Lecture 16: Hypothesis Testing (III)

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

August 2, 2022
Two-sided one-sample z-test

Suppose we have data \(X_1, \ldots, X_n \) i.i.d. \(\sim N(\mu, \sigma^2) \) with \(\sigma^2 \) known. Our hypothesis testing problem is

\[
H_0 : \mu = \mu_0 \quad \text{v.s.} \quad H_\alpha : \mu \neq \mu_0,
\]

for some constant \(\mu_0 \). We want to control Type-I error rate \(\leq \alpha \).

- **Test statistic** \(Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \sim N(0, 1) \)
- **The test**: reject \(H_0 \) if \(|Z| > z_{\alpha/2} \), otherwise accept \(H_0 \). This is called the **two-sided one-sample z-test** with level \(\alpha \).
- **p-value** = \(P(|Z| > |z|) = 2\Phi\left(-\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}\right) \)
- **When** \(\mu = \mu_1 \), \(\bar{X} \sim N(\mu_1, \sigma^2/n) \). Type-II error rate

\[
= P(-z_{\alpha/2} \leq Z = \frac{\sqrt{n}(\bar{X}-\mu_0)}{\sigma} \leq z_{\alpha/2})
= P\left(\frac{\sqrt{n}(\mu_0-\mu_1)}{\sigma} - z_{\alpha/2} \leq \frac{\sqrt{n}(\bar{X}-\mu_1)}{\sigma} \leq \frac{\sqrt{n}(\mu_0-\mu_1)}{\sigma} + z_{\alpha/2}\right)
= \Phi\left(\frac{\sqrt{n}(\mu_0-\mu_1)}{\sigma} + z_{\alpha/2}\right) - \Phi\left(\frac{\sqrt{n}(\mu_0-\mu_1)}{\sigma} - z_{\alpha/2}\right)
\]
One-sided one-sample z-test

Suppose we have data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$ with σ^2 known. Our hypothesis testing problem is

$$H_0 : \mu = \mu_0 \ \text{v.s.} \ \ H_\alpha : \mu > \mu_0,$$

for some constant μ_0. We want to control Type-I error rate $\leq \alpha$.

- Test statistic $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \sim N(0, 1)$
- The test: reject H_0 if $Z > z_\alpha$, otherwise accept H_0. This is called the one-sided one-sample z-test with level α.
- p-value $= \mathbb{P}(Z > z) = 1 - \Phi\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}\right)$
- When $\mu = \mu_1$, $\bar{X} \sim N(\mu_1, \sigma^2/n)$. Type-II error rate
 $$= \mathbb{P}(Z = \frac{\sqrt{n}(\bar{X} - \mu_1)}{\sigma} \leq z_\alpha) = \mathbb{P}\left(\frac{\sqrt{n}(\bar{X} - \mu_1)}{\sigma} \leq \frac{\sqrt{n}(\mu_0 - \mu_1)}{\sigma} + z_\alpha\right)$$
 $$= \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu_1)}{\sigma} + z_\alpha\right)$$
Compare two-sided and one-sided z-tests

Two-sided z-test: H_a includes both directions ($\mu \neq \mu_0$)

One-sided z-test: H_a includes only one direction ($\mu > \mu_0$ or $\mu < \mu_0$)
p-value in two-sided and one-sided z-tests

1. **Upper-tailed test**
 - H_a contains the inequality $>$
 - P-value = area in upper tail
 - $= 1 - \Phi(z)$

2. **Lower-tailed test**
 - H_a contains the inequality $<$
 - P-value = area in lower tail
 - $= \Phi(z)$

3. **Two-tailed test**
 - H_a contains the inequality \neq
 - P-value = sum of area in two tails
 - $= 2[1 - \Phi(|z|)]$
Two-sided one-sample t-test

Suppose we have data \(X_1, \ldots, X_n\) i.i.d. \(\sim N(\mu, \sigma^2)\) with \(\sigma^2\) unknown. Our hypothesis testing problem is

\[
H_0 : \mu = \mu_0 \quad \text{v.s.} \quad H_a : \mu \neq \mu_0,
\]

for some constant \(\mu_0\). We want to control Type-I error rate \(\leq \alpha\).

