Lecture 13: Confidence Intervals (II)

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

Aug 1, 2022
COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Recap: Confidence intervals

Definition: Suppose we have samples X_{1}, \ldots, X_{n}. If we can construct an random interval $\left[l\left(X_{1}, \ldots, X_{n}\right), u\left(X_{1}, \ldots, X_{n}\right)\right]$ which satisfies

$$
\mathbb{P}\left(l\left(X_{1}, \ldots, X_{n}\right) \leq \theta \leq u\left(X_{1}, \ldots, X_{n}\right)\right)=1-\alpha
$$

then it can be called as a $(100(1-\alpha)) \%$ confidence interval (CI). $(100(1-\alpha)) \%$ is the confidence level.

Example: $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N(\mu, 1)$

$$
\mathbb{P}\left(\bar{X}-\frac{z_{0.025}}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{z_{0.025}}{\sqrt{n}}\right)=95 \%
$$

Thus the $95 \% \mathrm{Cl}$ is $\left[\bar{X}-\frac{z_{0.025}}{\sqrt{n}}, \bar{X}+\frac{z_{0.025}}{\sqrt{n}}\right]$.

How to understand this 95% coverage probability

$$
\mathbb{P}\left(\bar{X}-\frac{z_{0.025}}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{z_{0.025}}{\sqrt{n}}\right)=95 \% .
$$

We get a random interval $\left[\bar{X}-\frac{z_{0.025}}{\sqrt{n}}, \bar{X}+\frac{z_{0.025}}{\sqrt{n}}\right]$ which can cover μ with 95% probability!

*: The "realization" of the random interval that does NOT cover μ

Revisit the derivation of Cl of μ in $N(\mu, 1)$

Steps to construct a CI: Suppose we have samples X_{1}, \ldots, X_{n}, and θ is the unknown parameter.

- Step 1: Find a r.v. V which is a function of both X_{1}, \ldots, X_{n} and θ
- Step 2: Verify that the distribution of V does NOT depend on θ or any other unknown parameters
- Step 3: Derive the equation from the fact that
$\mathbb{P}\left(v_{1-\alpha / 2} \leq V\left(X_{1}, \ldots, X_{n}, \theta\right) \leq v_{\alpha / 2}\right)=1-\alpha$, where $\mathbb{P}\left(V \geq v_{\beta}\right)=\beta$ for any $\beta \in[0,1]$.
Suppose $X_{1}, \ldots, X_{\bar{x}} \stackrel{i . i . d .}{\sim} N(\mu, 1) . \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(\mu, 1 / n)$. By standardization, $\frac{\bar{X}-\mu}{\sqrt{1 / n}} \sim N(0,1)$. Thus,

$$
\mathbb{P}\left(z_{0.975} \leq \frac{\bar{X}-\mu}{\sqrt{1 / n}} \leq z_{0.025}\right)=95 \%
$$

Then

$$
\mathbb{P}\left(\bar{X}-\frac{z_{0.025}}{\sqrt{n}} \leq \mu \leq \bar{X}-\frac{z_{0.975}}{\sqrt{n}}\right)=95 \%
$$

Confidence level, precision (width), and sample size

The ideal scenario:

- Large confidence level
- Small CI width
- Small sample size requirement But this is an impossible trinity!

$$
\mathbb{P}\left(\bar{X}-\frac{z_{\alpha / 2}}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{z_{\alpha / 2}}{\sqrt{n}}\right)=1-\alpha
$$

Confidence level $=100(1-\alpha) \%$, Cl width $=\frac{2 z_{\alpha / 2}}{\sqrt{n}}$, sample size n.

- Fixed confidence level: Cl width \searrow, n needs to be \nearrow
- Fixed confidence level: $n \searrow, \mathrm{Cl}$ width \nearrow
- Fixed sample size n : Cl width \nearrow, corresponding confidence level
- Fixed sample size Cl width: $n \nearrow$, corresponding confidence level
χ^{2}-distribution and t-distribution
χ^{2}-distribution: Suppose $Z_{1}, \ldots, Z_{p} \stackrel{i . i . d .}{\sim} N(0,1)$. Then we say variable $\bar{V}=\sum_{i=1}^{p} Z_{i}^{2}$ follows the χ^{2}-distribution with degree of freedom p, denoted as $V \sim \chi_{p}^{2}$.
t-distribution: Suppose $Z \sim N(0,1), Q \sim \chi_{p}^{2}$, and Z is independent with Q. Then we say the variable $\frac{Z}{\sqrt{Q / p}}$ follows t -distribution with degree of freedom p, denoted as $\frac{Z}{\sqrt{Q / p}} \sim t_{p}$.

