Lecture 10: Weak Law of Large Numbers and Central Limit Theorem

Ye Tian

Department of Statistics, Columbia University Calculus-based Introduction to Statistics (S1201)

July 26, 2022

Recap: Discrete distributions

Bernoulli trials: (like coin tossing)

- Each trial has two outcomes: denoted as S (success) and F (failure).
- $\circ~$ For each trial, $\mathbb{P}(S)=p~~\text{and}~~\mathbb{P}(F)=q=1-p.$
- The trials are independent.

Bernoulli distribution: $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 - p$, denoted by $X \sim \text{Bernoulli}(p)$

•
$$\mathbb{E}X = p$$
, $Var(X) = p(1-p)$

Binomial distribution: the number of successes in a Bernoulli process with n trials and probability of success p

• X_i : the Bernoulli r.v. corresponding to *i*-th Bernoulli trial, then the Binomial r.v. $X = \sum_{i=1}^{n} X_i$.

$$\circ \text{ pmf: } p(k) = \mathbb{P}(X=x) = {n \choose x} p^x (1-p)^{n-x}$$
, where $x=0,\ldots,n$

• cdf:
$$\mathbb{P}(X \leq x) = \sum_{i=0}^{x} \mathbb{P}(X = x)$$

•
$$\mathbb{E}X = np$$
, $Var(X) = np(1-p)$

Recap: Discrete distributions

Geometric distribution: The number of Bernoulli trials until we first get an "S", denoted by $X \sim \text{Geometric}(p)$.

• pmf:
$$p(x) = \mathbb{P}(X = x) = \mathbb{P}(\{\underbrace{\mathsf{F}_{\dots\dots}}_{(x-1)} \operatorname{\mathsf{F}'s} \mathsf{S}\}) = q^{x-1}p$$
, where $x = 1, 2, \dots$
• cdf: $F(x) = 1 - \mathbb{P}(X > x) = 1 - \mathbb{P}(\{\underbrace{\mathsf{F}_{\dots\dots}}_{x \operatorname{\mathsf{F's}}}\mathsf{F}\}) = 1 - q^x$

•
$$\mathbb{E}X = 1/p$$
, $\mathsf{Var}(X) = 1/p^2$

Hyper-geometric distribution: There are N products in total with M defect ones and N - M good ones. We sample n from these N products without replacement. X be the number of defect products

 $\circ \text{ pmf: } \mathbb{P}(X = x) = \frac{\binom{M}{n}\binom{N-M}{n-x}}{\binom{N}{n}}, \text{if } \max\{0, n-N+M\} \le x \le \min\{n, M\} \text{ and } \mathbb{P}(X = x) = 0 \text{ elsewhere.}$ $\circ \mathbb{E}X = n \times \frac{M}{N}.$

Recap: Continuous distribution Uniform distribution: (on [A, B]) if: • pdf is $f(x) = \begin{cases} \frac{1}{B-A}, & A \le x \le B\\ 0, & \text{elsewhere} \end{cases}$ • cdf is $F(x) = \begin{cases} 0, & x \le A\\ \frac{x-A}{B-A}, & A < x \le B\\ 1, & x > B \end{cases}$

Normal distribution (or Gaussian distribution): $X \sim N(\mu, \sigma^2)$ $\circ N(0, 1)$: standard normal distribution, pdf ϕ , cdf Φ \circ pdf: $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad -\infty < x < +\infty$ $\circ \mathbb{E}X = \mu$, $\operatorname{Var}(X) = \sigma^2$. \circ pdf f is symmetric around μ : $f(x - \mu) = f(x + \mu)$ for any x \circ (Standardization) $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$. $\circ \phi$ is symmetric around 0: $\phi(x) = \phi(-x)$ for any x. $\circ \Phi(-x) = 1 - \Phi(x)$ for any x

Recap: Sum of independent normal variables

Suppose
$$X \sim N(\mu_X, \sigma_X^2)$$
, $Y \sim N(\mu_Y, \sigma_Y^2)$ and $X \perp Y$.
Theorem: $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Warning: This only holds when X and Y are independent! Counter-example when $X \not\perp Y$: Y = -X

Consequence:

•
$$X_i \sim N(\mu_i, \sigma_i^2)$$
. Then $\sum_{i=1}^n X_i \sim N(\sum_i^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
• $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$. Then $\frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \sigma^2/n)$

Proof: By induction: $\sum_{i=1}^{n} X_i \sim N(\tilde{\mu}, \tilde{\sigma}^2)$. Next we will find $\tilde{\mu}$ and $\tilde{\sigma}^2$. Since X_i 's are independent: $\tilde{\mu} = \mathbb{E}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \mu_i$. $\tilde{\sigma}^2 = \operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \sum_{i=1}^{n} \sigma_i^2$.

