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Abstract 
 
     There has been a considerable amount of work carried out on two-dimensional laser forming.  
In order to advance the process further for industrial applications, however, it is necessary to 
consider more general cases and especially their process planning aspect.  This paper presents an 
optimal approach to laser scanning paths and heating condition determination for laser forming 
of doubly curved shapes.  Important features of the approach include the strain field calculation 
based on principal curvature formulation and minimal strain optimization, and scanning paths 
and heating condition determination by combining analytical and practical constraints.  The 
overall methodology is presented first, followed by more detailed descriptions of each step of the 
approach.  Two distinctive types of doubly curved shape, pillow and saddle shapes are focused 
on and the effectiveness of the proposed approach is validated by forming experiments. 
 

1. Introduction 
 
     Compared with conventional forming techniques, laser forming (LF) of sheet metal does not 
require hard tooling or external forces and hence, can increase process flexibility and reduce the 
cost of the forming process when low- to medium-volume production or prototyping is 
concerned. To apply the LF process to real world problems, however, the inverse problem needs 
to be addressed, that is, to design process parameters (laser scanning paths and heating condition) 
given a desired shape.  For general three-dimensional shapes, determining laser scanning paths 
and heating condition is not obvious since they are not directly related to the shapes. 
 
     Ueda, et. al [1] investigated the development of computer-aid process planning system for 
plate bending by line heating. They computed the strains using large deformation elastic finite 
element method (FEM) and decomposed strains into in-plane and bending components. They 
then chose regions with large in-plane strains as heating zones and selected heating direction 
normal to the principal strain. Their work in line heating provides relevant information for the LF 
process design. However, their approach to heating path determination is not well explained. 
Furthermore, they did not deal with how to determine the heating condition. Yu and Patrikalakis 
[2] presented algorithms for optimal development of a smooth continuous curved surface into a 
planar shape. The development process is modeled by in plane strain from the curved surface to 
its planar development. The distribution of the appropriate minimum strain field is obtained by 
solving a constrained nonlinear programming problem. The optimal developed planar shape is 
obtained by solving an unconstrained nonlinear programming problem.  The algorithms 
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presented are illuminating, however, they do not provide an explicit method on how to determine 
laser paths nor on how to determine heating conditions. Focusing on a class of shapes, Liu and 
Yao [3] proposed a response surface methodology based optimization method for LF design. The 
propagation of error technique is built into the design process as an additional response to be 
optimized via desirability function and hence make the design robust. This method is successful 
for a class of shapes; however, they are not directly applicable to general 3D shapes. 
 
     This study presents an optimal process planning strategy to determine scanning paths and 
heating condition for laser forming of general doubly curved shapes. The overall methodology is 
presented first, followed by more step-by-step descriptions of the proposed strategy. Two 
distinctive types of doubly curved surfaces, pillow and saddle shape are studied and the overall 
methodology is validated by experiments. This paper is concerned with thin plates and therefore 
the analysis of strains can be reduced to the analysis of their middle surface only.   
 

2. Problem Description 
 
     In engineering applications, surfaces are often classified as singly and doubly curved surfaces.  
A singly curved surface has zero Gaussian curvature at all points and therefore can be formed by 
bending strain only.  A doubly curved surface has non-zero Gaussian curvature and generally 
requires both in-plane and bending strains to form.  Surfaces of many engineering structures are 
commonly fabricated as doubly curved shapes to fulfill functional requirements such as 
hydrodynamic, aesthetic, or structural. For thin plates, in-plane strain is usually much larger than 
the bending strain and therefore only the former is considered in this paper. 
 
