### Lecture 13: Confidence Intervals (II)

#### Ye Tian

Department of Statistics, Columbia University Calculus-based Introduction to Statistics (S1201)

Aug 1, 2022



### Recap: Confidence intervals

**Definition**: Suppose we have samples  $X_1, \ldots, X_n$ . If we can construct an random interval  $[l(X_1, \ldots, X_n), u(X_1, \ldots, X_n)]$  which satisfies

$$\mathbb{P}(l(X_1,\ldots,X_n) \le \theta \le u(X_1,\ldots,X_n)) = 1 - \alpha$$

then it can be called as a  $(100(1 - \alpha))\%$  confidence interval (CI).  $(100(1 - \alpha))\%$  is the confidence level.

**Example**:  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, 1)$ 

$$\mathbb{P}\left(\bar{X} - \frac{z_{0.025}}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z_{0.025}}{\sqrt{n}}\right) = 95\%.$$

Thus the 95% CI is  $\left[\bar{X} - \frac{z_{0.025}}{\sqrt{n}}, \bar{X} + \frac{z_{0.025}}{\sqrt{n}}\right]$ .

How to understand this 95% coverage probability

$$\mathbb{P}\left(\bar{X} - \frac{z_{0.025}}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z_{0.025}}{\sqrt{n}}\right) = 95\%.$$

We get a **random** interval  $\left[\bar{X} - \frac{z_{0.025}}{\sqrt{n}}, \bar{X} + \frac{z_{0.025}}{\sqrt{n}}\right]$  which can cover  $\mu$  with 95% probability!



### Revisit the derivation of CI of $\mu$ in $N(\mu, 1)$

**Steps to construct a CI**: Suppose we have samples  $X_1, \ldots, X_n$ , and  $\theta$  is the unknown parameter.

- **Step 1:** Find a r.v. V which is a function of both  $X_1, \ldots, X_n$  and  $\theta$
- **Step 2:** Verify that the distribution of V does NOT depend on  $\theta$  or any other unknown parameters
- Step 3: Derive the equation from the fact that  $\mathbb{P}(v_{1-\alpha/2} \leq V(X_1, \ldots, X_n, \theta) \leq v_{\alpha/2}) = 1 \alpha$ , where  $\mathbb{P}(V \geq v_{\beta}) = \beta$  for any  $\beta \in [0, 1]$ .

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, 1)$ .  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, 1/n)$ . By standardization,  $\frac{\bar{X}-\mu}{\sqrt{1/n}} \sim N(0, 1)$ . Thus,

$$\mathbb{P}\left(z_{0.975} \le \frac{\bar{X} - \mu}{\sqrt{1/n}} \le z_{0.025}\right) = 95\%,$$

Then

$$\mathbb{P}\left(\bar{X} - \frac{z_{0.025}}{\sqrt{n}} \le \mu \le \bar{X} - \frac{z_{0.975}}{\sqrt{n}}\right) = 95\%.$$

# Confidence level, precision (width), and sample size

The ideal scenario:

- Large confidence level
- Small CI width
- **Small** sample size requirement But this is an **impossible trinity**!



$$\mathbb{P}\left(\bar{X} - \frac{z_{\alpha/2}}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z_{\alpha/2}}{\sqrt{n}}\right) = 1 - \alpha.$$

Confidence level =  $100(1 - \alpha)\%$ , CI width =  $\frac{2z_{\alpha/2}}{\sqrt{n}}$ , sample size n.

- $\circ\,$  Fixed confidence level: CI width  $\searrow$  , n needs to be  $\nearrow$
- $\circ$  Fixed confidence level:  $n\searrow$ , CI width  $\nearrow$
- $\circ\,$  Fixed sample size n: CI width  $\nearrow$ , corresponding confidence level  $\nearrow\,$
- $\circ\,$  Fixed sample size CI width: n
  earrow, corresponding confidence level earrow

# $\chi^2$ -distribution and t-distribution

 $\chi^2$ -distribution: Suppose  $Z_1, \ldots, Z_p \stackrel{i.i.d.}{\sim} N(0,1)$ . Then we say variable  $V = \sum_{i=1}^p Z_i^2$  follows the  $\chi^2$ -distribution with degree of freedom p, denoted as  $V \sim \chi_p^2$ .

