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Abstract: The task of manufacturing process design is to determine a set of process parameters for a 
manufacturing task.  The design is normally carried out to optimize process performance, such as, to minimize 
discrepancy from a prescribed shape or to maximize production efficiency.  An optimal design, however, is often 
not the most robust or reliable design because inevitable uncertainties in input variables may cause unacceptable 
deviations from the optimal point.  Robust design is therefore needed to achieve compromise between 
optimization and robustness.  Such a methodology is illustrated in case studies involving process design of laser 
forming of sheet metal, in which a set of parameters including laser scanning paths, laser power, and scanning 
speed is determined for a prescribed shape.  Response surface methodology is used as an optimization tool.  The 
propagation of error technique is built into the design process as an additional response to be optimized via 
desirability function and hence make the design robust.   The results are also validated experimentally. 
 
1.  Introduction  

Compared with conventional forming techniques, laser forming of sheet metal does not require hard 
tooling or external forces and hence, can increase process flexibility and reduce the cost of the forming process 
when low to medium production volume is concerned.  Many efforts have been made on studying the mechanisms 
and modeling of the process.  Magee, et al. (1998) reviewed literatures available up to 1998.   More recently, 
selected issues related to extending laser forming to more practical applications started being addressed.  For 
instance, repeated scanning is necessary to obtain the magnitude of deformation that practical parts require, and 
hence cooling effects during and between consecutive scans become critical (Cheng & Yao, 2001).   
 

A vast majority of work on laser forming including the ones mentioned above can be considered as 
solving the direct problem.  Such a problem is typically formulated based on physical laws such as heat transfer 
and elasticity/plasticity theories.  To apply the laser forming process to real world problems, however, the inverse 
problem needs to be addressed. Solving the inverse problem analytically or numerically is difficult, if not 
impossible, for the following reasons.  Firstly, no physical laws are readily available to establish governing 
equations leading to inverse solution.  Secondly, to manipulate either the solution to the direct problem or the 
underlying differential equations leading to a solution to the inverse problem is also impossible because of the 
complexity involved.  Thirdly, while the solution to the direct problem is unique, the solution to the inverse 
problem is certainly multi-valued.  Given the understanding that numerical or analytical solutions to the inverse 
problem are less likely, empirical and heuristic approaches have been attempted.  A genetic algorithm (GA) based 
approach was proposed by Shimizu, (1997) as an optimization engine to solve the inverse problem of the laser 
forming process. In his study, a set of arbitrarily chosen heat process conditions for a dome shape was encoded 
into strings of binary bits, which evolve over generations following the natural selection scheme. One of the 
important process parameters, heating path positions, was assumed given.  To apply GA, it is necessary to specify 
crossover rate and mutation rate but their selection suffers from lack of rigorous criteria.  
 

The objective of this paper is to develop a more systematic and reliable methodology to solve the inverse 
problem in laser forming for a class of shapes.  A response surface methodology (RSM) based approach is 
attempted as an optimization tool.  Discrete design variables are properly dealt with in the optimization process.  
Propagation of error (POE) technique is built into the design process as an additional response to be optimized via 
a desirability function and hence make the design more robust.  Experiments and at places finite element method 
(FEM) are used to enable and validate the optimization process.  The proposed approach is applied to two cases to 
demonstrate its validity. 
 
2. Problem Description 

As shown in Fig. 1, rectangular sheet metal is to be formed into 3D shapes by parallel laser irradiation. 
The 3D shape can be viewed as shape generated by a 2D generatrix in the y-z plane extruded in the x direction 
Therefore for this class of 3D shapes, the inverse design problem can be treated as a 2D curve design problem.   
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Fig.1 Schematic of a class of shapes to be laser formed, linear parallel scanning paths on a rectangular plate. 

 
As shown in Fig.1, the parameters needs to be determined include number of scanning paths, N, positions 

of laser scanning paths di, laser powers pi , beam scanning velocity vi and laser spot diameter Db. The approach 
presented in this paper, however, is not restricted to monotonic cases.  A non-monotonic generatrix can be 
similarly dealt with using different beam spot sizes for different paths.  The objective function is to minimize the 
difference between a possible solution shape and the prescribed shape, that is  

 Minimize: ∑
=

−=
k

i
pisi kzzh

1

2 /)(                                    (1) 

where zs and zp are the z coordinates of corresponding points on the generatrix of the possible solution shape and 
the prescribed shape, respectively, and k is the number of points.  It will be seen that values of the objective 
function h, in fact, serves as responses in the optimization process.   In addition, if a point in the possible solution 
shape has a smaller z value than the corresponding point of the prescribed shape, the distance is defined as 
negative; otherwise it is positive. When the sum of the distances is positive, the objective (or response) is 
considered positive; otherwise, it is negative.   
 