     Two distinctive doubly curved surfaces are chosen as desired shapes in this study.  They are a 
pillow shape, which has positive Gaussian curvature over the entire surface, and a saddle shape, 
which has negative Gaussian curvature over the entire surface. Both surfaces can be given in the 
form of Bezier surface. For a bicubic Bezier patch, sixteen points are required to determine a 
surface patch, the point on the surface patch can be expressed in the matrix form[4], 

Tvvvvvvuuuuuuvu ])1(3)1(3)1(])1(3)1(3)1[(),( 32233223 −−−−−−= Q[r  (1) 
where Q is a 4 by 4 matrix containing the sixteen control points.  The control points for the 
pillow shape are:[(0,0,0), (0,1/3,0.025), (0,2/3,0.025), (0,1,0);(1/3,0,3.0.042), (1/3,1/3,0.08), 
(1/3,2/3,0.08), (1/3,1,0.042);(2/3,0,0.042), (2/3,1/3,0.08), (2/3,2/3,0.08), (2/3,1,0.042);(1,0,0), 
(1,1/3,0.025), (1,2/3,0.025), (1,1,0)]. For the saddle shape, the control points are:[(0,0,0.042), (0, 
1/3,0.017), (0,2/3,-0.017), (0,1,-0.042);(1/3,0,3.0.017), (1/3,1/3,0.008), (1/3,2/3,-0.008), (1/3,1,-
0.017);(2/3,0,-0.017), (2/3,1/3,-0.008), (2/3,2/3,0.008), (2/3,1,0.017);(1,0,-0.042), (1,1/3,-0.017), 
(1,2/3,0.017), (1,1,0.042)].  
 
     These two shapes are shown in Fig. 1 (a) and (b), respectively. As noticed in Fig. 1(a), the 
adjacent sides of the pillow shape are not identical, with the one along the u direction curves 
slightly higher.  The saddle shape in Fig. 1 (b) bends up at a pair of opposite corners and down at 
the other pair.   
 
     The overall optimal planning strategy consists of three stages.  In stage one, the principal 
curvature directions are calculated based on the first and second fundamental form coefficients 
of a given doubly curved surface. The desired doubly curved surface is then developed into a 

  



planar shape to obtain the required strain field. Based on the strain field and the coefficients of 
the first fundamental form of the curved surface, the initial planar shape is obtained by solving 
an unconstrained nonlinear problem. In stage two, the planning of laser paths is carried out on 
the planar developed surface and perpendicular to the principal curvature directions solved from 
the stage one. Segmentation along the heating paths is performed and heating condition is 
determined in the final stage. The required strain between adjacent scanning paths is first lumped 
together, a database, which is obtained from finite element method concerning the relationship 
between principal strains and laser power levels and scanning velocities is then consulted.  The 
three stages are described in more details in the following three sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        (a)                         (b) 

Fig 1 (a) Desired pillow shape (b) Desired saddle shape. 
 

3. Determination of Strain Field 
 
     In geometric modeling, shapes are commonly expressed in terms of parametric equations. A 
parametric representation of a surface can be denoted by r=r(u,v) where (u,v)∈[0,1] forms a 

parametric space.  Its derivatives at point P on the surface are represented by 
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The first fundamental coefficients E, F and G  and the second fundamental coefficients L, M and 
N are defined as [5] 
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     The normal curvature of the surface at P can be expressed as a function of first and second 
fundamental coefficients , namely,  
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     Principal directions are the two perpendicular directions at which the value κn take on 
maximum and minimum values. The value of principal curvatures and principal directions at a 
point P on a surface can be obtained by taking derivative of Eq. 3 with respect to λ=dv/du and 
letting it equal to zero, that is, 
(FN-MG)λ2 +(EN-LG)λ+ (EM-LF)=0      (4) 
where λ is a principal direction at P.  Substituting λ into Eq. 3 yields 
 (EG-F2) κn

2-(EN+GL-2FM)κn+(LN-M2)=0      (5) 
Gaussian curvature is the product of the roots of Eq. 5, κmin and κmax  that is  

K= κminκmax= 2
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     A curve on a surface whose tangent at each point is along a principal direction is called a line 
of curvature. It follows that a curve is a line of curvature if and only if at each point the direction 
of its tangent satisfies Eq. 4 for some path r=r(u,v). 
 

3.2 Strain Field for Planar Development 
      
     Assume the strain field due to changing from a given curved surface to its planar shape is 
represented by εs(u,v) and εt(u,v) where (s,t) denote the principal curvature directions. An 
approach based on minimization of the total strain energy after adding the strain field to the 
given doubly curved surface, which maps to a planar shape on which Gaussian curvature Kps is 
zero everywhere [2], is expressed as 
min { } { }∫∫ ∫∫ −+=×+
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subject to  Kps=0, εs(u,v)≥0 and εt(u,v)≥0.  (u,v)∈D and 3D is the parametric space.   