<u>t-distribution</u>: Suppose  $Z \sim N(0,1)$ ,  $Q \sim \chi_p^2$ , and Z is independent with Q. Then we say the variable  $\frac{Z}{\sqrt{Q/p}}$  follows t-distribution with degree of freedom p, denoted as  $\frac{Z}{\sqrt{Q/p}} \sim t_p$ .

**Applications:** Suppose  $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$ . The sample variance  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ . Then:  $\circ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$ .  $\circ \frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}$ .

# Today's goal

- Know the CIs of some commonly used models and understand how to derive them.
  - $\triangleright$  Normal distribution  $N(\mu,\sigma^2)$ 
    - $\diamond~\sigma^2$  known, derive CI of  $\mu$
    - $\diamond~\sigma^2$  unknown, derive CI of  $\mu$
    - $\diamond$  Derive CI of  $\sigma^2$  (or  $\sigma$ )
  - $\triangleright$  Bernoulli distribution  $\mathsf{Bernoulli}(p) :$  derive CI of p
  - $\triangleright$  Exponential distribution  $\text{Exp}(\lambda)$ : derive CI of  $\lambda$  (you will do it in HW4)
- Understand the relation (impossible trinity) between confidence level, CI width and minimum sample size requirement, and can interpret it in specific models.

# CI in Normal Distribution $N(\mu, \sigma^2)$

# $\sigma^2$ known, derive CI of $\mu$

#### Steps to construct a CI:

- $\circ~$  Step 1: Find a r.v. V which is a function of both  $X_1,\ldots,X_n$  and  $\mu$
- **Step 2:** Verify that the distribution of V does NOT depend on  $\mu$  or any other unknown parameters
- Step 3: Derive the equation from the fact that  $\mathbb{P}(v_{1-\alpha/2} \leq V(X_1, \ldots, X_n, \mu) \leq v_{\alpha/2}) = 1 \alpha$ , where  $\mathbb{P}(V \geq v_{\beta}) = \beta$  for any  $\beta \in [0, 1]$ .

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ .  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \sigma^2/n)$ . By standardization,  $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ . Thus,

$$\mathbb{P}\bigg(-z_{\alpha/2} \le \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\bigg) = 1-\alpha,$$

Then

$$\mathbb{P}\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \mu \le \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right) = 1 - \alpha.$$

Thus a  $100(1-\alpha)\%$  Cl of  $\mu$ :  $\left[\bar{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right]$ .

### Example: $\sigma^2$ known, derive CI of $\mu$

**Example:** Extensive monitoring of a computer time-sharing system has suggested that response time to a particular editing command is normally distributed with standard deviation 25 millisec. We wish to estimate the true average response time  $\mu$ . What sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

Recall that the 95% CI is 
$$\left[\bar{X} - \frac{\sigma}{\sqrt{n}} z_{0.025}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{0.025}\right] = \left[\bar{X} - \frac{25 \times 1.96}{\sqrt{n}}, \bar{X} + \frac{25 \times 1.96}{\sqrt{n}}\right]$$
. The width  $= 2 \times \frac{25 \times 1.96}{\sqrt{n}}$ . Thus we need

$$2 \times \frac{25 \times 1.90}{\sqrt{n}} \le 10 \Rightarrow n \ge \left(\frac{2 \times 25 \times 1.90}{10}\right) = 96.04.$$

Therefore, we need sample size  $n \ge 97$ .

# Derive CI of $\sigma^2$ (or $\sigma$ )

#### Steps to construct a CI:

- **Step 1:** Find a r.v. V which is a function of both  $X_1, \ldots, X_n$  and  $\sigma^2$
- Step 2: Verify that the distribution of V does NOT depend on  $\sigma^2$  or any other unknown parameters
- Step 3: Derive the equation from the fact that  $\mathbb{P}(v_{1-\alpha/2} \leq V(X_1, \ldots, X_n, \sigma^2) \leq v_{\alpha/2}) = 1 \alpha$ , where  $\mathbb{P}(V \geq v_{\beta}) = \beta$  for any  $\beta \in [0, 1]$ .