Review the "linearity" of expectation and variance from last lecture: Suppose X_1, \ldots, X_n are independent. a_1, \ldots, a_n, b are constants. $\circ \mathbb{E}[\sum_{i=1}^n (a_i X_i) + b] = \sum_{i=1}^n (a_i \mathbb{E} X_i + b)$ $\circ \operatorname{Var}[\sum_{i=1}^n (a_i X_i) + b] = \sum_{i=1}^n a_i^2 \operatorname{Var}(X_i)$

Recap: Continuous distribution

Exponential distribution: $X \sim Exp(\lambda)$

• pdf:
$$f(x) = \lambda \exp(-\lambda x)$$
, $x \ge 0$

$$\circ \ \operatorname{cdf:} \ F(x) = 1 - \exp(-\lambda x), \quad x \ge 0.$$

$$\circ \ \mathbb{E} X = \lambda^{-1}$$
, $\mathsf{Var}(X) = \lambda^{-2}$

 $\circ~$ Memoryless property: $\mathbb{P}(X>a+x|X>a)=\mathbb{P}(X>x)$

Summary: some commonly used distributions

Discrete distributions:

- Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Hyper-geometric distribution
- Poisson distribution

Continuous distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- $\circ~\chi^2\text{-distribution}$
- t-distribution
- F-distribution

Weak Law of Large Numbers

Recap: Population universe and sample universe

Sample universe (what we see)

 $\mathsf{Data} \Rightarrow$

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)

 ${\sf Probability\ distribution} \Rightarrow$

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

<u>Rationale</u>: When we have enough samples and our model assumption is close to the actual distribution, then the sample-version data summaries will be close to the underlying population-version ones.

Weak law of large numbers

Theorem: X_1 , ..., X_n are i.i.d. r.v.'s following the same distribution of X. If $\mathbb{E}X$ exists¹, then $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ satisfies that for any $\epsilon > 0$,

 $\mathbb{P}(|\bar{X} - \mathbb{E}X| > \epsilon) \approx 0, \quad \text{when } n \text{ is large.}$

- If you don't understand this probability, no worries! You can understand it as $\bar{X} \approx \mathbb{E}X$ when the number of samples n is very large.
- $\circ\,$ This implies that sample mean is close to the population mean (expectation) when n is large.
- This also implies that sample variance and standard deviation are close to the population ones when n is large. To see this, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \bar{X}^2 \approx \mathbb{E}X^2 - (\mathbb{E}X)^2 = \operatorname{Var}(X)$. And $s \approx \sqrt{\operatorname{Var}(X)} = \operatorname{SD}(X)$.
- If X is discrete, then relative frequency at X = x equals $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i = x) \approx \mathbb{E}[\mathbb{1}(X = x)] = \text{ the pmf at } X = x \text{ i.e. } \mathbb{P}(X = x)$

¹This holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential, binomial, uniform, ...

Review: Explanation of the previous examples

Example 1: Rolling a die. What is the expected number of spots X on the top? $\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = \frac{1}{6} \Rightarrow$ $\mathbb{E}X = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = 3.5.$

Review: Explanation of the previous examples

Example 2: X follows a uniform distribution on [0, 1]. (i.e. pdf f(x) = 1 on [0, 1] and 0 elsewhere) $\mathbb{E}X = \int_0^1 x f(x) dx = \int_0^1 x dx = \frac{1}{2}x^2 \mid_0^1 = \frac{1}{2}.$

n

Review: Relative frequency bar chart and pmf

Suppose a r.v. X has distribution with this pmf. I sampled $X_1, X_2, ...,$ X_{1000} independently from this distribution.

Empirical relative frequency is an approximation of pmf.

- If we sample **infinite** points, the relative frequency will equal pmf. 0
- this next week. Now you know it's due to ... 13/27

Review: Density histogram and pdf

Suppose a r.v. X has distribution with this pmf. I sampled X_1 , X_2 , ..., X_{1000} independently from this distribution.

• Empirical density histogram is an approximation of pdf.

• If we sample **infinite** points and the bin width is **infinitely small**, the density histogram will be the same as the pdf curve.

Central Limit Theorem

Histogram of sum of uniform r.v's

Central limit theorem

Our guess: the sum of i.i.d. (independently and identically distributed) r.v.'s is approximately normal distributed.

The guess is true!!!

Theorem: X_1 , ..., X_n are i.i.d. r.v.'s following the same distribution of X. If $\mathbb{E}X = \mu$ and $Var(X) = \sigma^2$ exists², then $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ satisfies

$$\mathbb{P}\left(rac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq x
ight) pprox \Phi(x), \quad \text{when } n \text{ is large},$$

where Φ is the cdf of standard normal distribution N(0,1).