 
Fig. 2 Doubly curved surface, its planar development and the strain definition. 

 
     For the constraint Kps=0, Eq. A1 in Appendix will be used by replacing e, f, and g for E, F, 
and G, where e, f, and g are the first fundamental form coefficients of the developed planar 
surface R(u,v) (Fig. 2). It is more convenient to use the form shown in Eq. A1 than in Eq. 6 
because only the first fundamental form coefficients and their derivatives are needed.  The 
relationships between e, f, and g and the given curved surface parameters as well as the 
unknowns εs(u,v) and εt(u,v) are written in A2. The non-negativity constraints εs≥0 and εt≥0 are 
imposed for the following reason.  During a laser forming process, it is known that the strains 
generated to form a planar shape to a curved surface are mostly compressive, that is, es≤0, and 

  



et≤0.  As a result, the strains required to develop the curved surface to its planar shape are tensile, 
that is, εs≥0 and εt≥0.   
 
     Eq. 7, representing a constrained nonlinear optimization problem, is disretized by using the 
trapezoidal rule of integration and central difference method for partial derivatives in the 
constraints. NAG e04ucf routine [6], which implements a sequential quadratic programming 
method (SQP) is used to solve the constrained nonlinear optimization problem. The strains 
εs(u,v) and εt(u,v) are on the curved surface and to determine scanning paths on the planar 
developed surface, they need to be transformed onto the planar surface es(u,v) and et(u,v).  Since 
εs(u,v) and εt(u,v) represent the strains due to changing from curved surface to its planar 
development, an infinitesimal length |rsds| changes to (1+εs)|rsds| and |rtdt| changes to (1+εt)|rtdt| 
(Fig. 1).  Therefore, |Rs|=(1+εs)|rs|, and |Rt|=(1+εt)|rt|, where r and R represent the given curved 
surface and its planar development, and (s,t) represent the principal curvature directions. The 
strains es(u,v) and et(u,v) can be expressed in terms of εs(u,v) and εt(u,v) as 
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The results are shown in Figs. 3 (a) and (b) for the pillow and saddle cases, respectively.  The 
length of the bars represents the magnitude and the orientation of the bars the direction of the 
strains.   
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          (a)           (b) 
Fig. 3 Strains along the principal curvature directions.(a) pillow case (b) saddle case (the 
segment length represents the magnitude and the orientation represents the strain direction). 

u 

v 

 
3.3 Planar Developed Shape 

 
     After obtaining the strain field ( and ) at all grid points, the planar coordinates (Xs

ijε
t

ijε ij, Yij) 
of the grid points corresponding to the planar developed shape can be determined. The decision 
variables to be determined are the 2mn coordinates of the grid points Rij=(Xij, Yij). As a result, 
Eq. 8 gives 3mn known conditions with e, f and g are determined based on ( and ) and 
other information of the desired curved surface (Eq. A2). To solve this over-determined system 
of nonlinear polynomial equations, the following unconstrained least square error minimization 
problem is solved by using quasi-Newton method in NAG C routine e04fcc. 
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where Ru and Rv are expressed in terms of (Xij,Yij) using the finite difference method. The results 
are shown in Figs. 4 (a) and (b) for the pillow and saddle cases, respectively. 
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Fig. 4 (a) Planar developed shape of the pillow case, (b) Planar developed shape of the saddle 
case. (distortion from the original parametric space D: (u,v)∈ [0,1] is magnified by a factor of 5 

for viewing clarity). 
 

4. Scanning Paths 
 
     After a strain field required to develop a desired curved shape to its planar shape is 
determined, scanning paths are designed.  It is well known that, in the laser forming process, the 
highest compressive strains occur in a direction perpendicular to a scanning path and in-plane 
within workpiece, therefore a scanning path should be perpendicular to the direction of the 
principal strain.  Since the strains developed along the principal curvature directions (εs, εt) in the 
preceding section are perpendicular to each other and no shear strain is involved in the process, 
they can be regarded as the in-plane principal strains, and therefore a scanning path should be 
perpendicular to the direction of the principal curvature at every point on the path. 
 
