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ABSTRACT 
 
The laser forming process of sheet metal has 
been extensively analyzed but few attempts have 
been made in the area of process design. The 
task of the process design in laser forming of 
sheet metal is to determine a set of parameters 
including laser scanning paths, laser power, and 
scanning speed given a prescribed shape.  
Response surface methodology is used as an 
optimization tool and integer design variables are 
properly dealt with.  The propagation of error 
technique is built into the design process as an 
additional response to be optimized via desirabil-
ity function and hence make the design robust. 
Focusing on a class of shapes, the design 
scheme is applied in two cases, in which issues 
such as a large number of design variables are 
properly addressed. 
 
 
1.  INTRODUCTION  
 
Compared with conventional forming techniques, 
laser forming of sheet metal does not require 
hard tooling or external forces and hence, can 
increase process flexibility and reduce the cost of 
the forming process when low to medium produc-
tion volume is concerned.  Many efforts have 
been made on mechanisms and modeling of the 
process.  Magee, et al. (1998) reviewed litera-
tures available up to 1998.   More recently, 

selected issues related to extending laser forming to 
more practical applications started being addressed.  
For instance, repeated scanning is necessary to 
obtain the magnitude of deformation that practical 
parts require, and hence cooling effects during and 
between consecutive scans become critical (Cheng 
& Yao, 2001a).  Another example is to consider 
dependence of material flow stress on micro-
structure change in modeling laser forming with 
repeated scanning, where material undergoes 
heating and cooling cycles (Cheng & Yao, 2001b).   
 
A vast majority of work on laser forming including the 
ones mentioned above can be considered as solving 
the direct problem, that is, finding the spatial and 
temporal distribution of temperature, strain/stress 
state, and ultimately deformation of a workpiece, 
given process and material parameters.  Such a 
problem is typically formulated based on physical 
laws such as heat transfer and elasticity/plasticity 
theories.  The solution to such a problem may take 
an analytic form such as the well-known solution to a 
moving heat source problem that includes a Bessel 
function, or require a numerical method such as 
finite element method (FEM) for plate/shell deforma-
tion.  More specifically, the following mapping F can 
be analytically or numerically found 

 )t,,,(FU                               (1) 

where U represents deformation of the given 

workpiece,  process parameters, including laser 
power, beam scanning velocity, beam diameter and 
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laser paths,  material properties,  coordinates, 
and t time.  
 
To apply the laser forming process to real world 
problems, however, the inverse problem needs to 
be addressed, that is to find mapping g. 

)t,,,U(g                          (2) 

Solving the inverse problem analytically or 
numerically is difficult, if not impossible, for the 
following reasons.  Firstly, Eq. 1 is obtained by 
solving differential equations based on physical 
laws, while no physical laws are readily available 
to establish governing equations leading to 
solution shown in Eq. 2.  Secondly, to manipulate 
either the solution to the direct problem (Eq. 1) or 
the underlying differential equations leading to a 
solution to the inverse problem is also impossible 
because of the complexity involved or because 
parts such as the Bessel function mentioned 
above do not lend themselves for manipulation.  
Thirdly, while the solution to the direct problem is 
unique, the solution to the inverse problem is 
certainly multi-valued.  There could be more than 

one  for the same desirable shape U. 
 
Given the understanding that numerical or 
analytical solutions to the inverse problem are 
less likely, empirical and heuristic approaches 
have been attempted.  Hennige, (2000) and 
Magee, et al. (1999) investigated into the 
irradiation patterns for a type of asymmetric 
shapes - spherical shapes. Based on prior 
knowledge of the laser forming process, radial 
and concentric irradiation paths were postulated 
and tested.  Advantages and disadvantages of 
each as well as their various combinations were 
shown and compared.  Other process parameters 
were only dealt with marginally.  A genetic 
algorithm (GA) based approach, which is an 
adaptive heuristic search algorithm premised on 
the evolutionary ideas of natural selection and 
genetic, was proposed by Shimizu, (1997) as an 
optimization engine to solve the inverse problem 
of the laser forming process. In his study, a set of 
arbitrarily chosen heat process conditions for a 
dome shape was encoded into strings of binary 
bits, which evolve over generations following the 
natural selection scheme. One of the important 
process parameters, heating path positions, was 
assumed given.  To apply GA, it is necessary to 
specify crossover rate and mutation rate but their 
selection suffers from lack of rigorous criteria.  
 