 $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ . Sample variance  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ . Then  $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ , leading to

$$\mathbb{P}\left(\chi_{n-1,1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1,\alpha/2}^2\right) = 1 - \alpha,$$

which implies

$$\mathbb{P}\left(\frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}}\right) = 1 - \alpha.$$
  
So a  $100(1-\alpha)\%$  Cl of  $\sigma^2$ :  $\left[\frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}}\right].$ 

# Derive CI of $\sigma^2$ (or $\sigma$ )

 $X_{1}, \dots, X_{n} \stackrel{i.i.d.}{\sim} N(\mu, \sigma^{2}). \text{ Sample variance } S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$ A 100(1 -  $\alpha$ )% CI of  $\sigma^{2}$ :  $\left[\frac{(n-1)S^{2}}{\chi^{2}_{n-1,\alpha/2}}, \frac{(n-1)S^{2}}{\chi^{2}_{n-1,1-\alpha/2}}\right].$  $\mathbb{P}\left(\frac{(n-1)S^{2}}{\sqrt{2}} \le \sigma^{2} \le \frac{(n-1)S^{2}}{\sqrt{2}}\right) = 1 - \alpha.$ 

$$\mathbb{P}\left(\frac{1}{\chi_{n-1,\alpha/2}^2} \le \sigma^2 \le \frac{1}{\chi_{n-1,1-\alpha/2}^2}\right) = 1 - \sigma$$

This implies

$$\mathbb{P}\left(\sqrt{\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}} \le \sigma \le \sqrt{\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}}\right) = 1 - \alpha$$
  
A 100(1 -  $\alpha$ )% Cl of  $\sigma$ :  $\left[\sqrt{\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}}, \sqrt{\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}}\right].$ 

This idea can be generalized into the following result: For a  $100(1-\alpha)\%$  Cl of  $\theta$  (denoted as [l, u]), the  $100(1-\alpha)\%$  Cl of  $g(\theta)$  equals

- $\circ \ [g(l),g(u)]\text{, if }g$  is an increasing function
- $\circ \ [g(u),g(l)]\text{, if }g \text{ is a decreasing function}$

### Example: Derive CI of $\sigma^2$ (or $\sigma$ )

The accompanying data on breakdown voltage of electrically stressed circuits was read from a normal probability plot. The straightness of the plot gave strong support to the assumption that breakdown voltage is approximately normally distributed.

 $1470, 1510, 1690, 1740, 1900, 2000, 2030, 2100, 2190, 2200, 2290, 2380, \\ 2390, 2480, 2500, 2580, 2700$ 

Let  $\sigma^2$  denote the variance of the breakdown voltage distribution. Derive a 90% CI for  $\sigma.$ 

$$\begin{split} n &= 17 \Rightarrow \text{ df} = n - 1 = 16. \text{ The sample variance} \\ s^2 &= 137324.3. \, \chi^2_{16,0.95} = 7.962 \text{ and } \chi^2_{16,0.05} = 26.296. \\ \text{Recall that a } 90\% \text{ Cl of } \sigma^2 \text{ is} \\ &\left[\frac{(n-1)s^2}{\chi^2_{n-1,0.05}}, \frac{(n-1)s^2}{\chi^2_{n-1,0.95}}\right] = \left[\frac{16 \times 137324.3}{26.296}, \frac{16 \times 137324.3}{7.962}\right] = [83556.01, 275959.4]. \\ \text{Thus a } 90\% \text{ Cl of } \sigma \text{ is } \left[\sqrt{83556.01}, \sqrt{275959.4}\right] = [289.06, 525.32]. \end{split}$$

# $\sigma^2$ unknown, derive CI of $\mu$

#### Steps to construct a CI:

- **Step 1:** Find a r.v. V which is a function of both  $X_1, \ldots, X_n$  and  $\mu$
- Step 2: Verify that the distribution of V does NOT depend on  $\mu$  or any other unknown parameters
- Step 3: Derive the equation from the fact that  $\mathbb{P}(v_{1-\alpha/2} \leq V(X_1, \ldots, X_n, \mu) \leq v_{\alpha/2}) = 1 \alpha$ , where  $\mathbb{P}(V \geq v_{\beta}) = \beta$  for any  $\beta \in [0, 1]$ .

