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Abstract 

Extensive efforts have been made in analyzing and predicting laser forming processes of sheet 
metal.  Process design, on the other hand, is concerned with determination of laser scanning paths 
and laser heat condition given a desired shape.   This paper presents an approach for process 
design of laser forming of thin plates with doubly curved shapes.  The important feature of this 
method is that it first calculates the strain field required to form the shape.  Scanning paths are 
decided based on the concept of in-plane strain, bending strain, principal minimal strain and 
temperature gradient mechanism of laser forming.  Heating condition is determined by a lumped 
method.  Effectiveness of the approach is numerically and experimentally validated through two 
different doubly curved shapes. 
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1. Introduction 

Extensive research has been done to analyze 
deformation and residual stress given material 
properties, laser scanning paths, and heating condition. 
Numerical and experimental investigations have been 
carried out to better understand process mechanisms and 
the effects of key process parameters on dimension and 
mechanical properties of the formed parts [1-3].  
Temperature and strain-rate dependent material 
properties were compiled and considered in the 
numerical models developed for concave, convex, and 
tube laser-forming processes, and nonlinear 
relationships including appropriate flow rule and yield 
criterion were specified for plastic deformation [4-6]. 
For laser forming to become a more practical process, 
the issue of process synthesis needs to be addressed. To 
date, however, few studies in process design of laser 
forming have been reported.  The process design can be 
divided into two steps. The first step is to decide where 
and how to apply laser energy and the second step is to 
decide how much energy to impart.   
 
Line heating, based on which laser forming was 
inspired, has been used to form ship hulls and correct 
unwanted distortions due to welding and other heat 
processes.  It is heavily dependent on experience of 
skilled workers, and therefore research has been carried 
out for the process design of line heating.  Ueda, et al. 
[7-9] determined the heating paths by developing a 
desired shape onto a flat one, computing the magnitudes 
of inherent strains, selecting heating regions based on 

the distribution of inherent strains, and concentrating the 
strains to the selected regions.  It is not entirely clear 
what central role the introduction of the inherent strains 
plays.  It is also not shown that the large deformation 
elastic FEM used for the planar development is valid for 
an electro-plastic problem like line heating.  Jang, et al. 
[10] developed an algorithm to determine the heating 
lines based on the principal curvatures of the deflection 
difference surface that represents the shape difference 
between a desirable shape and an intermittent shape 
fabricated from the original planar shape.  Candidate 
heating regions are selected by grouping the points 
where principal curvature is larger.  Which side of sheet 
metal to heat is also determined based on classification 
of surfaces according to Gaussian and mean curvatures.  
The method, however, employed many empirical factors 
and the way they classified the surface limited the 
applications for complex three-dimensional plate 
forming.   
 
More recently, efforts have been made in process design 
of laser forming. Shimizu [11] applied generic 
algorithms (GAs) to a dome shaped sheet to determine a 
heat condition assuming the laser scanning paths are 
known.  He used discrete values to represent the heat 
condition and the result is less flexible and natural.  It 
also experienced difficulty when an experimental 
validation of the result was attempted. Yu, et al., [12] 
presented algorithms for optimal development 
(flattening) of doubly curved surfaces into a planar 
shape in the sense that the strain from the surface to its 
planar development is minimized.   The development 
process was modeled by in-plane strain (stretching) 
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from the curved surface to its planar development. The 
distribution of the appropriate minimum strain field was 
obtained by solving a constrained nonlinear 
programming problem. No scanning paths were 
determined nor direct connections with laser forming 
were made.  
 
Recognizing the complexities involved in process 
design of laser forming, Cheng and Yao [13] developed 
a synthesis process for laser forming of a class of 2D 
shaped sheet metal.  The synthesis process is based on 
GAs.  Number of laser scans, distance between adjacent 
scans, laser scanning speed and power were treated as 
decision variables during design cycles. The approach 
used several analytical equations based on experiment 
and numerical modeling to predict the geometry change 
occurring in straight-line laser forming.  Given a desired 
2D shape, the approach was shown to be effective in 
determining optimal values of these decision variables 
to minimize the difference between the desired and laser 
formed shape.  Similarly, Liu and Yao [14] developed 
an optimal and robust approach for process design of 
the same class of 2D laser forming.  Response surface 
methodology was used as an optimization tool and 
integer design variables were properly dealt with.  The 
propagation of error technique was built into the design 
process as an additional response to be optimized via 
desirability function and hence make the design robust. 
This design scheme was validated in several cases 
numerically and experimentally.  Both methods, 
however, are limited to the process design of the class 
of 2D shapes.  
 