The objective of this paper is to develop a more 
systematic and reliable methodology to solve the 
inverse problem in laser forming for a class of 

shapes.  A response surface methodology (RSM) 
based approach is attempted as an optimization 
tool.  Discrete design variables are properly dealt 
with in the optimization process.  Propagation of 
error (POE) technique is built into the design 
process as an additional response to be optimized 
via a desirability function and hence make the 
design more robust.  Experiments and at places 
finite element method (FEM) are used to enable and 
validate the optimization process.  The proposed 
approach is applied to two cases to demonstrate its 
validity. 
 
 
2. PROBLEM DESCRIPTION 
 
As shown in Fig. 1, rectangular sheet metal is to be 
formed into 3D shapes by parallel laser irradiation 
paths S1,  S2, …, and SN.   If the variation of laser-
induced bending angle along a particular irradiation 
path is not considered, namely, the edge effects in 
the laser forming process are neglected (Bao et al., 
2001), the 3D shapes can be viewed as shapes 
generated by a 2D generatrix in the y-z plane 
extruded in the x direction (Fig. 1).  Therefore for this 
class of 3D shapes, the inverse design problem can 
be treated as a 2D curve design problem.   

 
FIG.1 SCHEMATIC OF A CLASS OF SHAPES TO BE 
LASER FORMED, LINEAR PARALLEL SCANNING 
PATHS ON A RECTANGULAR PLATE. 

 
 
As shown in Fig.1, the parameters needs to be 
determined include number of scanning paths, N, 
positions of laser scanning paths di, laser powers pi , 
beam scanning velocity vi and laser spot diameter 
Db. The approach presented in this paper, however, 
is not restricted to monotonic cases.  A non-
monotonic generatrix can be similarly dealt with 
using different beam spot sizes for different paths.   
 
The objective function is to minimize the difference 
between a possible solution shape and the 
prescribed shape, that is  
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where zs and zp are the z coordinates of 
corresponding points on the generatrix of the 
possible solution shape and the prescribed 
shape, respectively, and k is the number of 
points.  It will be seen that values of the objective 
function h, in fact, serves as responses in the 
optimization process.   In addition, if a point in the 
possible solution shape has a smaller z value 
than the corresponding point of the prescribed 
shape, the distance is defined as negative; 
otherwise it is positive. When the sum of the 
distances is positive, the objective (or response) 
is considered positive; otherwise, it is negative.   
 
The final design of a product requires not only to 
be optimal, but also robust, namely, insensitive to 
the variation of input variables.  In laser forming 
process, the achievable accuracy of forming is 
limited by numerous uncertainties. Hennige, et al. 
(1997) investigated influencing uncertainties in 
laser forming based by analyzing error 
propagation and found variations in power and 
coupling coefficient are most influential factors on 
the variation of deformation. In this paper, the 
influence of laser power on the robustness of the 
optimal design will be addressed in a robust 
design phase based on desirability consideration. 
 
In this study, square plates of size 

8908080 . mm are used.  The material used 

is AISI1012 low carbon steel. The laser system 
used is a 1500W CO2 laser. In all the 
experiments, the laser beam diameter is set to 4 
mm, beam moving velocity is kept constant at 
50mm/s. To enhance laser absorption by the 
workpiece, graphite coating is applied to the 
irradiated surface. Typical samples of formed 
plates are shown in Fig. 2. A coordinate 
measuring machine (CMM) is used to measure 
the coordinates of the deformed plates.  
 
 
3. RESPONSE SURFACE METHODOLOGY 
AND OPTIMAL DESIGN 
 
Response surface methodology (RSM) is a colle- 
ction of statistical and mathematical techniques 
useful for developing, improving, and optimizing 
process (Myers, et al. 1995).   Applications of  
RSM comprise   two phases.  In  the  first   phase 

 
 
FIG. 2 TYPICAL LASER FORMED SAMPLES USING 
THE SCANNING SCHEMES SHOWN IN FIG. 1. 
 
 

the response surface function is based on a factorial 
design, approximated by a first-order regression 
model (Eq. 4), and complete with steepest 
ascent/descent search, until it shows significant lack 
of fit with experiment data. After reaching the vicinity 
of the optimum, the second phase of the response 
surface function is approximated by a higher order 
regression function such as a second-order one 
shown in Eq. 5.  

 xbbŷ T
10                           (4) 

 xbxxbbŷ
TT

210              (5) 

where ŷ and T
n ]x,...,x,x[x 21 are estimated 

response and decision variable vector, respectively, 

 is fitting error which is assumed to be normally 

distributed, and bo, 1b , and 2b are coefficients 

determined using the least square regression.   
 