The final design of a product requires not only to be optimal, but also robust, namely, insensitive to the 
variation of input variables.  In laser forming process, the achievable accuracy of forming is limited by numerous 
uncertainties. Hennige, et al. (1997) investigated influencing uncertainties in laser forming based on analyzing 
error propagation and found variations in power and coupling coefficient are most influential factors on the 
variation of deformation. In this paper, the influence of laser power on the robustness of the optimal design will be 
addressed in a robust design phase based on desirability consideration. 
 

In this study, square plates of size 89.08080 ×× mm are used.  The material used is AISI1012 low carbon 
steel. The laser system used is a 1500W CO2 laser. In all the experiments, the laser beam diameter is set to 4 mm, 
the beam moving velocity is kept constant at 50mm/s. A coordinate measuring machine (CMM) is used to measure 
the coordinates of the deformed plates.  
 
3. RESPONSE SURFACE METHODOLOGY AND OPTIMAL DESIGN 

Response surface methodology (RSM) is a collection of statistical and mathematical techniques useful for 
developing, improving, and optimizing process (Myers, et al. 1995).   Applications of RSM comprise two phases.  
In  the  first   phase the response surface function is based on a factorial design, approximated by a first-order 
regression model (Eq. 2), and complete with steepest ascent/descent search, until it shows significant lack of fit 
with experiment data. After reaching the vicinity of the optimum, the second phase of the response surface 
function is approximated by a higher order regression function such as a second-order one shown in Eq. 3.  
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where ŷ and T
nxxxx ],...,,[ 21= are estimated response and decision variable vector, respectively, ε is the fitting 

error which is assumed to be normally distributed, and bo, 1b , and 2b are coefficients determined using the least 

square method.  If one or more of the decision variables are integers, the optimum problem is considered as a 
discrete problem, which can be dealt with methods such as the branch-and-bound method (Taha, 1987).  The 
steepest line search starts with the initial design points of q integer variables and n-q non-integer variables. The 
next iteration starts by arbitrarily choosing a design point from one of the q integers variables, the this remaining 



q-1 design points of integer variables of next movement are determined based on the coefficient from Eq. 2 and 
the branch-and-bound method. After reaching the vicinity of optimum, the response surface is approximated by a 
higher regression order with q integers determined from previous iteration and n-q non-integer factors. At this 
stage, the problem can be solved as a regular one with n-q continuous variables.  
 
4. DESIRABILITY AND ROBUST DESIGN 

Desirability based robust design is a tool to find controllable factor settings that optimize the objective yet 
minimize the response variation of the design (Kraber, et al., 1996).  The transmitted variation of responses from 
input variables can then be reduced by moving the optimal solution to a flatter part of the response surface.  The 
variation transmitted to the response can be determined by the error propagation equation POE =  
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where yσ̂ is the model-predicted standard deviation of the response or known as propagation of error (POE), 2
iiσ is 

the variance of decision variable xi, 2
ijσ is the covariance between xi and xj, and 2

eσ  is the residual variance, 
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= εσ , df is the residual degree of freedom.  To reduce variance in the response, POE (Eq. 4) should be 

minimized therefore can be treated as an additional response built into the design process. The simultaneous 
optimization of several responses (in this case, y in Eq. 3 and yσ̂ in Eq. 4) is the essence of the desirability based 
robust design (Kraber, et al., 1996 and Derringer et al., 1980).  For each response iŷ , a desirability 
function Di( iŷ ) assigns a value between 0 and 1 to the possible values of iŷ , with Di( iŷ ) = 0 representing a 
completely undesirable value of  iŷ  and Di( iŷ ) =1 representing the ideal response value. The individual 
desirabilities are then combined using the geometric mean, which gives the overall desirability 
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where m is the number of responses. The maximum of D represents the highest combined desirability of the 
responses.  Depending on whether a particular response iŷ  is to be maximized, minimized, or assigned to a target 
value, different desirability functions Di( iŷ )  are to be used. Let ii UL ,  and iT  be the lower, upper, and target 
values desired for response iŷ , where iii UTL ≤≤ . If a response is of the “target is best”, its desirability function 
is expressed as: 
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where the exponents r and s determine how strictly the target value is desired. The desirability function can be 
defined similarly if a response is to be minimized or maximized. 