This paper presents a methodology to design laser 
scanning paths and heating condition of laser forming 
for a general class of three-dimensional shapes – thin 
plates whose mid-plane is represented by doubly curved 
surfaces.  An overall strategy is laid out first, followed 
by detailed description of each steps of the 
methodology.  Two typical shapes for ship hulls or 
aerospace structures, pillow and saddle shapes are 
focused on.   The methodology is aided by finite 
element method (FEM) and validated by forming 
experiments.  
 

2. Overall strategy 

For most manufacturing processes, process design 
amounts to determination of process parameters such as 
force, speed, depth of cut, and rolling reduction.  It is 
typically not difficult to determine tool path either 
because presence of hard tooling makes it obvious such 
as in machining, rolling, and stamping, or because 
nature of a process makes it obvious such as in laser 
machining and laser welding.  For example, in 
machining of free-form surfaces, cutter paths are readily 
determined which are closely related with the desired 
shape.  In forming rolling, the trajectory of forming rolls 
closely resembles the shape to be formed.  In stamping, 
die shape closely resembles the part to be stamped 
except a certain consideration for spring-back. 

 
The process design of laser forming, however, differs 
from these processes in that the laser scanning path is 
not necessarily directly related with the desired shape, 
especially for 3D shapes.  Generally speaking, the 
regions of a shape, which require larger deformation, 
need to be scanned and scanned more but exact 
scanning paths, i.e., orientations, linear or curved, are 
not obvious.   This is because laser forming is a non-
contact forming process without external forces or hard 
tooling, and the relation between heating and 
deformation is complex.  In addition, the process design 
of laser forming, like all inverse problems, generally has 
multiple solutions for a given shape. 
 
An overall strategy for process design of laser forming 
is presented which involves three steps.  The first step is 
to determine a strain field that is required to obtain a 
desired shape from a planar shape or vise verse, the 
second step is to decide on laser scanning paths, and the 
third step is to decide on the heating condition (i.e., 
laser power levels and scanning velocities) for the 
determined strain field and scanning paths. Laser beam 
spot size is considered constant in this paper.  Figure 1 
summarizes the algorithms for these three steps.  
Doubly-curved thin plate shapes are considered which 
generally require both in-plane and bending strains to 
form. 
 

Given a desired shape, large-deformation elastic FEM is 
applied to solve the planar development problem and 
obtain a strain field under displacement constraints.  
The reason using FEM instead of a geometric method is 
that surface development methods such as Yu, et al., 
[12] based on differential geometry typically yield in-
plane strain only while FEM calculates total strain 
which is then decomposed into in-plane and bending 
strains.  The reason to use large-deformation FEM is 
that most of the deformations in development of three-
dimensional shaped thin plate are greater than 5%.  
Therefore, appropriate stress and strain tensors have to 
be used.  Elastic FEM is applied instead of elasto-plastic 
FEM because less material properties need to be 
specified.  In fact, it will be shown that the planar 
development process is even independent of Young’s 
modulus. 

 
It is, however, impossible to duplicate exactly the strain 
field by laser forming.  Therefore, the strain field is 
decomposed into in-plane and bending strains because it 
is well known that laser forming generates both.  The 
direction and magnitude of minimal (compressive) 
principal in-plane and bending strains are further 
calculated since it is well known that the direction is 
perpendicular to laser scanning paths.  It is this fact that 
is used to determine the scanning paths.  If the principal 
minimal in-plane strain is significantly larger than 
principal minimal bending strain, scanning paths are 
chosen to be normal to principal in-plane strain 
direction and vise verse.  
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Finally, the heating condition is determined.  The 
required minimal principal strain between adjacent 
scanning paths is first lumped together.  A database 
concerning the relationship between principal strains 
and laser power levels and scanning velocities is then 
consulted.  A power level is chosen from the 
relationship together with practical considerations and 
corresponding scanning velocity is determined as a 
result.   
 