3.1 Integer Decision Variables 
 
If one or more of the decision variables are integers, 
the optimum problem is considered as a discrete 
problem, which can be dealt with methods such as 
the branch-and-bound method (Taha, 1987).  The 
steepest line search starts with the initial design 
points of q integer variables and n-q non-integer 
variables. The next iteration starts by arbitrarily 
choosing a design point from one of the q integers 
variables, the this remaining q-1 design points of 
integer variables of next movement are determined 
based on the coefficient from Eq. 4 and the branch-
and-bound method. After reaching the vicinity of 
optimum, the response surface is approximated by a 
higher regression order with q integers determined 
from previous iteration and n-q non-integer factors. 
At stage, the problem can be solved as a regular 
one with n-q continuous variables.  
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4. DESIRABILITY AND ROBUST DESIGN 
 
Desirability based robust design is a tool to find 
controllable factor settings that optimize the 
objective yet minimize the response variation of 
the design (Kraber, et al., 1996).  It requires 
construction of a response surface using a 
mathematical model (Eq. 5).  The transmitted 
variation of responses from input variables can 
then be reduced by moving the optimal solution 
to a flatter part of the response surface.  The 
variation transmitted to the response can be 
determined by the error propagation equation 
POE =  
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where y̂ is the model-predicted standard devia-

tion of the response or known as propagation of 

error (POE), 2
ii  variance of decision variable xi, 

2
ij covariance between xi and xj, and 2

e  

residual variance, df/

k

j

je 




1

22  , df is residual 

degree of freedom, which equals to the number 
of response values k minus the number of terms 
in the regression model.  To reduce variance in 
the response, POE (Eq. 6) should be minimized 
therefore can be treated as an additional 
response built into the design process.  The 
simultaneous optimization of several responses 

(in this case, y in Eq. 5 and y̂ in Eq. 6) is the 

essence of the desirability based robust design 
(Kraber, et al., 1996 and Derringer et al., 1980).  

For each response iŷ , a desirability 

function Di( iŷ ) assigns a value between 0 and 1 

to the possible values of iŷ , with Di( iŷ ) = 0 

representing a completely undesirable value of  

iŷ  and Di( iŷ ) =1 representing the ideal res-

ponse value. The individual desirabilities are then 
combined using the geometric mean, which gives 
the overall desirability  

m/
mm ))ŷ(D...)ŷ(D)ŷ(D(D 1

2211         (7) 

where m is the number of responses. The 
maximum of D represents the highest combined 
desirability of the responses.  Depending on 

whether a particular response iŷ  is to be 

maximized, minimized, or assigned to a target 

value, different desirability functions Di( iŷ )  are 

to be used. Let ii U,L  and iT  be the lower, upper, 

and target values desired for response iŷ ,  where 

iii UTL  . If a response is of the “target is best”, its 

desirability function is expressed as: 
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where the exponents r and s determine how strictly 
the target value is desired. The desirability function 
can be defined similarly if a response is to be 
minimized or maximized. 

As seen from Eqs. 5 and 6, iŷ is a continuous 

function of ix , it follows that Di and D are piecewise, 

continuous function of ix .  The above numerical 

optimization problem reduces to a general non-linear 
problem. However, as seen from equation (7) and 
(8), the derivative of D is not continuous. Therefore 
direct search methods need to be applied to find the 
optimal value of D.  Downhill simplex method (Miller, 
2000) is chosen in this study.  An implementation of 
the algorithm is Design-Expert® by Stat-Ease, Inc, 
which is used in the paper. 