- Test statistic \(T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \sim t_{n-1}\)
- The test: reject \(H_0\) if \(T < -t_{n-1, \alpha/2}\) or \(T > t_{n-1, \alpha/2}\), otherwise accept \(H_0\). This is called the two-sided one-sample z-test with level \(\alpha\).
- p-value = \(P(|T| > |t|) = 2F\left(- \left| \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \right| \right), F : \text{cdf of } t_{n-1}\)-distribution
- Type-II error rate is a bit harder to calculate in this case so we won't discuss it.
One-sided one-sample t-test

Suppose we have data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$ with σ^2 unknown. Our hypothesis testing problem is

$$H_0 : \mu = \mu_0 \text{ v.s. } H_\alpha : \mu > \mu_0,$$

for some constant μ_0. We want to control Type-I error rate $\leq \alpha$.

- Test statistic $T = \frac{\sqrt{n(\bar{X} - \mu_0)}}{S} \sim t_{n-1}$
- The test: reject H_0 if $T > t_{n-1, \alpha}$, otherwise accept H_0. This is called the one-sided one-sample z-test with level α.
- p-value $= \mathbb{P}(T > t) = 1 - F\left(\frac{\sqrt{n(\bar{X} - \mu_0)}}{S}\right)$, F : cdf of t_{n-1}-distribution
- Type-II error rate is a bit harder to calculate in this case so we won't discuss it
Compare two-sided and one-sided t-tests

Two-sided t-test: H_a includes both directions ($\mu \neq \mu_0$)

One-sided t-test: H_a includes only one direction ($\mu > \mu_0$ or $\mu < \mu_0$)
p-value in two-sided and one-sided t-tests

1. **Upper-tailed test**
 - H_a contains the inequality $>$
 - P-value = area in upper tail

2. **Lower-tailed test**
 - H_a contains the inequality $<$
 - P-value = area in lower tail

3. **Two-tailed test**
 - H_a contains the inequality \neq
 - P-value = sum of area in two tails
Summary of testing mean of normal distribution

- σ known, $H_0 : \mu = \mu_0$
 - $H_a : \mu \neq \mu_0 \Rightarrow$ two-sided z-test
 - $H_a : \mu > \mu_0$ (or $\mu < \mu_0$) \Rightarrow one-sided z-test

- σ unknown, $H_0 : \mu = \mu_0$
 - $H_a : \mu \neq \mu_0 \Rightarrow$ two-sided t-test
 - $H_a : \mu > \mu_0$ (or $\mu < \mu_0$) \Rightarrow one-sided t-test
Today's goal

- Know how to use z-test to test the mean of general distributions (valid only when n is very large, hence called "large-sample z-test")
- Understand two-sided and one-sided hypothesis testing procedure for the population proportion p (i.e. the parameter p in Bernoulli(p) or Bin(n, p), valid only when n is very large, also called "large-sample z-test")
- Know how to calculate Type-I, Type-II and p-value under the aforementioned scenarios
Large-sample z-test for Mean of General Distributions
Example (the last time): fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of \(n = 90 \) systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F \([\text{with NO normal distribution!}]\), does the data contradict the manufacturer's claim at significance level \(\alpha = 0.05 \)?

\[
H_0 : \text{average activation temperature } \mu = 130 \degree F \quad \text{v.s.} \quad H_a : \mu \neq 130 \degree F
\]
Recall the general procedure to construct a test

(1) Construct the null and alternative hypotheses. ✓
(2) Given the level \(\alpha \), develop a test that satisfies Type-1 error rate
\[
P(\text{reject } H_0 | H_0 \text{ true}) \leq \alpha. \quad ?
\]

How to do step (2):