In engineering applications, there exist two kinds of 
surfaces, developable surfaces and non-developable 
surfaces, which are also called singly and doubly curved 
surfaces, respectively. A singly curved surface has zero 
Gaussian curvature at all points and can be formed only 
by bending strain, while a doubly curved surface has 
non-zero Gaussian curvature at least in some region and 
generally requires both in-plane and bending strains to 
form.  Surfaces of many engineering structures are 
commonly fabricated as doubly curved shapes to fulfill 
functional requirements such as hydrodynamic, 
aesthetic, or structural. For example, a large portion of 
the shell plates of ship hulls or airplane fuselages are 
doubly curved surfaces.  
 
This paper illustrates the proposed strategy by applying 
it to two distinctive 3D shapes, a pillow and a saddle 
shape.  Since this paper is concerned with thin plates, 
that is, w(x,y,z,t) = wo(x,y,t), where w is deflection in the 
z direction, the mid-plane of these two shapes is 
specified in terms of a cubic-spline sweep surface, 
respectively, and then extruded by a half of the plate 
thickness in both thickness directions.  The sweep 
surfaces are generated by sweeping a cross-section 
curve C(y), a cubic-spline curve, along an axis curve 
A(x), another cubic-spline curve. The plane of the cross-
section curve is kept on the y-z plane.  Then the sweep 
surface is defined by: S(x,y)= A(x)+ C(y)   x[0, 140], 
y[0, 80] in mm.  For both cases, C(y) is defined as a 
piecewise cubic function with interior knots: (0, 0, 0), 
(0, 40, 5), and (0, 80, 0).   This cubic function: Ci(y) = ai 
y3 + bi y2 + ci y + di;  ( i=1,2,3) has the following 
properties: C(y) is piece wise cubic on  [0, 80], and 
C(y), C'(y) and C''(y) are continuous on [0, 80].  
Similarly, A(x) is defined by a piecewise cubic spline 
function with interior knots: (0, 0, 0), (70, 0, 5), and 
(140, 0, 0) for pillow shape, and (0, 0, 5), (70, 0, 0), and 
(140, 0, 5) for saddle shape. A(x) has the same 
continuity properties as C(y).  The two desired shapes 
are shown in Figs. 2 and 3. 
 
3. Strain field determination  

 
As indicated in the overall strategy, the first step is to 
determine a strain field required to develop a desired 
shape to a planar shape, which is the opposite of 
developing a planar shape to the desired shape and 
therefore the found strain field has an opposite sign.  A 
strain field required for such a planar development is 
solved by FEM.  The type of FEM used is large-
deformation elastic FEM.  

 
The reason of opting for FEM instead of a geometrical 
method based on differential geometry is that the former 
gives a complete strain field throughout the plate, while 
the latter typically gives in-plane strain for a surface 
only.  The reason of using large-deformation FEM is as 
follows.  When the deflection (the normal component of 
the displacement vector), w0, of the midplane is small 
compared with the plate thickness, h (w00.2h), the 
Kirchhoff’s linear plate bending theory gives 
sufficiently accurate results.  The in-plane strain and the 
corresponding in-plane stress are neglected.  However, 
if the magnitude of deflection increases beyond a certain 
level (w00.3h), these deflections are accompanied by 
stretching of the mid-plane.  As the ratio w0/h further 
increases, the role of in-plane strain becomes more 
pronounced.  In our case, w0/h reaches 5.6, therefore the 
nonlinear effects have to be taken into account.  The 
reason why elastic FEM is applied instead of elasto-
plastic FEM is that, the strain field development from 
the desired shape to a planar shape is purely 
geometrical, and should be independent of material 
properties including both elastic and plastic properties.  
Using elastic FEM requires only elastic properties such 
as Young’s modules E to be specified.  Furthermore it is 
shown below that the strain field determination is 
independent of the value of E. 
 
For thin plate deformation, deflection w(x,y) is assumed 
to be equal to the deflection of the midplane, w0(x,y).  
The total strains of deflection can be expressed as 
follows. 
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For small deflection of thin plates, it is assumed that u0 

and v0 are zero and slopes 
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yy , and 0
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zero and the total strains only contain the bending 
strains.  As seen, the bending strains equal to product of 
position in the thickness direction z and a term which 
approximately equals to the curvature at that point, that 
is,  
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where, Rx and Ry are approximately the curvature along 
the x-axis and y-axis, respectively.  Rxy can be defined as 
a twisting curvature, which represents the warping of 
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the x-y plane.  Given a desired shape, Rx, Ry and Rxy are 
known and therefore the total strains only depend on z, 
independent of any material properties, In particular, 
they can be determined independent of Young’s 
modulus in the large-deformation elastic FEM.    
 