As seen from Eqs. 3 and 4, iŷ is a continuous function of ix , it follows that Di and D are piecewise, 
continuous function of ix .  The above numerical optimization problem reduces to a general non-linear problem. 
However, as seen from equation (5) and (6), the derivative of D is not continuous. Therefore direct search methods 
need to be applied to find the optimal value of D.  Downhill simplex method (Miller, 2000) is chosen in this study.  
An implementation of the algorithm is Design-Expert® by Stat-Ease, Inc, which is used in the paper. 

5. APPROACH TO BENDING ANGLE ATTAINMENT 
In the steepest ascent/descent search and RSM process, a large number of experiments are required to 

obtain bending angles under different conditions, which is time consuming and costly and thus poses a serious 
limitation to the method.  If the total deformation of a sheet generated by the parallel laser scans can be obtained 
by summing deformations generated by these scans, a much smaller number of experiments will suffice. In other 



words, if deformations caused by scans at different di (Fig. 1) can be considered independent each other, only 
experiments with single scanning paths are needed.  This is experimentally and numerically validated by Liu & 
Yao (2002). Fig. 2, adopted from Cheng & Yao. (2001), is for the square plate under different laser power level at 
scanning velocity of 50 mm/s.  The scanning was done at y=0 and the bending angle is assumed to be the same if 
scanning is done at a non-zero y value. A line is fitted through the data points to allow interpolation in between.    

500 550 600 650 700 750 800
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

v=50mm/s
Db=4mm

B
en

di
ng

 a
ng

le
 (d

eg
re

e)

Power (W)  
Fig. 2 Experimental results of bending angle induced by a single scan on a square plate (Cheng & Yao, 2001). 

 
6. RESULTS AND DISCUSSIONS 

6.1  Case 1: In this case, the desirable shape (Fig. 3) is given in terms of the following process 
parameters: number of scan paths N=6 and laser power pi=p=700W. The scan paths are equally spaced.  The way 
the prescribed shape is specified is to facilitate in this first case comparison of design result with the prescription. 
The task here is to find power p and number of scan paths N to minimize the difference between the shape formed 
using the found condition and that using the prescribed condition (Eq. 1). 
 
Optimal design To apply RSM, an initial design point, N=4 and p=620W, is arbitrarily chosen. The corresponding 
initial shape is shown in Fig. 3.  A two-level factorial design is conducted with half width ∆N=1 and ∆p=30W.  As 
outlined in Section 5, bending angles under the factorial design conditions are obtained from interpolating the 
experimental results shown in Fig. 2.  To mimic the forming process repeatability characteristics, normally 
distributed random numbers are generated and added to each bending angle value.  The standard deviation of the 
random numbers are chosen as the same as that shown in Fig. 2 in the form of error bars.  A first-order regression 
model is fitted based on the factorial design and the direction of the steepest descent is determined from the 
coefficients of the regression model.  At each movement along the steepest descent direction, the response 
obtained from regression model is compared with that based on the experimental result to examine if this model is 
still valid. The percentage discrepancies of the comparison at the initial point and first movement along the path 
are 0.42% and 2.22%, respectively, which are considered to indicate that the direction of steepest descent path is 
valid at these points. The responses h at these points are -1.316 and -0.928, respectively according to Eq. 1.  After 
the next movement along the path (N=6 and p=664W), however, the percentage discrepancy increases to 5.87%, 
which indicates that the direction is no longer valid at this point (a tolerance of 5% is chosen as a lack of fit). 
Hence, another 2-level factorial design is conducted based on this point and a new steepest descent path is 
calculated. The new initial point (N=6 and p=664W) and the next point along the new path (N=7 and p=696W) 
have responses h = -0.5 and 0.21, respectively.  The change of sign is clearly indicative of “overshooting”, that is, 
the possible solution shape is bent more than the prescribed shape. This indicates that the optimum condition is in 
the vicinity of the last movement and normally a 3-level factorial design needs to be considered. In this case, 
however, the design variable N is subject to integer constraint and the solution must lie on either N=6 or 7.  
Therefore the branch-and-bound approach is applied.  Three-level single-factor (p) designs are conducted 
separately at N=6 and N=7. The quadratic equation for N=6 is found as   

h = 02.1003933.010572.3 25 +−× − pp                    (7) 
Solving the equation for zero response gives the optimal solutions p=701W for N=6 and p=671W for N=7.  This 
indicates that multiple solutions are possible. An additional objective function, such as, one minimizes production 
time screens out the solution (p=671W for N=7).  The optimization result (N=6 and p=701W) agrees very well 
with the prescribed value, (N=6 and p=700W).  The optimization process towards the prescribed shape is shown in 
Fig. 3, which includes prescribed shape, initial design, some intermediate shapes and final design.  
 