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ .  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \sigma^2/n)$ . By standardization,  $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ . Thus,

$$\mathbb{P}\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \mu \le \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right) = 1 - \alpha.$$

Can we still claim a  $100(1-\alpha)\%$  Cl of  $\mu$  is  $\left[\bar{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right]$ ? **NO!!!** Because  $\sigma$  is unknown!

# $\sigma^2$ unknown, derive CI of $\mu$

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ .  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \sigma^2/n)$ . Sample variance  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ . From the last lecture, we know that

- $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1);$
- $\circ \ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1};$
- $\circ~\bar{X}~{\rm and}~S^2$  are independent

Thus, by definition of t-distribution,  $rac{\sqrt{n}(ar{X}-\mu)}{S}\sim t_{n-1}$ , implying that

$$\mathbb{P}\bigg(-t_{n-1,\alpha/2} \le \frac{\sqrt{n}(\bar{X}-\mu)}{S} \le t_{n-1,\alpha/2}\bigg) = 1-\alpha,$$

Then

$$\mathbb{P}\left(\bar{X} - \frac{S}{\sqrt{n}}t_{n-1,\alpha/2} \le \mu \le \bar{X} + \frac{S}{\sqrt{n}}t_{n-1,\alpha/2}\right) = 1 - \alpha.$$

Thus a  $100(1-\alpha)\%$  Cl of  $\mu$ :  $\left[\bar{X} - \frac{S}{\sqrt{n}}t_{n-1,\alpha/2}, \bar{X} + \frac{S}{\sqrt{n}}t_{n-1,\alpha/2}\right]$ .

# Compare two cases: $\sigma^2$ known/unknown

 $\sigma^2 \text{ known: A } 100(1-\alpha)\% \text{ CI of } \mu: \left[ \bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right].$  $\sigma^2 \text{ unknown: A } 100(1-\alpha)\% \text{ CI of } \mu: \left[ \bar{X} - \frac{S}{\sqrt{n}} t_{n-1,\alpha/2}, \bar{X} + \frac{S}{\sqrt{n}} t_{n-1,\alpha/2} \right].$ 

The only two differences from  $\sigma^2$  known to  $\sigma^2$  unknown:

- $\circ\,$  Replacing true SD  $\sigma$  by sample SD S;
- Replacing z-values by t-values.

Connection:

- $\circ~$  By Weak Law of Large Number,  $S\approx\sigma$  when n is large
- When the degree of freedom is large (here it means n is large), t-distribution becomes very similar to standard normal distribution  $\Rightarrow$  when  $n \ge 30$ , can replace  $t_{n-1,\alpha/2}$  by  $z_{\alpha/2}$

### Example: $\sigma^2$ unknown, derive CI of $\mu$

An object is weighed 9 times, with an average weight 1.03 kg and SD 0.10 kg. Calculate the 95% Cl for the unknown weight.

 $\sigma^2$  unknown and  $n=9<30, {\rm therefore}$  we will use t-distribution and the corresponding quantiles.

We know that  $\bar{x} = 1.03$ , s = 0.10. A  $100(1 - \alpha)\%$  Cl of  $\mu$ :  $\left[\bar{x} - \frac{s}{\sqrt{9}}t_{8,0.025}, \bar{x} + \frac{s}{\sqrt{n}}t_{8,0.025}\right] = [1.03 - \frac{0.1}{3} \times 2.306, 1.03 + \frac{0.1}{3} \times 2.306] = [0.953, 1.107].$ 

# Cl of p in Bernoulli(p)

# Cl of success probability p

**Example:** If the sample includes 100 employees, find a 95% confidence interval for **the proportion** of employees who don't like their jobs in the sample.

Therefore sometimes we also call it the CI for a **population proportion** p.