For large deflection of thin plates, the bending strains 
are the same as in Eq. (2) and the in-plane strains, 

0
xx , 0

yy , and 0
xy  can be expressed by Hooke’s law as 
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where  is stress function   divided by Young’s 
modules E, h is plate thickness, and  is Poisson ratio.  
 can be calculated by solving the following governing 
equations for thin plate deflection under appropriate 
boundary conditions. 
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is flexural rigidity D divided by E, 

and P’(x,y) is lateral load in z direction P(x,y) divided 
by E.  More detailed derivation of the equations is listed 
in Appendix. As seen from equations (3) and (4), once a 
desired shape is given, that is, deflection w0, and 
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and in turn the in-plane strains 0
xx , 0

yy , and 0
xy  can be 

calculated under appropriate boundary conditions and 
the calculation is independent of Young’s modulus.  As 
seen in equation (3), they do depend on Poisson ratio, 
which is geometrical property.  In summary, it is shown 
that, given a desired shape of thin plate, a strain field 
required to develop the shape to a planar shape can be 
determined independent of any material properties 
including Young’s modules, no matter small or large 
deformation is concerned.  In other words, the proposed 
elastic FEM is valid to obtain a strain field for an 
elastic-plastic problem like laser forming.  The large-
deformation elastic FEM is carried out using 
commercial code ABAQUS.  It is verified that different 
values of Young’s modules yielded the same strain field 
given everything else the same.   
 
Laser forming, however, is unable to exactly duplicate 
the strain field since laser forming only effects a certain 
strain distribution.  But it is known that the doubly 
curved shapes under consideration can be developed by 
in-plane and bending strains and laser forming generally 
yields in-plane and bending strains.  As a result, the 
total strains ij obtained via FEM are decomposed into 

in-plane strain 1
ij , and bending strain, 0

ij , as follows.   
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As seen, the in-plane strain arises from the integration 
of the total strain along thickness h.  For thin plates, 
however, the in-plane strain equals to the midplane 
strain because the bending strain varies linearly with z 
as seen from equation (1) and w(x,y,z)=wo(x,y). 
 
After a strain field is determined and decomposed into 
in-plane and bending strain components, the next step in 
the overall strategy is to find the direction and 
magnitude of minimal principal (compressive) strain for 
both, in order to determine laser scanning paths (Fig. 1).  
It is well known that under the temperature gradient 
mechanism, highest compressive strains occur in the 
direction perpendicular to a laser scanning path.  
Therefore laser scanning paths will be placed 
perpendicular to the direction of minimal principal 
strain.  The principal strain and principal direction are 
readily determined by the well-known plane-strain 
formulation.  Figure 4 shows magnitude contour plots of 
minimal principal in-plane and bending strain for the 
pillow shape and Figure 5 for the saddle shape, 
respectively.     
 
4. Scanning path determination 

As discussed early, the type of given doubly curved 
shapes requires both in-plane and bending strains to 
general and laser forming generally results both in-plane 
and bending strains.  Furthermore, the highest 
compressive strains occur in a direction perpendicular to 
a scanning path.  Therefore a scanning path should be 
perpendicular to the direction of the in-plane strain if its 
magnitude is much greater than that of the bending 
strain (Fig. 1) as in the case of many thin plates.  
Examining Figures 4 and 5 confirms that.  As seen, for 
both shapes, the magnitude of the in-plane strain is an 
order of magnitude higher than the bending strain.  This 
is expected for the thin plates under consideration.  
Figure 6 shows vector plots of minimal principal in-
plane strains for the pillow and saddle shapes, where the 
orientation of the vectors represents the direction and 
the length of the vectors the magnitude of the minimal 
principal in-plane strain.  Scanning paths will be traced 
perpendicular to the vectors representing the minimal 
principal in-plane strain.  Figure 7 shows a set of 
scanning paths, superposed on the vector field of 
minimal principal in-plane strain of pillow and saddle 
shapes, respectively.   
 
