Lecture 10: Weak Law of Large Numbers and Central Limit Theorem

Ye Tian

Department of Statistics, Columbia University Calculus-based Introduction to Statistics (S1201)

July 26, 2022
Cold COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Recap: Discrete distributions

Bernoulli trials: (like coin tossing)

- Each trial has two outcomes: denoted as S (success) and F (failure).
- For each trial, $\mathbb{P}(S)=p$ and $\mathbb{P}(F)=q=1-p$.
- The trials are independent.

Bernoulli distribution: $\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p$, denoted by $X \sim \operatorname{Bernoulli}(p)$

- $\mathbb{E} X=p, \operatorname{Var}(X)=p(1-p)$

Binomial distribution: the number of successes in a Bernoulli process with n trials and probability of success p

- X_{i} : the Bernoulli r.v. corresponding to i-th Bernoulli trial, then the Binomial r.v. $X=\sum_{i=1}^{n} X_{i}$.
- pmf: $p(k)=\mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, where $x=0, \ldots, n$.
- cdf: $\mathbb{P}(X \leq x)=\sum_{i=0}^{x} \mathbb{P}(X=x)$
- $\mathbb{E} X=n p, \operatorname{Var}(X)=n p(1-p)$

Recap: Discrete distributions

Geometric distribution: The number of Bernoulli trials until we first get an "S", denoted by $X \sim \operatorname{Geometric}(p)$.
。 pmf: $p(x)=\mathbb{P}(X=x)=\mathbb{P}(\{\underbrace{\mathrm{F} \ldots \ldots \ldots \mathrm{F}} \mathrm{S}\})=q^{x-1} p$, where $x=1,2, \ldots$ ($x-1$) F's

- cdf: $F(x)=1-\mathbb{P}(X>x)=1-\mathbb{P}(\{\underbrace{\mathrm{F} \ldots \ldots \ldots \mathrm{F}}_{x \mathrm{~F}^{\prime} \mathrm{s}}\})=1-q^{x}$
- $\mathbb{E} X=1 / p, \operatorname{Var}(X)=1 / p^{2}$

Hyper-geometric distribution: There are N products in total with M defect ones and $N-M$ good ones. We sample n from these N products without replacement. X be the number of defect products

- pmf: $\mathbb{P}(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$, if $\max \{0, n-N+M\} \leq x \leq \min \{n, M\}$ and $\mathbb{P}(X=x)=0$ elsewhere.
- $\mathbb{E} X=n \times \frac{M}{N}$.

Recap: Continuous distribution

Uniform distribution: (on $[A, B]$) if:
。 pdf is $f(x)= \begin{cases}\frac{1}{B-A}, & A \leq x \leq B \\ 0, & \text { elsewhere }\end{cases}$
。 cdf is $F(x)= \begin{cases}0, & x \leq A \\ \frac{x-A}{B-A}, & A<x \leq B \\ 1, & x>B\end{cases}$
Normal distribution (or Gaussian distribution): $X \sim N\left(\mu, \sigma^{2}\right)$

- $N(0,1)$: standard normal distribution, $\operatorname{pdf} \phi, \operatorname{cdf} \Phi$
- pdf: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad-\infty<x<+\infty$
- $\mathbb{E} X=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- pdf f is symmetric around μ : $f(x-\mu)=f(x+\mu)$ for any x
- (Standardization) $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.
- ϕ is symmetric around 0 : $\phi(x)=\phi(-x)$ for any x.
- $\Phi(-x)=1-\Phi(x)$ for any x

Recap: Sum of independent normal variables

Suppose $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ and $X \Perp Y$.
Theorem: $X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
Warning: This only holds when X and Y are independent!
Counter-example when $X \not \Perp Y: Y=-X$

Consequence:

$$
\begin{aligned}
& \text { - } X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right) \text {. Then } \sum_{i=1}^{n} X_{i} \sim N\left(\sum_{i}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right) \\
& \circ X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right) . \text { Then } \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)
\end{aligned}
$$

Proof: By induction: $\sum_{i=1}^{n} X_{i} \sim N\left(\tilde{\mu}, \tilde{\sigma}^{2}\right)$. Next we will find $\tilde{\mu}$ and $\tilde{\sigma}^{2}$.
Since X_{i} 's are independent: $\tilde{\mu}=\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mu_{i}$.
$\tilde{\sigma}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n} \sigma_{i}^{2}$.
Review the 'linearity' of expectation and variance from last lecture:
Suppose X_{1}, \ldots, X_{n} are independent. a_{1}, \ldots, a_{n}, b are constants.