Applications: Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$. The sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Then:

- $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$.
- $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}$.

Today's goal

- Know the Cls of some commonly used models and understand how to derive them.
- Normal distribution $N\left(\mu, \sigma^{2}\right)$
$\diamond \sigma^{2}$ known, derive Cl of μ
$\diamond \sigma^{2}$ unknown, derive Cl of μ
\diamond Derive Cl of σ^{2} (or σ)
\triangleright Bernoulli distribution Bernoulli (p) : derive Cl of p
\triangleright Exponential distribution $\operatorname{Exp}(\lambda)$: derive Cl of λ (you will do it in HW4)
- Understand the relation (impossible trinity) between confidence level, Cl width and minimum sample size requirement, and can interpret it in specific models.

Cl in Normal Distribution $N\left(\mu, \sigma^{2}\right)$

σ^{2} known, derive CI of μ

Steps to construct a CI:

- Step 1: Find a r.v. V which is a function of both X_{1}, \ldots, X_{n} and μ
- Step 2: Verify that the distribution of V does NOT depend on μ or any other unknown parameters
- Step 3: Derive the equation from the fact that
$\mathbb{P}\left(v_{1-\alpha / 2} \leq V\left(X_{1}, \ldots, X_{n}, \mu\right) \leq v_{\alpha / 2}\right)=1-\alpha$, where $\mathbb{P}\left(V \geq v_{\beta}\right)=\beta$ for any $\beta \in[0,1]$.
Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right) . \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)$. By standardization, $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$. Thus,

$$
\mathbb{P}\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

Then

$$
\mathbb{P}\left(\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2} \leq \mu \leq \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right)=1-\alpha .
$$

Thus a $100(1-\alpha) \% \mathrm{Cl}$ of $\mu:\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right]$.

Example: σ^{2} known, derive CI of μ

Example: Extensive monitoring of a computer time-sharing system has suggested that response time to a particular editing command is normally distributed with standard deviation 25 millisec. We wish to estimate the true average response time μ. What sample size is necessary to ensure that the resulting $95 \% \mathrm{Cl}$ has a width of (at most) 10 ?

Recall that the $95 \% \mathrm{Cl}$ is $\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{0.025}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{0.025}\right]=$ $\left[\bar{X}-\frac{25 \times 1.96}{\sqrt{n}}, \bar{X}+\frac{25 \times 1.96}{\sqrt{n}}\right]$. The width $=2 \times \frac{25 \times 1.96}{\sqrt{n}}$. Thus we need

$$
2 \times \frac{25 \times 1.96}{\sqrt{n}} \leq 10 \Rightarrow n \geq\left(\frac{2 \times 25 \times 1.96}{10}\right)^{2}=96.04
$$

Therefore, we need sample size $n \geq 97$.

Derive Cl of $\sigma^{2}($ or σ)

Steps to construct a CI:

- Step 1: Find a r.v. V which is a function of both X_{1}, \ldots, X_{n} and σ^{2}
- Step 2: Verify that the distribution of V does NOT depend on σ^{2} or any other unknown parameters
- Step 3: Derive the equation from the fact that $\mathbb{P}\left(v_{1-\alpha / 2} \leq V\left(X_{1}, \ldots, X_{n}, \sigma^{2}\right) \leq v_{\alpha / 2}\right)=1-\alpha$, where $\mathbb{P}\left(V \geq v_{\beta}\right)=\beta$ for any $\beta \in[0,1]$.
$X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$. Sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
Then $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$, leading to

$$
\mathbb{P}\left(\chi_{n-1,1-\alpha / 2}^{2} \leq \frac{(n-1) S^{2}}{\sigma^{2}} \leq \chi_{n-1, \alpha / 2}^{2}\right)=1-\alpha
$$

which implies

$$
\mathbb{P}\left(\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)=1-\alpha .
$$

So a $100(1-\alpha) \% \mathrm{Cl}$ of $\sigma^{2}:\left[\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right]$.