In determining the spacing of scanning paths, a number 
of considerations are given.  In general, the smaller the 
spacing, more precise the desired shapes can be formed 
and lower energy input is required for each path.  On the 
other hand, it will take longer to form the shapes and 
adjacent paths can no longer be assumed independent 
with each other.  The independence is paid attention to 
because when a heat condition is determined as seen in 
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the next section, it is based on a database which is 
constructed using independent scans.   In addition, non-
uniform spacing is normally desirable because strains 
vary from one region to the other.  The larger strains 
are, the smaller the spacing should be.   Roughly 
speaking, spacing between two adjacent paths, dpaths, 
should be equal to strain generated by laser forming, 
εlaser, multiplied by laser beam spot size, dlaser (because a 
vast majority of the laser-generated stain is within the 
region covered by the laser spot), divided by the average 

principal minimal strain i
2 over the spacing, that is: 

)( 2
i

laserlaser
paths ave

d
d




  (6) 

Another practical consideration is where to initial and 
terminate a scanning path.  For this work, a threshold is 
applied so that only 90% of the total area will be 
scanned.  The 10% excluded represents the regions 
having smallest strains.  For the pillow shape, the 10 % 
concentrates at the corners while for the saddle shape at 
the center (Fig. 7).  Note that the edges of the planar 
developments of both shapes shown in Figs. 6 and 7 are 
somewhat curved, which suggests how the planar plates 
should be cut before laser scanning.   It is expected that 
if the desired shapes deflect more, more curved edges 
will be observed. 
 

5. Heating condition determination 

After determination of the scanning paths, the next step 
is to determine a heating condition, that is, a required 
energy input, which depends on laser power and laser 
scanning velocity if laser beam spot size and work 
material are given.  Obviously there are multiple 
solutions to this problem because many power and 
velocity combinations may meet the requirement.  The 
strategy proposed in this work is outlined in Fig. 1b and 
summarized below. 
 
The in-plane or bending minimal principal strains are 
first averaged along a scanning path and lumped 
between adjacent paths for all the paths determined 
above.  The averaged strain is then entered into a 
database which contains relationships between minimal 
principal strains averaged within the heating zone (i.e., 
the laser beam spot size) vs. laser power and scanning 
velocity as shown in Figure 8.  The database is 
established using FEM of independent scans and detail 
of the modeling is seen in [13].  The material is 1010 
steel and sheet thickness is 0.89 mm the same as the 
desired shapes.  Given the averaged strain, a horizontal 
intersection of the surfaces shown in Figure 8 can be 
made, which represents a set of laser power and 
scanning velocity combinations.  Choose a laser power 
level from the intersection for the scan such that laser 
power levels chosen for all scans are feasible to be 
realized by existing laser forming equipment.  There is a 
single power level for each path.  Lastly, each path is 
divided into a few segments and scanning velocity of 
each segment is determined based on the local strain 
and laser power chosen for the path, again using Fig. 8.  

The heating condition for the two desired shapes is 
decided following the procedure outlined above. The 
results are shown in Figure 9, where the determined 
scanning velocity and laser power levels are indicated 
along the scanning paths superposed on magnitude 
contour plots.  Due to symmetry, only a quarter of the 
desired shapes are shown. 
 
Experiments are conducted based on the scanning paths 
and heating condition determined above on 1010 steel 
sheets of size 140 by 80 by 0.89 mm. The laser system 
used is a PRC-1500 CO2 laser, which has a maximum 
output power of 1,500 W.  Motion of workpiece is 
controlled by Unidex MMI500 motion control system, 
which allows easy specifications of variable velocities 
along a path with smooth transitions from segment to 
segment.  Figure 10 shows the formed pillow and saddle 
shape under these conditions.  A coordinate measuring 
machine (CMM) is used to measure the geometry of the 
formed shapes. Figure 11 compares the geometry of 
formed shape and desired shape.  Only the geometry of 
top surface of the plate is measured and a general 
agreement is seen.  However, there is about 5-10% 
underestimate.  The discrepancy is thought due to many 
factors and difficult to pinpoint.  Possible sources of 
errors include approximation of 3D strain as plain strain 
in laser forming, and lumped method to average the 
principal strains and approximate the laser power and 
scanning velocity.  
 