- Construct a test statistic \(T(X_1, \ldots, X_n) \), which is a function of samples \(X_1, \ldots, X_n \) and whose distribution under \(H_0 \) is known ❌ We don't know the distribution! --- But we may use CLT!
- Find a random region \(B \) such that Type-1 error rate
\[
P(\text{reject } H_0 | H_0 \text{ true}) = P(T(X_1, \ldots, X_n) \in B) = \alpha
\]
- Then the rejection region is \(B \), and the corresponding test is
\[
\begin{align*}
\text{reject } H_0, & \quad \text{if } T(X_1, \ldots, X_n) \in B, \\
\text{accept } H_0, & \quad \text{if } T(X_1, \ldots, X_n) \notin B.
\end{align*}
\]
Two-sided large-scale z-test: derivation

Suppose we have data $X_1, \ldots, X_n \sim i.i.d.$ some unknown distribution with both mean μ and standard deviation σ^2 unknown. Our hypothesis testing problem is

$$H_0 : \mu = \mu_0 \quad \text{v.s.} \quad H_a : \mu \neq \mu_0,$$

for some constant μ_0. We want to control Type-I error rate $\leq \alpha$.

Step 1: Under H_0, by CLT and Law of Large Numbers,

$$\bar{X} \stackrel{d}{\sim} N(\mu_0, \sigma^2/n), \quad S \approx \sigma^2 \Rightarrow Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \approx \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \stackrel{d}{\approx} N(0, 1)$$

Step 2: The larger $|Z|$ is, more likely H_a is true. Therefore the rejection region would be in the form $|Z| > c$. Note that

$$\mathbb{P}(|Z| > z_{\alpha/2}) \approx \alpha.$$

Step 3: The rejection region is $|Z| > z_{\alpha/2}$, i.e. $\bar{X} < \mu_0 - \frac{S}{\sqrt{n}} z_{\alpha/2}$ or $\bar{X} > \mu_0 + \frac{S}{\sqrt{n}} z_{\alpha/2}$. p-value $= \mathbb{P}(|Z| > |z|) = \mathbb{P}\left(|Z| > \left|\frac{\sqrt{n}(\bar{x} - \mu_0)}{s}\right|\right)
\approx 2\Phi\left(-\left|\frac{\sqrt{n}(\bar{x} - \mu_0)}{s}\right|\right)$
Two-sided large-scale z-test

Suppose we have data $X_1, \ldots, X_n \overset{i.i.d.}{\sim}$ some unknown distribution with both mean μ and standard deviation σ^2 unknown. Our hypothesis testing problem is

$$H_0 : \mu = \mu_0 \text{ v.s. } H_a : \mu \neq \mu_0,$$

for some constant μ_0. We want to control Type-I error rate $\leq \alpha$.

- Test statistic $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \overset{d}{\approx} N(0, 1)$
- The test: reject H_0 if $|Z| > z_{\alpha/2}$, otherwise accept H_0. This is called the **two-sided large-sample (one-sample) z-test** with level α.

- p-value $= \mathbb{P}(|Z| > |z|) \approx 2\Phi\left(-\left|\frac{\sqrt{n}(\bar{X} - \mu_0)}{S}\right|\right)$

- When $\mu = \mu_1$, $\bar{X} \overset{d}{\approx} N(\mu_1, \sigma^2/n) \Rightarrow Z' = \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \overset{d}{\approx} N(0, 1)$. Type-II error rate $= \mathbb{P}(-z_{\alpha/2} \leq Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \leq z_{\alpha/2})$

$$\approx \mathbb{P}\left(\frac{\sqrt{n}(\mu_0 - \mu_1)}{S} - z_{\alpha/2} \leq \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \leq \frac{\sqrt{n}(\mu_0 - \mu_1)}{S} + z_{\alpha/2}\right)$$

$$\approx \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu_1)}{S} + z_{\alpha/2}\right) - \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu_1)}{S} - z_{\alpha/2}\right)$$
Example: fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of $n = 90$ systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F [with NO normal distribution!], does the data contradict the manufacturer's claim at significance level $\alpha = 0.05$?