Robust design To make the design more robust propagation of error (POE) is calculated based on Eqs. 4 and 7, 
and assumed power standard deviation σp=6W as 236.01029.4 4 −×= − pPOE .  The response h is scaled to a 
desirability function D1 ranged from [0,1] according to Eq. 6 because the response  problem is of the  “target is  the 



 
Fig. 3 Case1  Design evolution towards the prescribed shape 

 
best” type, where T1 = 0 (target), L1 is set as –0.15, and U1 +0.15 to ensure the robust design is not off the optimal 
solution too much. The POE is also scaled to a desirability function D2 according to Eq. 7 because the POE 
problem is of the “minimization” type, where T2 is set as 0.042 (for p=650W) and U2 0.068 (for p=710W) 
according to Eq. 7.  The overall desirability D is then expressed as the geometry mean of D1 and D2 using Eq. 7.  
As seen in Fig. 4, the overall desirability function D is a continuous, nonlinear, piecewise function, and the 
maximum value of desirability, 0.4, is found at p=698W, where the POE value is lower than that at the optimal 
solution (p=701W), and the response value is –0.003. At the optimal solution, the desirability is about 0.33 and 
response is obviously zero.  The robust design therefore balances between the response and POE.  In this case, the 
robust design does not differ much from the optimal solution but the design process is generally applicable. 
 

6.2  Case 2: In this case, the desired shape is prescribed in terms of a generatrix that is a second order 

polynomial )
40

(2)
40

(4 2 yyz += , as shown in Fig. 5, its curvature increases with y. It is obvious that evenly spaced 

scanning paths are no longer appropriate, this resulting in a large number of design variables and making the RSM 
based optimal design less feasible.  As seen from Fig. 5, however, the curvature of the given profile decreases 
monotonically.  Since the trend of spacing between adjacent laser paths is closely related to the curvature of the 
prescribed shape, the following control function is proposed to relate all di’s,  

  m
i N
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where di specifies the position of the ith laser path, m is the design variable to be determined, and N is number of 
laser scan paths.  In this  case,  N is set as 7. The problem, therefore, becomes to determine the value of laser 
power p and exponent m to achieve the given profile.  The same process as in the previous case starts with 
arbitrarily  choosing  an initial design at m=1.2 and p=650W with half width of 0.2 and 30W, respectively.  The 
response function is found as h=1.58-5.81m+0.0073p-1.13m2-1.14*10-6p2 +0.015mp. Since multi-solutions 
corresponding to zero response.  Thus, another objective function, POE, is used to obtain the most desired 
solution.  

Suppose the variations in m and p are 0.02 and 6W, respectively, the POE is constructed as 
POE=(9.38*10-8p2-6.87*10-5p-3.02*10-5mp+ 2.29* 10-3m+0.011m2+0.02)0.5, in which the residual variance of 
0.0725 is included.  h and POE are again scaled to desirability functions ranged between [0,1] with h constrained 
between [-0.15, 0.15].  The overall desirability D is then calculated. The desirability in two-dimensional  cont-our 
is plotted in Fig. 9.  As seen from Fig. 9, the most desirable value is 0.8013 corresponding to p=692W and m=1.17. 
With this m value and Eq. 8, laser path positions, di’s, are calculated and plotted in form of crosses in Fig. 5, along 
with the final robust solution and prescribed shape.  As expected, laser path locations become coarser with 
decreasing curvature of the prescribed shape. The profile based on the robust   solution agrees with the prescribed 
profile.  Laser forming experiments were conducted under the condition determined by the robust design and the 
results were plotted in Fig. 5. As seen, the experimental result shows a good fit with the predicted one. 
 
7. CONCLUSIONS 

It is shown that the proposed optimal and robust design schemes are feasible and effective for the class of 
shapes considered.  Integer design variables are effectively dealt with by using standard methods such as the 
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Fig. 5 Comparison of the robust solution and the prescribed shape (case 2). 
 
branch-and-bound method and by integrating with RSM.  To reduce the number of design variables, the laser path 
positions are specified by proper selection of control functions. The predicted results agree with the experimental 
ones.  
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