Identification and validation of novel candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas

Zhong G *, Ahimaz P *, Edwards NA *, Hagen JJ, Faure C, Kingma P, Middlesworth W, Khlevner J, El Fiky M, Schindel D, Fialkowski E, Kashyap A, Forlenza S, Kenny AP, Zorn AM [+], Shen Y [+], Chung WK [+]

HGG Advances, 2022.

Lab members marked as bold; * authors with equal contribution; [+] co-senior authors

Abstract

Esophageal atresias/tracheoesophageal fistulas (EA/TEF) are rare congenital anomalies caused by aberrant development of the foregut. Previous studies indicate that rare or de novo genetic variants significantly contribute to EA/TEF risk, and most individuals with EA/TEF do not have pathogenic genetic variants in established risk genes. To identify novel genetic contributions to EA/TEF, we performed whole genome sequencing of 185 trios (probands and parents) with EA/TEF, including 59 isolated and 126 complex cases with additional congenital anomalies and/or neurodevelopmental disorders. There was a significant burden of protein altering de novo coding variants in complex cases (p=3.3e-4), especially in genes that are intolerant of loss of function variants in the population. We performed simulation analysis of pathway enrichment based on background mutation rate and identified a number of pathways related to endocytosis and intracellular trafficking that as a group have a significant burden of protein altering de novo variants. We assessed 18 variants for disease causality using CRISPR-Cas9 mutagenesis in Xenopus and confirmed 13 with tracheoesophageal phenotypes. Our results implicate disruption of endosome-mediated epithelial remodeling as a potential mechanism of foregut developmental defects. This research may have implications for the mechanisms of other rare congenital anomalies.

A preprint version of this work is available at medRxiv: https://10.1101/2021.07.18.21260699