- $\mathbb{E}\left[\sum_{i=1}^{n}\left(a_{i} X_{i}\right)+b\right]=\sum_{i=1}^{n}\left(a_{i} \mathbb{E} X_{i}+b\right)$
- $\operatorname{Var}\left[\sum_{i=1}^{n}\left(a_{i} X_{i}\right)+b\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$

Recap: Continuous distribution

Exponential distribution: $X \sim \operatorname{Exp}(\lambda)$

- pdf: $f(x)=\lambda \exp (-\lambda x), \quad x \geq 0$
- cdf: $F(x)=1-\exp (-\lambda x), \quad x \geq 0$.
- $\mathbb{E} X=\lambda^{-1}, \operatorname{Var}(X)=\lambda^{-2}$
- Memoryless property: $\mathbb{P}(X>a+x \mid X>a)=\mathbb{P}(X>x)$

Summary: some commonly used distributions

Discrete distributions:

- Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Hyper-geometric distribution
- Poisson distribution

Continuous distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- χ^{2}-distribution
- t-distribution
- F-distribution

Weak Law of Large Numbers

Recap: Population universe and sample universe

Sample universe (what we see) Population universe (inaccessible)

Data \Rightarrow

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Probability distribution \Rightarrow

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

Rationale: When we have enough samples and our model assumption is close to the actual distribution, then the sample-version data summaries will be close to the underlying population-version ones.

Weak law of large numbers

Theorem: X_{1}, \ldots, X_{n} are i.i.d. r.v.'s following the same distribution of X. If $\mathbb{E} X$ exists 1, then $\bar{X}=\frac{1}{n} \sum_{i=1} X_{i}$ satisfies that for any $\epsilon>0$,

$$
\mathbb{P}(|\bar{X}-\mathbb{E} X|>\epsilon) \approx 0, \quad \text { when } n \text { is large. }
$$

- If you don't understand this probability, no worries! You can understand it as $\bar{X} \approx \mathbb{E} X$ when the number of samples n is very large.
- This implies that sample mean is close to the population mean (expectation) when n is large.
- This also implies that sample variance and standard deviation are close to the population ones when n is large.
To see this, $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{n}{n-1} \bar{X}^{2} \approx$ $\mathbb{E} X^{2}-(\mathbb{E} X)^{2}=\operatorname{Var}(X)$. And $s \approx \sqrt{\operatorname{Var}(X)}=\mathrm{SD}(X)$.
- If X is discrete, then relative frequency at $X=x$ equals
$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(X_{i}=x\right) \approx \mathbb{E}[\mathbb{1}(X=x)]=$ the pmf at $X=x$ i.e. $\mathbb{P}(X=x)$
${ }^{1}$ This holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential, binomial, uniform, ...

Review: Explanation of the previous examples

Example 1: Rolling a die. What is the expected number of spots X on the top?
$\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=\frac{1}{6} \Rightarrow$
$\mathbb{E} X=1 \times \frac{1}{6}+2 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=3.5$.

Review: Explanation of the previous examples

Example 2: X follows a uniform distribution on $[0,1]$. (i.e. pdf $f(x)=1$ on $[0,1]$ and 0 elsewhere)
$\mathbb{E} X=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}$.

Review: Relative frequency bar chart and pmf

Suppose a r.v. X has distribution with this pmf. I sampled X_{1}, X_{2}, \ldots, X_{1000} independently from this distribution.

- Empirical relative frequency is an approximation of pmf.
- If we sample infinite points, the relative frequency will equal pmf.
- We will discuss more on this next week. Now you know it's due to ...

Review: Density histogram and pdf

Suppose a r.v. X has distribution with this pmf. I sampled X_{1}, X_{2}, \ldots, X_{1000} independently from this distribution.

histogram

- Empirical density histogram is an approximation of pdf.
- If we sample infinite points and the bin width is infinitely small, the density histogram will be the same as the pdf curve.

Central Limit Theorem

Binomial pmf when n is large

 pmf of $\operatorname{Bin}(n, 1 / 3) \underset{n=5}{=} \sum_{i=1}^{n} X_{i}$, where $X_{i} \stackrel{i . i . d .}{\sim}$ Bernoulli $(1 / 3)$

Histogram of sum of uniform r.v's

Histogram of $\sum_{i=1}^{n} X_{\mathrm{n}=5}$, where $X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Unif}(0,1)$

Central limit theorem

Our guess: the sum of i.i.d. (independently and identically distributed) r.v.'s is approximately normal distributed.

The guess is true!!!
Theorem: X_{1}, \ldots, X_{n} are i.i.d. r.v.'s following the same distribution of X. If $\mathbb{E} X=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$ exists 2, then $\bar{X}=\frac{1}{n} \sum_{i=1} X_{i}$ satisfies

$$
\mathbb{P}\left(\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq x\right) \approx \Phi(x), \quad \text { when } n \text { is large },
$$

where Φ is the cdf of standard normal distribution $N(0,1)$.

- This is saying that \bar{X} approximately follows $N\left(\mu, \sigma^{2} / n\right)$ when n is large Recall that $\mathbb{E}(\bar{X})=\mu, \operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- When $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right), " \approx$ " will be " $=$ " (by properties of normal distribution).
- Equivalently, $\sum_{i=1}^{n} X_{i}$ approximately follows $N\left(n \mu, n \sigma^{2}\right)$.