     For laser forming based the temperature gradient mechanism [7], the target bends towards the 
heating source. To form a curved surface by laser forming is to superpose these positive 
curvatures on the appropriate regions of the plate. If the Gaussian curvatures along the lines of 
curvature are positive, the scanning paths should be placed on one side of the plate, otherwise, 
they should be placed at both sides of the plate.  In the pillow shape, the Gaussian curvatures are 
positive all over the plate while in the saddle shape, the Gaussian curvatures are all negative. 
 
     In determining the spacing of adjacent scanning paths, the following guidelines are followed. 
In general, the smaller the spacing, the more precise the desired shape can be formed.  However, 
the adjacent paths cannot be too close since they will no longer be independent with each other 
while independence is a requirement assumed in determining the heating condition in the next 
section. In addition, too small spacing implies more scanning and thus longer time to form a part.  

  



The strain distribution over the entire plate should also be considered in determining the spacing 
of adjacent paths. The regions of a shape that has larger strains need to be scanned with denser 
paths. As a rule of thumb, spacing between two adjacent paths, Dpaths, should be equal to strain 
generated by laser forming, εlaser, multiplied by laser beam spot size, dlaser and divided by the 
average principal strain over the spacing.  Another consideration is where to not place a scanning 
path or where to terminate a scanning path. If a region has strains smaller than a particular value 
of the maximum strain in the plate, say 5%, no scanning paths are placed there.  Similarly, if the 
strain along a scanning is smaller than a particular value, the scanning path is terminated at that 
point.  
 
     Figs. 5 (a) and (b) show the scanning paths determined based on the above principles and 
guidelines in order to form the pillow shape and saddle shape, respectively.  As seen from Fig. 5 
(a) (only a quarter of the plate is shown due to symmetry), the scanning paths are particular to 
the principal curvature directions.  This is also the case for Fig. 5(b) where the directions (shown 
in Fig. 3 (b)) are not shown for viewing clarity.  In the pillow case the regions around the mid 
edges have larger strains, while regions at the corners and the center of the plate have smaller 
strains. Based on previous discussions, the laser paths should be positioned denser around the 
mid edges of the plate. On the other hand, in the saddle shape (only a quarter of paths are shown 
due to symmetry), the strains are larger at the center of the plate and become smaller towards the 
edges (Fig. 3 (b)). Therefore, laser paths should be denser at the center of the plate. Regions with 
strains less than 5% of the maximal strain of the plate, no paths are placed.  A laser path 
terminates where the corresponding strain is less than 5% of the maximum strain along the path.  
As seen, the determination of the scanning paths involves certain practical considerations which 
are and the solution is obviously not unique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                (a)      (b) 

 

Fig 5(a) Optimal planning of laser paths and heating condition (power shown in watts and 
scanning speed shown in numbers with unit of mm/s) for the (a) pillow shape, (b) saddle shape.   
 

5. Heating Condition 
     The final stage of 3D laser forming design is to determine the heating condition. If the plate 
dimension and the laser spot size are given, the heating condition that needs to be determined 

  



includes laser power and laser scanning velocity and laser power. In this study, the selected 
samples are 1010 steel coupons with dimension of 80 by 80 by 0.89 mm.  The  principal 
minimum strain averaged over a beam spot size as a function of laser power and scanning 
velocities determined via finite element analysis of single straight-line (independent) laser 
scanning of a plate with the above material and dimension.  Detailed FEM modeling description 
can be found in Liu and Yao [3].  There are many possible combinations of power and velocity 
to realize a given strain.  The strategy to determine the heating condition is summarized below.  
First, the in-plane strains along a scanning path determined in the section 4 are averaged and 
checked with the FEM database and a laser power level is chosen. This step is to ensure that the 
power level chosen is readily available in the existing laser forming equipment.  The laser power 
is kept constant for the laser path. The next step is to determine the velocities along the path. In 
general, the strain distribution along the path is not uniformly distributed; therefore the velocity 
ideally should vary with the strain along the path. Practically, a laser path is broken into several 
segments so that in each segment the strain variation is not larger than, say, 1/5 of the maximum 
strain along the path.  A constant velocity is prescribed for each segment based on the average 
strain of the segment, predetermined laser power, and the existing relationship from FEM 
database.  The average strain of the segment is obtained by averaging the strain along the 
segment, followed by lumping the strain between adjacent paths. 
 