$H_0 :$ average activation temperature $\mu = 130 \ \ \text{v.s.} \ \ H_a : \mu \neq 130$

- The test: reject H_0 if $|Z| = \left| \frac{\sqrt{n}(\bar{X} - 130)}{S} \right| > z_{0.025} = 1.96$, otherwise accept H_0
- Sample z-statistic we observed $z = \frac{\sqrt{9}(131.08 - 130)}{2.25} = 1.44 < 1.96 \Rightarrow$ accept H_0, i.e. under 5% significance level, the data does not contradict the manufacturer's claim
- Test statistic $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \sim N(0, 1)$
- p-value $= \mathbb{P}(|Z| > |z|) = \mathbb{P}(|Z| > 1.44) = 2\mathbb{P}(Z > 1.44) = 0.1498 > 0.05 \Rightarrow$ accept H_0
Example: fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of \(n = 90 \) systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F [with NO normal distribution!], does the data contradict the manufacturer's claim at significance level \(\alpha = 0.05 \)?

\[
H_0 : \text{average activation temperature } \mu = 130 \quad \text{v.s.} \quad H_a : \mu \neq 130
\]

- The test: reject \(H_0 \) if \(|Z| > 1.96 \), otherwise accept \(H_0 \)
- When \(\mu = 131 \) (\(H_a \) true), we'd make Type-II error if accept \(H_0 \) \(|Z| \leq 1.96 \).

Type-II error rate

\[
\begin{align*}
&= \mathbb{P}\left(-1.96 \leq \frac{\sqrt{9}(\bar{X} - 130)}{2.25} \leq 1.96 \right) \\
&= \mathbb{P}\left(-1.96 - \frac{\sqrt{9}}{2.25} \leq \frac{\sqrt{9}(\bar{X} - 131)}{2.25} \leq 1.96 - \frac{\sqrt{9}}{2.25} \right) \\
&\sim N(0,1) \\
&= \Phi(0.63) - \Phi(-3.29) \approx 0.7352
\end{align*}
\]
Example (revisited): fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of \(n = 90 \) systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F \([\text{with NO normal distribution!}]\), does the data suggest that \(\mu > 130 \) at significance level \(\alpha = 0.05 \)?

\[
H_0 : \text{average activation temperature } \mu = 130 \degree F \quad \text{v.s.} \quad H_a : \mu > 130 \degree F
\]
One-sided large-scale z-test: derivation

Suppose we have data X_1, \ldots, X_n i.i.d. some unknown distribution with both mean μ and standard deviation σ^2 unknown.

$$H_0 : \mu = \mu_0 \ 	ext{v.s.} \ H_a : \mu > \mu_0,$$

for some constant μ_0. We want to control Type-I error rate $\leq \alpha$.

Step 1: Under H_0, by CLT and Law of Large Numbers, $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \sim N(0, 1)$

Step 2: The larger $|Z|$ is, more likely H_a is true. Therefore the rejection region would be in the form $Z > c$. Note that

$$\mathbb{P}(Z > z_{\alpha}) = \alpha.$$

Step 3: The rejection region is $Z > z_{\alpha}$. p-value $= \mathbb{P}(Z > z) = \mathbb{P}\left(Z > \sqrt{n}(\bar{X} - \mu_0)\right) = 1 - \Phi\left(\frac{\sqrt{n}(\bar{X} - \mu_0)}{s}\right)$
One-sided one-sample z-test

Suppose we have data \(X_1, \ldots, X_n \) i.i.d. \(\sim N(\mu, \sigma^2) \) with \(\sigma^2 \) known. Our hypothesis testing problem is
\[
H_0 : \mu = \mu_0 \quad \text{v.s.} \quad H_\alpha : \mu > \mu_0,
\]
for some constant \(\mu_0 \). We want to control Type-I error rate \(\leq \alpha \).

- Test statistic \(Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \sim N(0, 1) \)
- The test: reject \(H_0 \) if \(Z > z_\alpha \), otherwise accept \(H_0 \). This is called the one-sided large-sample (one-sample) z-test with level \(\alpha \).
- p-value = \(P(Z > z) = 1 - \Phi\left(\frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma}\right) \)
- When \(\mu = \mu_1, \bar{X} \sim N(\mu_1, \sigma^2/n) \). Type-II error rate
 \[
 = P(Z = \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \leq z_\alpha) = P\left(\frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \leq \frac{\sqrt{n}(\mu_0-\mu_1)}{S} + z_\alpha\right)
 = \Phi\left(\frac{\sqrt{n}(\mu_0-\mu_1)}{S} + z_\alpha\right)
 \]
Compare two-sided and one-sided z-tests