[^0]
Central limit theorem

Example 1: $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p)$. Then
$\overline{n \bar{X}}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, p)$. And $\mathbb{E} X_{i}=p, \operatorname{Var}\left(X_{i}\right)=p(1-p)$.
By CLT,

$$
\begin{aligned}
\bar{X}=\frac{1}{n} & \sum_{i=1}^{n} X_{i} \stackrel{d}{\approx} N(p, p(1-p) / n) \\
& \sum_{i=1}^{n} X_{i} \stackrel{d}{\approx} N(n p, n p(1-p)) .
\end{aligned}
$$

Notes: $" \stackrel{d}{\approx}$ " means "approximately follows ... distribution when n is large"

Binomial pmf when n is large

 pmf of $\operatorname{Bin}(n, 1 / 3) \underset{n=5}{=} \sum_{i=1}^{n} X_{i}$, where $X_{i} \stackrel{i . i . d .}{\sim}$ Bernoulli $(1 / 3)$

Central limit theorem

Example 2: $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Unif}(0,1)$. And $\mathbb{E} X_{i}=1 / 2, \operatorname{Var}\left(X_{i}\right)=1 / 12$. By CLT,

$$
\begin{aligned}
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} & \stackrel{d}{\approx} N\left(\frac{1}{2}, \frac{1}{12 n}\right), \\
\sum_{i=1}^{n} X_{i} & \stackrel{d}{\approx} N\left(\frac{n}{2}, \frac{n}{12}\right) .
\end{aligned}
$$

Histogram of sum of uniform r.v's

Histogram of $\sum_{i=1}^{n} X_{i}$, where $X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Unif}(0,1)$

Normal approximation to the binomial

By CLT, $X \sim \operatorname{Bin}(n, p)$ can be approximated by $N(n p, n p(1-p))$.
When $n \geq 30, n \min (p, 1-p) \geq 10$, we can use the following normal approximations to calculate binomial probability:

- Without continuity correction:

$$
\begin{aligned}
\mathbb{P}(a \leq X \leq b) & =\mathbb{P}\left(\frac{a-n p}{\sqrt{n p(1-p)}} \leq \frac{X-n p}{\sqrt{n p(1-p)}} \leq \frac{b-n p}{\sqrt{n p(1-p)}}\right) \\
& \approx \Phi\left(\frac{b-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{a-n p}{\sqrt{n p(1-p)}}\right)
\end{aligned}
$$

- With continuity correction:

$$
\begin{aligned}
\mathbb{P}(a \leq X \leq b) & =\mathbb{P}(a-0.5 \leq X \leq b+0.5) \\
& =\mathbb{P}\left(\frac{a-0.5-n p}{\sqrt{n p(1-p)}} \leq \frac{X-n p}{\sqrt{n p(1-p)}} \leq \frac{b+0.5-n p}{\sqrt{n p(1-p)}}\right) \\
& \approx \Phi\left(\frac{b+0.5-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{a-0.5-n p}{\sqrt{n p(1-p)}}\right)
\end{aligned}
$$

Normal approximation to the binomial

When $n \geq 30, n \min (p, 1-p) \geq 10$, we can approximate the binomial probability with continuity correction:

$$
\begin{aligned}
& \circ \mathbb{P}(X=x)=\mathbb{P}(x-0.5 \leq X \leq x+0.5)=\Phi\left(\frac{x+0.5-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{x-0.5-n p}{\sqrt{n p(1-p)}}\right) \\
& \circ \mathbb{P}(a \leq X \leq b)=\Phi\left(\frac{b+0.5-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{a-0.5-n p}{\sqrt{n p(1-p)}}\right)
\end{aligned}
$$

$$
\text { - } \mathbb{P}(a<X \leq b)=\mathbb{P}(a+1 \leq X \leq b)=\text { similar to above }
$$

$$
\text { - } \mathbb{P}(a \leq X<b)=\mathbb{P}(a \leq X \leq b-1)=\text { similar to above }
$$

Normal approximation to the binomial

Suppose that 25% of all students at a large public university receive financial aid. Let X be the number of students in a random sample of size 50 who receive financial aid, so that $p=0.25$. Calculate:

- the probability that at most 10 students receive aid
- the probability that between 5 and 15 (inclusive) of the selected students receive aid

Check: $n=50 \geq 30, n \min (p, 1-p)=12.5>10$. Hence $X \sim \operatorname{Bin}(50,0.25) \stackrel{d}{\approx} N(n p, n p(1-p))=N(12.5,9.375)$

- $\mathbb{P}(X \leq 10)=\mathbb{P}\left(\frac{X-12.5}{\sqrt{9.375}} \leq \frac{10+0.5-12.5}{\sqrt{9.375}}\right) \approx \Phi(-0.65)=0.2578$
- $\mathbb{P}(5 \leq X \leq 15)=\mathbb{P}\left(\frac{5-0.5-12.5}{\sqrt{9.375}} \leq \frac{X-12.5}{\sqrt{9.375}} \leq \frac{15+0.5-12.5}{\sqrt{9.375}}\right) \approx$ $\Phi(2.61)-\Phi(-0.98)=0.9955-0.1635=0.8320$

Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
- Chapter 5.3 (skip examples of joint distribution), 5.4 and 5.5
- "OpenIntro statistics" (4th edition, free online, download [here]):
- Chapter 5.1.3-5.1.6

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

[^0]: ${ }^{2}$ This holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential, binomial, uniform, ...