5. APPROACH TO BENDING ANGLE ATTAIN-
MENT 

 
In the steepest ascent/descent search and RSM 
process, a large number of experiments are required 
to obtain bending angles under different conditions, 
which is time consuming and costly and thus poses 
a serious limitation to the method.  If the total 
deformation of a sheet generated by the parallel 
laser scans can be obtained by summing 
deformations generated by these scans, a much 
smaller number of experiments will suffice.   In other 
words, if deformations caused by scans at different 
di (Fig. 1) can be considered independent each 
other, only experiments with single scanning paths 
are needed.  This hypothesis is supported by FEM 
results shown in Fig. 3, in which it is shown that for a 
laser beam spot size of 4 mm, typical temperature 
and compressive plastic strain rise is largely 
confined within the beam spot size.   The effect of 
temperature and plastic strain is negligible outside of 
the region. Therefore, when the spacing between 
two adjacent irradiation paths di - di-1 is sufficiently 
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large, the development of bending angle can be 
assumed independent one another. The 
hypothesis of independence will be further tested 
in the result and discussion section. 
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FIG. 3 SIMULATION RESULTS SHOWING TEM-
PERATURE AND COMPRESSIVE PLASTIC STRAIN 
RISE DO NOT GO BEYOND THE EXTENT OF 
LASER BEAM SIZE (SCANNING PATH AT Y=0 MM, 
P=650W, AND BEAM SPOT SIZE IS 4 MM). 

 

 
Fig. 4, adopted from Cheng & Yao et al. (2001a), 
is for the square plate under different laser power 
level at scanning velocity of 50 mm/s.  The 
scanning was done at y=0 and the bending angle 
is assumed to be the same if scanning is done at 
a non-zero y value. A line is fitted through the 
data points to allow interpolation in between.    
 
 
6. RESULTS AND DISCUSSIONS 

 
The independence hypothesis described in 
Section 5 is experimentally and numerically 
tested.  As discussed, the hypothesis states that 
the total deformation of the workpiece generated 
by multiple irradiation paths is the summation of 
deformations induced by the paths provided the 
distance between adjacent paths is not too small. 
Fig. 5 shows the hypothesis holds well under  the 
conditions used.  In Fig. 5 square plates are irrad- 
iated by equally spaced parallel laser paths and 
the resultant deformations are measured using 
CMM and indicated in dots.  On the same plot, 
bending angles of single scans obtained from Fig. 
4 are summed to determine the total deformation 
shown in solid lines.  As seen, there is good 
agreement between the two.  This is indicative of 
the validity of the independence hypothesis. In 
addition, note the number of paths N ranges from 
3, to 10. FEM results for N = 3 and 5 also show 
good agreements with experiments.   

6.1  Case 1 
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FIG. 4 EXPERIMENTAL RESULTS OF BENDING ANGLE 
INDUCED BY A SINGLE SCAN ON A SQUARE PLATE 
(CHENG & YAO, 2001A). 

 
 
In this case, the desirable shape (Fig. 6) is given in 
terms of the following process parameters: number 
of scan paths N=6 and laser power pi=p=700W. The 
scan paths are equally spaced.  The way the 
prescribed shape is specified is to facilitate in this 
first case comparison of design result with the 
prescription.     The task here is to find power p  and 
number of scan paths N to minimize the difference 
between the shape formed using the found condition 
and that using the prescribed condition (Eq. 3). 
 
Optimal design To apply RSM, an initial design 
point, N=4 and p=620W, is arbitrarily chosen. The 
corresponding initial shape is shown in Fig. 6a.  A 
two-level factorial design is conducted with half 

width N=1 and p=30W.  As outlined in Section 5, 
bending angles under the factorial design conditions 
are obtained from interpolating the experimental 
results shown in Fig. 4.  To mimic the forming 
process repeatability characteristics, normally 
distributed random numbers are generated and 
added to each bending angle value.  The standard 
deviation of the random numbers  is  chosen as   the 
same as that shown in Fig. 4 in the form of error 
bars.  These bending angles are used to determine 
corresponding shapes of the generatrix, and the 
shapes in turn are used to determine the objective 
function values h (Eq. 3).  The objective function 
values h are the responses in the factorial design.  A 
first-order regression model is fitted based on the 
factorial design and the direction of the steepest 
descent is determined from the coefficients of the 
regression model.  At each movement along the 
steepest descent direction,  the  response  obtained 
from regression model is compared with  that  based  
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on the experimental result (Fig. 4) to examine if 
this model is still valid. The percentage 
discrepancies of the comparison at the initial 
point and first movement along the path are  
0.42% and 2.22%, respectively, which are 
considered to indicate that the direction of 
steepest descent path is valid at these points. 
The responses h at these points are -1.316 and -
0.928, respectively according to Eq. 3.  After the 
next movement along the path (N=6 and p=664W 
shown in Fig. 6a), however, the percentage 
discrepancy increases to 5.87%, which is 
considered to indicate that the direction is no 
longer valid at this point (a tolerance of 5% is 
chosen as a lack of fit). Hence, another 2-level 
factorial design is conducted based on this point 
and a new steepest descent path is calculated. 
The new initial point (N=6 and p=664W) and the 
next point along the new path (N=7 and p=696W) 
have responses h = -0.5 and 0.21, respectively.  
The change of sign is clearly indicative of “over-
shooting”, that is, the possible solution shape is 
bent more than the prescribed shape, which is 
also shown in Fig. 6a.   This  indicates that the 
optimum condition is in the vicinity of the last 
movement and normally a 3-level factorial design 
needs to be considered. In this case, however, 
the design variable N is subject to integer 
constraint and the solution must lie on either N=6 
or 7.  The branch-and-bound approach discussed 
in Section 3 is applied.  As shown in Fig. 6b, 
three-level single-factor (p) designs are 
conducted separately at N=6 and N=7. The 
quadratic equation for N=6 is found as 

