by dedicated neural network software. 
Further improvement of speed should be readily available with 
specialized hardware (e.g. clusters). 

5 CONCLUSIONS 
An effective algorithm for cell recognition in bright field 

microscopy has been introduced in this paper. Bright field 
microscopy frees the limited number of available fluorescence 
channels for other purposes.  In addressing the variability of 
cell size and morphology, as well as variations in microscope 
parameters, such as focus and illumination, a class specific 
method, Fisher's linear discriminant (FLD), was clearly 
superior to Principal Component Analysis (PCA) in all four 
types of variations studied.  This holds true for both 
microsphere and actual cell recognition.  The primary reason is 
that FLD optimizes the solution by maximizing the ratio of 

between-class scatter to within-class scatter, while PCA 
maximizes the effect of total scatter only. 

In this study, our goal has been simply to recognize cells in 
order to determine their positions for an automatic 
micromanipulator. The successful results described in this 
paper raise the possibility for more sophisticated algorithms 
that can automatically recognize detailed, biologically 
important features of cells in images obtained with transmitted 
light and fluorescence microscopy. These algorithms would be 
of great importance since they would facilitate robotic systems 
working on large numbers of cultures. They would also be very 
useful for studying both intracellular and intercellular 
interactions of cells. 
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