- This is saying that \bar{X} approximately follows $N(\mu, \sigma^2/n)$ when n is large Recall that $\mathbb{E}(\bar{X}) = \mu$, $Var(\bar{X}) = \sigma^2/n$.
- $\circ\,$ When $X_1,$..., $X_n \sim N(\mu, \sigma^2),$ " \approx " will be "=" (by properties of normal distribution).
- $\circ~$ Equivalently, $\sum_{i=1}^n X_i$ approximately follows $N(n\mu,n\sigma^2).$

 $^{^2{\}rm This}$ holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential, binomial, uniform, ... $$^{18/3}$$

Central limit theorem

Example 1: X_1 , ..., $X_n \stackrel{i.i.d.}{\sim}$ Bernoulli(p). Then $n\bar{X} = \sum_{i=1}^n X_i \sim \text{Bin}(n,p)$. And $\mathbb{E}X_i = p$, $\text{Var}(X_i) = p(1-p)$. By CLT,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{d}{\approx} N(p, p(1-p)/n),$$
$$\sum_{i=1}^{n} X_i \stackrel{d}{\approx} N(np, np(1-p)).$$

Notes: " $\stackrel{d}{\approx}$ " means "approximately follows ... distribution when n is large"

20/27

Central limit theorem

Example 2: X_1 , ..., $X_n \stackrel{i.i.d.}{\sim} \text{Unif}(0,1)$. And $\mathbb{E}X_i = 1/2$, $\text{Var}(X_i) = 1/12$. By CLT,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{d}{\approx} N\left(\frac{1}{2}, \frac{1}{12n}\right),$$
$$\sum_{i=1}^{n} X_i \stackrel{d}{\approx} N\left(\frac{n}{2}, \frac{n}{12}\right).$$

22/27

Normal approximation to the binomial

By CLT, $X \sim Bin(n, p)$ can be approximated by N(np, np(1-p)).

When $n \ge 30$, $n \min(p, 1-p) \ge 10$, we can use the following normal approximations to calculate binomial probability:

Without continuity correction:

$$\mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a - np}{\sqrt{np(1 - p)}} \le \frac{X - np}{\sqrt{np(1 - p)}} \le \frac{b - np}{\sqrt{np(1 - p)}}\right)$$
$$\approx \Phi\left(\frac{b - np}{\sqrt{np(1 - p)}}\right) - \Phi\left(\frac{a - np}{\sqrt{np(1 - p)}}\right)$$

• With continuity correction:

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(a - 0.5 \le X \le b + 0.5)$$
$$= \mathbb{P}\left(\frac{a - 0.5 - np}{\sqrt{np(1-p)}} \le \frac{X - np}{\sqrt{np(1-p)}} \le \frac{b + 0.5 - np}{\sqrt{np(1-p)}}\right)$$
$$\approx \Phi\left(\frac{b + 0.5 - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a - 0.5 - np}{\sqrt{np(1-p)}}\right)$$

23/27

Normal approximation to the binomial

When $n \ge 30$, $n \min(p, 1-p) \ge 10$, we can approximate the binomial probability with continuity correction:

$$\mathbb{P}(X=x) = \mathbb{P}(x-0.5 \le X \le x+0.5) = \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{x-0.5-np}{\sqrt{np(1-p)}}\right)$$

$$\mathbb{P}(a \le X \le b) = \Phi\left(\frac{b+0.5-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a-0.5-np}{\sqrt{np(1-p)}}\right)$$

$$\mathbb{P}(a < X \le b) = \mathbb{P}(a+1 \le X \le b) = \text{ similar to above}$$

$$\mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b-1) = \text{ similar to above}$$

$$\mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b-1) = \text{ similar to above}$$

Normal approximation to the binomial

Suppose that 25% of all students at a large public university receive financial aid. Let X be the number of students in a random sample of size 50 who receive financial aid, so that p = 0.25. Calculate:

- $\circ\,$ the probability that at most 10 students receive aid
- $\circ\,$ the probability that between 5 and 15 (inclusive) of the selected students receive aid

Check:
$$n = 50 \ge 30, n \min(p, 1-p) = 12.5 > 10$$
. Hence
 $X \sim \text{Bin}(50, 0.25) \stackrel{d}{\approx} N(np, np(1-p)) = N(12.5, 9.375)$
 $\circ \mathbb{P}(X \le 10) = \mathbb{P}\left(\frac{X-12.5}{\sqrt{9.375}} \le \frac{10+0.5-12.5}{\sqrt{9.375}}\right) \approx \Phi(-0.65) = 0.2578$
 $\circ \mathbb{P}(5 \le X \le 15) = \mathbb{P}\left(\frac{5-0.5-12.5}{\sqrt{9.375}} \le \frac{X-12.5}{\sqrt{9.375}} \le \frac{15+0.5-12.5}{\sqrt{9.375}}\right) \approx \Phi(2.61) - \Phi(-0.98) = 0.9955 - 0.1635 = 0.8320$

Reading list (optional)

• "Probability and Statistics for Engineering and the Sciences" (9th edition):

▷ Chapter 5.3 (skip examples of joint distribution), 5.4 and 5.5

• "OpenIntro statistics" (4th edition, free online, download [here]):

▷ Chapter 5.1.3-5.1.6

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years