                                   (a) 
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FIG. 6 CASE1 (A) DESIGN EVOLUTION TOWARDS THE 
PRESCRIBED SHAPE; AND (B) RESPONSES NEAR 
TARGET ZERO WHILE INTEGER DESIGN VARIABLE 
N=6 AND 7.  

 

h = 0210039330105723 25 .p.p.                (9) 

Solving the equation for zero response gives optimal 
solutions p=701W for N=6 and p=671W for N=7, as 
shown in Fig. 6b.  This indicates that multiple 
solutions are possible. An additional objective 
function, such as, one minimizes production time 
screens out the solution (p=671W for N=7).  The 
optimization result (N=6 and p=701W) agrees very 
well with the prescribed value, (N=6 and p=700W).  
The optimization process towards the prescribed 
shape is shown in Fig. 6a, which includes prescribed 
shape, initial design, some intermediate shapes and 
final design.  
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Robust design To make the design more robust, 
that is, insensitive to the variation in input 
variables, propagation of error (POE) is 
calculated based on Eqs. 6 and 9, and assumed 

power standard deviation p=6W as 

236010294 4 .p.POE                     (10) 

The response h is scaled to a desirability function 
D1 ranged from [0,1] according to Eq. 8 because 
the response problem is of the “target is the best” 
type, where T1 = 0 (target), L1 is set as –0.15, and 
U1 +0.15 to ensure the robust design is not off the 
optimal solution too much. The POE is also 
scaled to a desirability function D2 according to 
Eq. 9 because the POE problem is of the 
“minimization” type, where T2 is set as 0.042 (for 
p=650W) and U2 0.068 (for p=710W) according to 
Eq. 9.  The overall desirability D is then 
expressed as the geometry mean of D1 and D2 
using Eq. 7.  As seen in Fig. 7, the overall desir-
ability function D is a continuous, nonlinear, 
piecewise function, and the maximum value of 
desirability, 0.4, is found at p=698W, where the 
POE value is lower than that at the optimal 
solution (p=701W), and the response value is –
0.003. At the optimal solution, the desirability is 
about 0.33 and response is obviously zero.  The 
robust design therefore balances between the 
response and POE.  In this case, the robust 
design does not differ much from the optimal 
solution but the design process is generally 
applicable. 
 
6.2  Case 2  

 
In this case, the desired shape is prescribed in 
terms of a generatrix that is a second order poly-

nomial )
y

()
y

(z
40

2
40

4 2  , as seen in Fig. 8, its 

curvature increases with y. It is obvious that 
evenly spaced scanning paths are no longer ap-
propriate, this resulting in a large number of 
design variables and making the RSM based 
optimal design less feasible.  As seen from Fig. 8, 
however, the curvature of the given profile 
decreases monotonically.  Since the trend of 
spacing between adjacent laser paths is closely 
related to the curvature of the prescribed shape, 
the following control function is proposed to relate 
all di’s,  

 m
i )

N

i
(d 40                                           (11) 

where di specifies the position of the ith laser path, 
m is the design variable to be determined, and N 
is number of laser scan paths.  In this  case,  N is 
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AND THE PRESCRIBED SHAPE (CASE 2).  

 
 
set as 7. The problem, therefore, becomes to 
determine the value of laser power p and exponent 
m to achieve the given profile.  The same process 
as in the previous case starts with arbitrarily  
choosing  an 
initial design at m=1.2 and p=650W with half width of 
0.2 and 30W, respectively.  The response function is 
found as h=1.58-5.81m+0.0073p-1.13m2-1.14*10-6p2 

+0.015mp. Since multi-solutions corresponding to 
zero response.  Thus, another objective function, 
POE, is used to obtain the most desired solution.  
 