     The heating condition for the two desired shape is decided following the above strategy and 
superposed in Figs. 5 (a) and (b), respectively.  Generally, regions requiring high strains get 
higher power levels and lower velocities prescribed simply because more energy input is 
required.  For example for the path at x=40mm in Fig. 5 (a), where the highest strain is required, 
the power is highest at 650W for the path. At locations near y=0 on the path, the strains are 
larger, therefore the velocity is lowest (v=27mm/s). As the path moves toward the center, the 
velocity increases sharply, due to the quick drop of strain. Since the strain gradient along the path 
slows down towards the center of the plate, the segment spacing becomes larger accordingly.  On 
the contrary, the principal strains are lager at the center of the plate for the saddle case shown in 
Fig. 5 (b), and therefore the spacing of the adjacent paths are denser.  But the strain gradients are 
larger towards edges and corners of the plate, the segment spacing is therefore smaller towards 
the edges and corners.     

 
6. Experimental Validation 

 
     Laser forming experiments were conducted on 1010 steel coupons of dimension of 80 by 80 
by 0.89 mm, the same as used in simulation. The scanning paths and heating condition in the 
experiments are shown in Figs. 16 and 17 for the pillow and saddle cases, respectively. The laser 
system used is a PRC-1500 CO2 laser, which has a maximum output power of 1,500W. Laser 
beam spot size used is 4 mm.  Workpiece movement was controlled by Unidex MMI500 motion 
control system, which allows convenient specifications of variable velocities along a path with 
smooth transitions from segment to segment.         
                            
Fig. 6 (c) shows the formed pillow and saddle shape under these conditions.  A coordinate 
measuring machine (CMM) is used to measure the geometry of the formed shapes. Figs. 6 (a) 
and 6 (b) compare the geometry of formed shape under the determined conditions and desired 
shape.  Only the geometry of top surface of the plate is measured and a general agreement can be 

  



seen from the figures.  There is about 10% error for the saddle case especially at the corners seen 
from Fig. 6 (b).  Possible sources of error include the average and lumped method used to 
determine strains of path segments, and the approximate method used to determine the laser 
power and scanning velocity based on independent scans. After all, a strain field required to 
develop a curved shape to its planar shape is continuous in nature while the laser forming process 
uses a discrete number of paths to approximate the strain field.       
 
 
 
 
 
 
 
 
 
 
 
 

 

         (a)       (b) 
 
 
 
 
 
 
 
 
 
                                                                              

 
Fig. 6 Comparison of desired and measured 
shapes of the (a) pillow case and (b) saddle 
case. (an array of 7 by 7 points measured 
by CMM). (c) Laser formed pillow and 
saddle shapes using the process plans 
shown in Fig. 5(a) and (b).  
 

                             (c) 
 

Conclusions 
 
The concept of determining a strain field required to develop a given curved shape to its planar 
shape as the first step of process planning for laser forming is of merit.  Placing scanning paths 
perpendicular to the principal curvature directions, namely along the line of curvatures of a 
desired shape proves to be unambiguous and easy to implement.  Practical constraints need to be 
combined with analytical ones in determining path spacing and heating condition.  There is a 
trade-off between forming accuracy and efficiency by carefully choosing density of scanning 
paths and path segments. 
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Appendix 
 
     Eq. 6 shows Gaussian curvature K is expressed in terms of the first and second fundamental 
form coefficients of a surface.  In practice, K can be alternatively expressed as a function of the 
first fundamental form coefficients and their derivatives [8]. 
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     The first fundamental coefficients on the planar shape (e, f, g) and desired shape (E, F, G) 
have the following relationship, 
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For a given curved surface, E,F,and G as well as us ,ut ,vs,and vt can be calculated, and therefore 
if εs and εt are calculated, e, f and g can be calculated accordingly. 
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