6. Further discussions 

From Equation 2, it is seen that the magnitude of 
bending strain increases with plate thickness. When the 
thickness is small, scanning paths are predominantly 
decided by principal in-plane strains, as the case for the 
two desired shapes discussed so far.  When the 
thickness of the plate increases (but still considered as a 
thin plate so that this work is still applicable) and the 
principal bending strain becomes more dominant, it is 
necessary to consider the effects of the bending strain.  
To demonstrate the point, the thickness of the pillow 
and saddle shapes increases from 0.89mm to 5mm and 
the minimal principal in-plane and bending strains are 
similarly calculated are shown in Figures 12 and 13 for 
pillow and saddle shapes, respectively.  It is seen that 
the principal bending strain is comparable to the 
principal in-plane strain now.  The scanning paths 
should then be determined taking into account of the 
vector field of both minimal principal in-plane strain 
and minimal principal bending strain, perhaps the 
direction of bending strain needs to carry more weight 
because under temperature gradient mechanism bending 
strains produced in laser forming of relatively thicker 
plates is more significant.  However, more work is 
needed. 
 
As mentioned before, laser scanning paths for a desired 
shape are not unique. In this work, laser scanning paths 
are chosen to be perpendicular to the minimal principal 
in-plane strain direction. However, it is postulated that 
the scanning paths could also be chosen to be 
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perpendicular to the maximum principal strain direction. 
This is consistent with the results from Magee, et al., 
[15], who found that both radial and circumferential 
laser scanning paths could be used to form spherical 
dome shapes from initially flat plates of mild steel.  A 
close look shows that, since they used a constant power 
and velocity level for a path, local curvatures are 
different whether radial or circumferential paths are 
used.  In this work, velocities are allowed to vary along 
a path.  This provides the capability to curve a plate not 
only around but also along the path. This in turn 
provides the capability of using different sets of 
scanning paths but generating similar local curvatures. 
 
Magee, et al., [15] summarized several empirical rules 
for sequencing laser paths for laser forming of 
symmetrical shapes such as spherical dome shapes, such 
as geometrical symmetry should be reached as soon as 
possible after the initial irradiation.  The scanning 
sequence that was highly recommended is that radial 
paths are applied first, followed by a set of 
circumferential paths.  Although their work is concerned 
with a special class of geometry, it signifies the issue of 
path sequencing, especially when paths crossover.  In 
this work, the main objective is to design laser scanning 
paths and laser heating condition.  It is assumed that the 
geometry changes due to each scan are independent to 
each other when using a database based on independent 
scans to determine a heat condition.  There is no 
crossover of paths in this work.  In experiments, a plate 
is clamped at one corner and paths farthest away from 
the corner are scanned first and closest ones last 
primarily to keep the laser focus plane unchanged.   
 

7. Conclusions 

In this paper, a process design approach is developed for 
laser forming of doubly curved thin plates.  Strain field 
determination via large-deformation elastic FEM is 
shown to be valid and effective.  It is theoretically 
shown and FEM validated that the strain field 
determination for a desired shape can be achieved 
independent of any material properties including elastic 
properties like Young’s modulus.  Using minimal 
principal in-plane strain directions to generate scanning 
paths is shown to be simple.  Using a database of as 
minimal principal in-plane strain magnitudes as function 
of laser power and velocity and also based on practical 
considerations, issues surrounding multiple solutions are 
resolved in determining a heating condition.   It is 
demonstrated through two distinctively different doubly 
curved shapes of thin plate that the approach is effective 
in designing scanning paths and heating condition for 
laser forming process and the results agree with 
experimental measurements. 
Appendix 

It is shown in this section that, for large-deflection of 
thin plates, a strain field required for planar 
development of a desired shape can be determined 
independent of material properties including Young 
modules E.  The assumptions large-deflection of thin 

plates are (1) the material of the plate is elastic, 
homogenous, and isotropic; and (2) the straight lines, 
initially normal to the midplane before bending, remain 
straight and normal to the midplane during the 
deformation and the length of such element is not 
altered. This means that the vertical shear strains xz and 

yz, are negligible and the normal strain zz is also 
omitted.  Under these assumptions, the total strains can 
be expressed as a summation of the in-plane strains 

0
xx , 0

yy , and 0
xy  and bending strains 1

xx , 1
yy , 

and 1
xy  as shown in Eq. 1.   