### Derive the CI of success probability p

**Steps to construct a CI**: Suppose we have samples  $X_1, \ldots, X_n$ , and  $\theta$  is the unknown parameter.

- **Step 1:** Find a r.v. V which is a function of both  $X_1, \ldots, X_n$  and  $\theta$
- **Step 2:** Verify that the distribution of V does NOT depend on  $\theta$  or any other unknown parameters
- Step 3: Derive the equation from the fact that  $\mathbb{P}(v_{1-\alpha/2} \leq V(X_1, \ldots, X_n, \theta) \leq v_{\alpha/2}) = 1 \alpha$ , where  $\mathbb{P}(V \geq v_{\beta}) = \beta$  for any  $\beta \in [0, 1]$ .

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$  Bernoulli(p). By central limit theorem  $\hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{d}{\approx} N(p, p(1-p)/n)$ . By standardization,  $\frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \stackrel{d}{\approx} N(0, 1)$ . Thus,  $\mathbb{P}\left(z_{0.975} \leq \frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \leq z_{0.025}\right) \approx 95\%$ ,

Then

$$\mathbb{P}\left(z_{0.975} \le \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})/n}} \le z_{0.025}\right) \approx 95\%,$$

### Derive the CI of success probability p

Suppose  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$  Bernoulli(p). By central limit theorem  $\hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{d}{\approx} N(p, p(1-p)/n)$ . By standardization,  $\frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \sim N(0,1)$ . Thus,

$$\mathbb{P}\left(z_{0.975} \le \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \le z_{0.025}\right) \approx 95\%.$$

Then

$$\mathbb{P}\left(z_{0.975} \le \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})/n}} \le z_{0.025}\right) \approx 95\%.$$

$$\mathbb{P}\left(\hat{p} - z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) \approx 95\%.$$

An approximate  $100(1 - \alpha)\%$  Cl of p:  $\left[\hat{p} - z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$ 

### Example: CI of success probability p

Construct a 95% CI for the true proportion of college students who sleep fewer than 6 hours per night, if the sample proportion in a sample of 500 students is 0.3.

$$\begin{split} \hat{p} &= 0.3, \ n = 500. \ \text{Plug them into our formula:} \\ \text{An approximate } 100(1-\alpha)\% \ \text{Cl of } p \text{ is} \\ \left[ \hat{p} - z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right] = \\ \left[ 0.3 - 1.96 \sqrt{\frac{0.3 \times 0.7}{500}}, 0.3 + 1.96 \sqrt{\frac{0.3 \times 0.7}{500}} \right] = [0.2598, 0.3402] \end{split}$$

### Example: sample size requirement

A college dean wishes to survey the undergraduate population to find out what proportion p of the students would prefer to eliminate all 8:40am course offerings. What sample size is needed if the 95% CI for p is to have a width of at most 0.06 **irrespective of**  $\hat{p}$ ?

Actually before we do the survey, we don't know  $\hat{p} \Rightarrow$  We have to figure out the minimum sample size that works for **every** possible values of  $\hat{p} \in [0, 1]$ .

Recall: A 
$$100(1-\alpha)\%$$
 Cl of  $p$ :  $\left[\hat{p} - z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$   
We want Cl width  $= 2z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 2 \times 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le 0.06$  holds for all  $\hat{p} \in [0, 1] \Rightarrow n \ge (\frac{2 \times 1.96}{0.06})^2 \hat{p}(1-\hat{p})$  for all  $\hat{p} \in [0, 1]$ .  
By Cauchy-Schwarz inequality (HW0, or directly maximization of quadratic function  $\hat{p}(1-\hat{p})$ ):  $\hat{p}(1-\hat{p}) \le (\frac{\hat{p}+1-\hat{p}}{2})^2 = 0.25$ . Thus if suffices to have  $n \ge (\frac{2 \times 1.96}{0.06})^2 \times 0.25 = 1067.1 \Rightarrow n_{\min} = 1068$ .