Derive Cl of $\sigma^{2}($ or $\sigma)$

$X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$. Sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
A $100(1-\alpha) \% \mathrm{Cl}$ of $\sigma^{2}:\left[\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right]$.

$$
\mathbb{P}\left(\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)=1-\alpha .
$$

This implies

$$
\mathbb{P}\left(\sqrt{\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}} \leq \sigma \leq \sqrt{\frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}}\right)=1-\alpha .
$$

A $100(1-\alpha) \% \mathrm{Cl}$ of $\sigma:\left[\sqrt{\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}}, \sqrt{\frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}}\right]$.
This idea can be generalized into the following result: For a $100(1-\alpha) \%$ Cl of θ (denoted as $[l, u])$, the $100(1-\alpha) \% \mathrm{Cl}$ of $g(\theta)$ equals

- $[g(l), g(u)]$, if g is an increasing function
- $[g(u), g(l)]$, if g is a decreasing function

Example: Derive Cl of $\sigma^{2}($ or σ)

The accompanying data on breakdown voltage of electrically stressed circuits was read from a normal probability plot. The straightness of the plot gave strong support to the assumption that breakdown voltage is approximately normally distributed.
$1470,1510,1690,1740,1900,2000,2030,2100,2190,2200,2290,2380$, 2390, 2480, 2500, 2580, 2700

Let σ^{2} denote the variance of the breakdown voltage distribution. Derive a $90 \% \mathrm{Cl}$ for σ.
$n=17 \Rightarrow \mathrm{df}=n-1=16$. The sample variance
$s^{2}=137324.3 . \chi_{16,0.95}^{2}=7.962$ and $\chi_{16,0.05}^{2}=26.296$.
Recall that a $90 \% \mathrm{Cl}$ of σ^{2} is
$\left[\frac{(n-1) s^{2}}{\chi_{n-1,0.05}^{2}}, \frac{(n-1) s^{2}}{\chi_{n-1,0.95}^{2}}\right]=\left[\frac{16 \times 137324.3}{26.296}, \frac{16 \times 137324.3}{7.962}\right]=[83556.01,275959.4]$.
Thus a $90 \% \mathrm{Cl}$ of σ is $[\sqrt{83556.01}, \sqrt{275959.4}]=[289.06,525.32]$.
σ^{2} unknown, derive Cl of μ

Steps to construct a CI:

- Step 1: Find a r.v. V which is a function of both X_{1}, \ldots, X_{n} and μ
- Step 2: Verify that the distribution of V does NOT depend on μ or any other unknown parameters
- Step 3: Derive the equation from the fact that $\mathbb{P}\left(v_{1-\alpha / 2} \leq V\left(X_{1}, \ldots, X_{n}, \mu\right) \leq v_{\alpha / 2}\right)=1-\alpha$, where $\mathbb{P}\left(V \geq v_{\beta}\right)=\beta$ for any $\beta \in[0,1]$.
Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right) . \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)$. By standardization, $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$. Thus,

$$
\mathbb{P}\left(\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2} \leq \mu \leq \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right)=1-\alpha .
$$

Can we still claim a $100(1-\alpha) \%$ CI of μ is $\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right]$?
NO!!! Because σ is unknown!
σ^{2} unknown, derive CI of μ
Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right) . \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)$.
Sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
From the last lecture, we know that

- $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$;
- $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$;
- \bar{X} and S^{2} are independent

Thus, by definition of t-distribution, $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}$, implying that

$$
\mathbb{P}\left(-t_{n-1, \alpha / 2} \leq \frac{\sqrt{n}(\bar{X}-\mu)}{S} \leq t_{n-1, \alpha / 2}\right)=1-\alpha
$$

Then

$$
\mathbb{P}\left(\bar{X}-\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2} \leq \mu \leq \bar{X}+\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}\right)=1-\alpha .
$$

Thus a $100(1-\alpha) \% \mathrm{Cl}$ of $\mu:\left[\bar{X}-\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}, \bar{X}+\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}\right]$.

Compare two cases: σ^{2} known/unknown

σ^{2} known: $\mathrm{A} 100(1-\alpha) \% \mathrm{Cl}$ of $\mu:\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right]$.
σ^{2} unknown: A $100(1-\alpha) \% \mathrm{Cl}$ of μ : $\left[\bar{X}-\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}, \bar{X}+\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}\right]$.
The only two differences from σ^{2} known to σ^{2} unknown:

- Replacing true SD σ by sample SD S;
- Replacing z-values by t -values.