 
Summing the three in-plane strains equations gives 
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Substituting the relations between strains and membrane 
forces Nx, Ny, and Nxy, according to Hooke’s law, are of 
the form: 
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where E is Young’s modulus, G is shear modulus, and  
is Poisson ratio, and stress function  for the membrane 
forces  
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into Equations (A1), one obtains the equation of 
compatibility of deformation, which allows expressing 
u0 and v0 in terms of w0. 
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Considering the equilibrium of an thin plate element, 
which experiences the membrane forces Nx, Ny, and Nxy, 
and is also subjected to a lateral load P(x, y) in the z 
direction.  Taking into account Equation (A3), the force 
equilibrium in the z directions leads to: 
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where 

)1(12 2

3


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Eh
D

, is the flexural rigidity of the plate.  

Let  =/E, equation (A4) and (A5) take the form  
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where 

)1(12
/'

2

3




h
EDD

, and P’=P/E.  Equations (A6) 

are the governing differential equations for thin plate 
deflection.  As seen from equation (A6), once a desired 
shape is given, deflection w0, and curvatures
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2
 are known, and therefore  and P’ can 

be calculated under appropriate boundary conditions 
independent of material properties including Young’s 
modulus E.  Once  is solved, the in-plane 

strains 0
xx , 0

yy , and 0
xy  can be determined again 

independent of material properties including Young’s 
modulus E, taking into account of equations (A2), (A3) 
and  =/E as follows 
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Their determination does depend on Poisson ratio, but  
  is a geometric quantity relating strains.  Bending 

strains ( 1
xx , 1

yy , 1
xy ) can be determined in the same 

form as equation (2), and are independent of both 
Young’s modulus and Poisson ratio.  
 
 

 
(a) 

 
(b) 

Figure 1. Overall strategy for determining (a) 
scanning paths and (b) heating condition 

 
 
 
 
 
 

 
 
 

Figure 2. Desired shape I: pillow 
 
 

 
 
 
 

 
 
 
 

 
 

Figure 3. desired shape II: saddle  
(dimension: 140*80*0.89mm3, magnification 5 in 

thickness for viewing clarity) 
 
 
 
 
 
 
 
 
 
 

                     (a) 
  

 
                      (b) 

 
Figure 4. (a) Minimal principal in-plane strain, and 
(b) minimal principal bending strain for the pillow 

shape (dimension: 140*80*0.89mm3) 
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      (a) 

 
 

 
(b) 

 
Figure 5. Minimal principal in-plane strain, and (b) 
minimal principal bending strain for the saddle 

shape (dimension: 140*80*0.89mm3) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 6. Vector plots of minimal principal in-plane 

strain for (a) pillow shape, and (b) saddle shape 
(the orientation of segments indicates strain 

direction and length of segments indicates strain 
magnitude) 

   
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
  

     (b) 
Figure 7. Scanning paths normal to the minimal   
principal in-plane strain for (a) pillow shape, and 
(b) saddle shape  
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Figure 8. FEM-determined relationship between 
laser power, scanning velocity and (a) minimal 
principal in-plane strain, and (b) minimal principal 
bending strain, both averaged within the heating 
zone equal to the laser beam size of 4mm (1010 
mild steel sheet of 0.89 mm thick) 

 

 

(a) 

 
(b) 

 
Figure 9. Heating condition (laser power level in W 
and scanning velocity in mm/s (indicated by sign ’ ) 
indicated along scanning paths and superposed on 
magnitude contour plots of minimalprincipal in-
plane strain for (a) pillow shape, and (b) saddle 
shape (a quarter of plates shown due to symmetry 
and see Figs. 5.4a and 5.5a color scales) 
 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (b) 

Figure 10. Laser formed AISI1010 steel thin plates 
(dimension: 140*80*0.89mm3)  

(a) pillow shape, & (b) saddle shape using 
scanning paths and heat conditions indicated in 
Fig. 9. 

 
(a) 

  

(b) 

Figure 11. Comparison of top-surface geometry of 
formed plate (in dotted lines) and desired shape (in 
solid lines) for (a) pillow shape, and (b) saddle 
shape.  The formed plates were measured by 
CMM. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 12. (a) Minimal principal in-plane strain, 
and (b) minimal principal bending strain for the 
pillow shape of thicker plate (dimension: 
140*80*5mm3) 

 

(a) 

 

 
 

(b) 
 

Figure 13. (a) Minimal principal in-plane strain, 
and (b) minimal principal bending strain for the 
saddle shape of thicker plate (dimension: 
140*80*5mm3) 
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