### Example: Wordle



| Date    | No. | Word  | Yongxin | Ye |
|---------|-----|-------|---------|----|
| 1/18/22 | 213 | proxy | 6       | 4  |
| 1/19/22 | 214 | point | 4       | 4  |
| 1/20/22 | 215 | robot | 4       | 5  |
| 1/21/22 | 216 | prick | 6       | 4  |
| 1/22/22 | 217 | wince | 5       | 4  |

### Example: Wordle

Suppose the number of tries of Xin and Ye follow some normal distribution  $N(\mu_1, \sigma^2)$  and  $N(\mu_2, \sigma^2)$ , which shares the same unknown variance  $\sigma^2$ . Construct a 95% Cl of  $\mu_1 - \mu_2$ .

Here're the number of guesses from Jan 18, 2022 to Feb 18, 2022:

- Xin (X<sub>i</sub>): 64465465544443333453655455454535
- Ye  $(Y_i)$ : 4 4 5 4 4 4 5 5 6 5 6 2 5 6 3 3 6 4 6 4 6 5 4 2 4 3 5 4 3 3 3 6
- Difference  $(D_i = X_i Y_i)$ : 2 0 -1 2 1 0 1 0 -1 -1 -2 2 -1 -4 0 0 -3 0 -1 -1 0 0 1 2 1 2 -1 1 1 2 0 -1

$$\begin{split} D_i &= X_i - Y_i \text{'s are independent from each other, } D_i \sim N(\mu_1 - \mu_2, 2\sigma^2) \\ \bar{D} &= \frac{1}{n} \sum_{i=1}^n D_i \sim N(\mu_1 - \mu_2, 2\sigma^2/n), \quad n = 32 \\ \text{Sample mean } \bar{d} &= 0.0625. \\ \text{Sample variance of the difference equals } s^2 &= \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2 \\ &= 1.9315 \quad \Rightarrow \quad s = 1.3898 \\ \text{A } 100(1 - \alpha)\% \text{ CI of } \mu_1 - \mu_2: [\bar{D} - \frac{S}{\sqrt{n}} t_{31,0.025}, \bar{D} + \frac{S}{\sqrt{n}} t_{31,0.025}] \\ &= [0.0625 - \frac{1.3898}{\sqrt{32}} \times 2.04, 0.0625 + \frac{1.3898}{\sqrt{32}} \times 2.04] = [-0.4387, 0.5637]. \end{split}$$

### Example: Wordle

Suppose the number of tries of Xin and Ye follow some normal distribution  $N(\mu_1, \sigma^2)$  and  $N(\mu_2, \sigma^2)$ , which shares the same unknown variance  $\sigma^2$ . Construct a 95% Cl of  $\mu_1 - \mu_2$ .

Here're the number of guesses from Jan 18, 2022 to Feb 18, 2022:

- Xin (X<sub>i</sub>): 6 4 4 6 5 4 6 5 5 4 4 4 4 3 3 3 3 4 5 3 6 5 5 4 5 5 4 5 4 5 3 5
- Ye  $(Y_i)$ : 4 4 5 4 4 4 5 5 6 5 6 2 5 6 3 3 6 4 6 4 6 5 4 2 4 3 5 4 3 3 3 6
- Difference  $(D_i = X_i Y_i)$ : 2 0 -1 2 1 0 1 0 -1 -1 -2 2 -1 -4 0 0 -3 0 -1 -1 0 0 1 2 1 2 -1 1 1 2 0 -1

A  $100(1-\alpha)\%$  Cl of  $\mu_1 - \mu_2$ :  $\left[\bar{D} - \frac{S}{\sqrt{n}}t_{31,0.025}, \bar{D} + \frac{S}{\sqrt{n}}t_{31,0.025}\right]$ =  $\left[0.0625 - \frac{1.3898}{\sqrt{32}} \times 2.04, 0.0625 + \frac{1.3898}{\sqrt{32}} \times 2.04\right] = \left[-0.4387, 0.5637\right]$ . Do you think any one does significantly better than the other? NO! Because the 95% Cl covers 0!



#### Many thanks to

- Joyce Robbins
- Yang Feng
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- Yongxin Shang
- And all my teachers in the past 25 years