Connection:

- By Weak Law of Large Number, $S \approx \sigma$ when n is large
- When the degree of freedom is large (here it means n is large), t -distribution becomes very similar to standard normal distribution \Rightarrow when $n \geq 30$, can replace $t_{n-1, \alpha / 2}$ by $z_{\alpha / 2}$

Example: σ^{2} unknown, derive CI of μ

An object is weighed 9 times, with an average weight 1.03 kg and SD 0.10 kg. Calculate the $95 \% \mathrm{Cl}$ for the unknown weight.
σ^{2} unknown and $n=9<30$,therefore we will use t-distribution and the corresponding quantiles.
We know that $\bar{x}=1.03, s=0.10$.
A $100(1-\alpha) \% \mathrm{Cl}$ of μ : $\left[\bar{x}-\frac{s}{\sqrt{9}} t_{8,0.025}, \bar{x}+\frac{s}{\sqrt{n}} t_{8,0.025}\right]=$
$\left[1.03-\frac{0.1}{3} \times 2.306,1.03+\frac{0.1}{3} \times 2.306\right]=[0.953,1.107]$.

Cl of p in $\operatorname{Bernoulli}(p)$

Cl of success probability p

Example: If the sample includes 100 employees, find a 95% confidence interval for the proportion of employees who don't like their jobs in the sample.

Therefore sometimes we also call it the Cl for a population proportion p.

Derive the Cl of success probability p

Steps to construct a CI: Suppose we have samples X_{1}, \ldots, X_{n}, and θ is the unknown parameter.

- Step 1: Find a r.v. V which is a function of both X_{1}, \ldots, X_{n} and θ
- Step 2: Verify that the distribution of V does NOT depend on θ or any other unknown parameters
- Step 3: Derive the equation from the fact that

```
P}(\mp@subsup{v}{1-\alpha/2}{}\leqV(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{},0)\leq\mp@subsup{v}{\alpha/2}{})=1-\alpha,\mathrm{ where }\mathbb{P}(V\geq\mp@subsup{v}{\beta}{})=
for any }\beta\in[0,1]
```

Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p)$. By central limit theorem $\hat{p}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \stackrel{d}{\approx} N(p, p(1-p) / n)$. By standardization, $\frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \stackrel{d}{\approx} N(0,1)$. Thus,

$$
\mathbb{P}\left(z_{0.975} \leq \frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \leq z_{0.025}\right) \approx 95 \%
$$

Then

$$
\mathbb{P}\left(z_{0.975} \leq \frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}} \leq z_{0.025}\right) \approx 95 \%
$$

Derive the Cl of success probability p

Suppose $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p)$. By central limit theorem $\hat{p}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \stackrel{d}{\approx} N(p, p(1-p) / n)$. By standardization, $\frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \sim N(0,1)$. Thus,

$$
\mathbb{P}\left(z_{0.975} \leq \frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \leq z_{0.025}\right) \approx 95 \% .
$$

Then

$$
\begin{gathered}
\mathbb{P}\left(z_{0.975} \leq \frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}} \leq z_{0.025}\right) \approx 95 \% . \\
\mathbb{P}\left(\hat{p}-z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) \approx 95 \% .
\end{gathered}
$$

An approximate $100(1-\alpha) \% \mathrm{Cl}$ of p :
$\left[\hat{p}-z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$

Example: Cl of success probability p

Construct a $95 \% \mathrm{Cl}$ for the true proportion of college students who sleep fewer than 6 hours per night, if the sample proportion in a sample of 500 students is 0.3.
$\hat{p}=0.3, n=500$. Plug them into our formula:
An approximate $100(1-\alpha) \% \mathrm{Cl}$ of p is

$$
\begin{aligned}
& {\left[\hat{p}-z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]=} \\
& {\left[0.3-1.96 \sqrt{\frac{0.3 \times 0.7}{500}}, 0.3+1.96 \sqrt{\frac{0.3 \times 0.7}{500}}\right]=[0.2598,0.3402]}
\end{aligned}
$$

Example: sample size requirement

A college dean wishes to survey the undergraduate population to find out what proportion p of the students would prefer to eliminate all 8:40am course offerings. What sample size is needed if the $95 \% \mathrm{Cl}$ for p is to have a width of at most 0.06 irrespective of \hat{p} ?