Suppose the variations in m and p are 0.02 and 6W, 
respectively, the POE is constructed as 
POE=(9.38*10-8p2-6.87*10-5p-3.02*10-5mp+ 2.29* 
10-3m+0.011m2+0.02)0.5, in which the residual 
variance of 0.0725 is included.  h and POE are 
again scaled to desirability functions ranged 
between [0,1] with h constrained between [-0.15, 
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0.15].  The overall desirability D is then cal-

culated. The desirability in two-dimensional  cont-
our is plotted in Fig. 9.  As seen from Fig. 9, the 
most desirable value is 0.8013 corresponding to 
p=692W and m=1.17. With this m value and Eq. 
11, laser path positions, di’s, are calculated and 
plotted in form of crosses in Fig. 8, along with the 
final robust solution and prescribed shape.  As 
expected, laser path locations become coarser 
with decreasing curvature of the prescribed 
shape. The profile based on the robust   solution 
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FIG.9 2D CONTOUR PLOT OF DESIRABILITY, THE 
ROBUST DESIGN HAS THE HIGHEST 
DESIRABILITY OF 0.8013 FOR THE CASE. 
 

agrees with the prescribed profile.  Laser forming 
experiments were conducted under the condition 
determined by the robust design and the results 
were plotted in Fig. 8. As seen, experimental 
result shows a good fit with the predicted one. 
 
 

CONCLUSIONS 
 
It is shown that the proposed optimal and robust 
design schemes are feasible and effective for the 
class of shapes considered.  Integer design vari-
ables are effectively dealt with by using standard 
methods such as the branch-and-bound method 
and by integrating with RSM.  The hypothesis of 
independence of scans in multi-scan forming is 
proven valid via experiments and simulation for a 
certain range of spacing between adjacent scan-
ning paths. This significantly reduces the need for 
a large number of experiments.  To reduce the 

number of design variables, the laser path positions 
are specified by proper selection of control functions. 
The predicted results agree with the experimental 
results.  
 
ACKNOWLEDGEMENT 

 
The work is supported in part by a NSF grant (DMI-
0000081).  Support from Columbia University is also 
gratefully acknowledged. 
 
 
REFERENCES 
 
Bao, J., and Yao, Y.L., (2001), “Analysis and 
prediction of edge effects in laser bending”, Journal 
of Manufacturing Science and Engineering, Vol. 123, 
pp. 53-61. 
Cheng, J., and Yao, Y.L., (2001a), “Cooling effects 
in multiscan laser forming,” J. of Manufact. Process, 
Vol. 3, pp. 60-72. 
Cheng, J., and Yao, Y.L., (2001b), “Microstructure 
integrated modeling of multiscan laser forming,” 
Proc. ICALEO ‘01. 
Derringer, G., and Suich, R., (1980), "Simultaneous 
optimization of several response variables,'' Journal 
of Quality Technology, Vol. 12, pp. 214-219.  
Hennige, T., Holzer, S., and Vollertsen, F., (1997), 
“On the working accuracy of laser bending”, Journal 
of Materials Processing Technology, Vol. 71, pp. 
422-432. 
Hennige, T., (2000), “Development of irradiation 
strategies for 3D-laser forming,” J. of Mat. Proc. 
Tech., Vol. 103, pp.102-108. 
Kraber, S.L., and Whitcomb, P.J., (1996), “Robust 
design-reducing transmitted variation,” 50th Annual 
Quality Congress, Indianapolis, IN. 
Magee, J., Watkins, K.G., and Steen, W. M., (1998),  
“Advances in laser forming,” J. of Laser Applications, 
Vol. 10, No. 6, pp. 235-246. 
Magee, J., Watkins, K.G., and Hennige, T., (1999), 
“Symmetrical laser forming,” Proc. ICALEO, Section 
F, pp. 77-86. 
Miller, R.E., (2000), Optimization Foundations and 
Applications, John Wiley & Sons, New York. 
Myers, R.H., and Montgomery, D.C., (1995), 
Response Surface Methodology, John Wiley & Son, 
New York. 
Shimizu, H., (1997), “A heating process algorithm for 
metal forming by a moving heat source,” M.S. thesis, 
M.I.T. 
Taha, H.A., (1987), Operations Research, Macmillan 
Publishing Company, New York. 
 



 

Transactions of NAMRI/SME 47 Volume XXX, 2002 

 