Actually before we do the survey, we don't know $\hat{p} \Rightarrow$ We have to figure out the minimum sample size that works for every possible values of $\hat{p} \in[0,1]$.
Recall: A $100(1-\alpha) \% \mathrm{Cl}$ of $p:\left[\hat{p}-z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$
We want Cl width $=2 z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=2 \times 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq 0.06$ holds for all $\hat{p} \in[0,1] \Rightarrow n \geq\left(\frac{2 \times 1.96}{0.06}\right)^{2} \hat{p}(1-\hat{p})$ for all $\hat{p} \in[0,1]$.
By Cauchy-Schwarz inequality (HW0, or directly maximization of quadratic function $\hat{p}(1-\hat{p})): \hat{p}(1-\hat{p}) \leq\left(\frac{\hat{p}+1-\hat{p}}{2}\right)^{2}=0.25$. Thus if suffices to have $n \geq\left(\frac{2 \times 1.96}{0.06}\right)^{2} \times 0.25=1067.1 \Rightarrow n_{\text {min }}=1068$.

Example: Wordle

Date	No.		Word	Yongxin	Ye	
$1 / 18 / 22$	213	proxy	6	4		
$1 / 19 / 22$	214 point	4	4			
$1 / 20 / 22$	215	robot	4	5		
$1 / 21 / 22$	216	prick	6	4		
$1 / 22 / 22$	217	wince		5	4	

Example: Wordle

Suppose the number of tries of Xin and Ye follow some normal distribution $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$, which shares the same unknown variance σ^{2}.
Construct a $95 \% \mathrm{Cl}$ of $\mu_{1}-\mu_{2}$.
Here're the number of guesses from Jan 18, 2022 to Feb 18, 2022:

- Xin $\left(X_{i}\right): 64465465544443333453655455454535$
- Ye (Y_{i}): 44544455656256336464654243543336
- Difference $\left(D_{i}=X_{i}-Y_{i}\right): 20-121010-1-1-22-1-400-30-1$ -1001212-11120-1
$D_{i}=X_{i}-Y_{i}^{\text {'s }}$ are independent from each other, $D_{i} \sim N\left(\mu_{1}-\mu_{2}, 2 \sigma^{2}\right)$
$\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i} \sim N\left(\mu_{1}-\mu_{2}, 2 \sigma^{2} / n\right), \quad n=32$
Sample mean $\bar{d}=0.0625$.
Sample variance of the difference equals $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}$
$=1.9315 \quad \Rightarrow \quad s=1.3898$
A $100(1-\alpha) \% \mathrm{Cl}$ of $\mu_{1}-\mu_{2}:\left[\bar{D}-\frac{S}{\sqrt{n}} t_{31,0.025}, \bar{D}+\frac{S}{\sqrt{n}} t_{31,0.025}\right]$
$=\left[0.0625-\frac{1.3898}{\sqrt{32}} \times 2.04,0.0625+\frac{1.3898}{\sqrt{32}} \times 2.04\right]=[-0.4387,0.5637]$.

Example: Wordle

Suppose the number of tries of Xin and Ye follow some normal distribution $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$, which shares the same unknown variance σ^{2}.
Construct a $95 \% \mathrm{CI}$ of $\mu_{1}-\mu_{2}$.
Here're the number of guesses from Jan 18, 2022 to Feb 18, 2022:

- Xin $\left(X_{i}\right): 64465465544443333453655455454535$
- Ye $\left(Y_{i}\right): 44544455656256336464654243543336$
- Difference $\left(D_{i}=X_{i}-Y_{i}\right): 20-121010-1-1$-2 2 -1 -4 0 0-3 0 -1 -1001212-11120-1

A $100(1-\alpha) \% \mathrm{Cl}$ of $\mu_{1}-\mu_{2}:\left[\bar{D}-\frac{S}{\sqrt{n}} t_{31,0.025}, \bar{D}+\frac{S}{\sqrt{n}} t_{31,0.025}\right]$
$=\left[0.0625-\frac{1.3898}{\sqrt{32}} \times 2.04,0.0625+\frac{1.3898}{\sqrt{32}} \times 2.04\right]=[-0.4387,0.5637]$.
Do you think any one does significantly better than the other?
NO! Because the $95 \% \mathrm{Cl}$ covers 0 !

Significantly less than 0

Significantly larger than 0

Many thanks to

- Joyce Robbins
- Yang Feng
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- Yongxin Shang
- And all my teachers in the past 25 years