Two-sided z-test: \(H_a \) includes both directions (\(\mu \neq \mu_0 \))

One-sided z-test: \(H_a \) includes only one direction (\(\mu > \mu_0 \) or \(\mu < \mu_0 \))
p-value in two-sided and one-sided z-tests

1. **Upper-tailed test**
 \(H_a \) contains the inequality >

 \[P\text{-value} = \text{area in upper tail} = 1 - \Phi(z) \]

2. **Lower-tailed test**
 \(H_a \) contains the inequality <

 \[P\text{-value} = \text{area in lower tail} = \Phi(z) \]

3. **Two-tailed test**
 \(H_a \) contains the inequality ≠

 \[P\text{-value} = \text{sum of area in two tails} = 2[1 - \Phi(|z|)] \]
Example (revisited): fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of $n = 90$ systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F [with NO normal distribution!], does the data suggest that $\mu > 130$ at significance level $\alpha = 0.05$?

$H_0 : \text{average activation temperature } \mu = 130 \quad \text{v.s.} \quad H_a : \mu > 130$

- The test: reject H_0 if $Z > z_{0.05} = 1.645$, otherwise accept H_0
- Sample z-statistic we observed $z = \frac{\sqrt{9}(131.08-130)}{2.25} = 1.44 < 1.645 \Rightarrow$ reject H_0, i.e. under 5% significance level, the data contradicts the manufacturer's claim
- Test statistic $Z = \frac{\sqrt{n}(\bar{X}-\mu_0)}{\sigma} \sim N(0, 1)$
- p-value $= \mathbb{P}(Z > z) = \mathbb{P}(Z > 1.44) = 0.0749 > 0.05 \Rightarrow$ accept H_0
Example (revisited): fire protection system

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130 °F. A sample of $n = 90$ systems, when tested, yields a sample average activation temperature of 131.08 °F. If the sample standard deviation of activation times is 2.25 °F [with NO normal distribution!], does the data suggest that $\mu > 130$ at significance level $\alpha = 0.05$?

$H_0 : \text{average activation temperature } \mu = 130 \quad \text{v.s.} \quad H_a : \mu > 130$

- The test: reject H_0 if $Z > z_{0.05} = 1.645$, otherwise accept H_0
- When $\mu = 131$ (H_a true), we'd make Type-II error if accept H_0 ($\bar{X} \leq 130.98$).

Type-II error rate $= \mathbb{P}(Z = \frac{\sqrt{9}(\bar{X} - 130)}{2.25} \leq 1.645)$

$= \mathbb{P}\left(\sqrt{9}(\bar{X} - 131) \geq 1.645 \left(1 - \frac{\sqrt{9}}{2.25}\right) \sim N(0,1)\right)$

$= \Phi(0.31) \approx 0.3783$
Large-sample z-test for Population Proportion
Example (new!): proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that the proportion of students that tweeted during the exam is significantly different from 5%?

\[H_0 : \text{the proportion of cheating students } p = 0.05 \quad \text{v.s.} \quad H_a : p \neq 0.05 \]
Two-sided large-sample z-test for proportion: derivation

Suppose we have data $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Bernoulli}(p)$.

$$H_0 : p = p_0 \quad \text{v.s.} \quad H_a : p \neq p_0,$$

for some constant p_0. We want to control Type-I error rate $\leq \alpha$.

Step 1: Under H_0, by CLT, $\bar{p} = \frac{\sum X_i}{n} \xrightarrow{d} N(p_0, p_0(1-p_0)/n) \Rightarrow \sqrt{n}(\hat{p} - p_0) \sim N(0, 1)$

$$Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \approx N(0, 1)$$

Step 2: The larger $|Z|$ is, more likely H_a is true. Therefore the rejection region would be in the form $|Z| > c$. Note that

$$P(|Z| > z_{\alpha/2}) \approx \alpha.$$

Step 3: The rejection region is $|Z| > z_{\alpha/2}$. p-value $= P(|Z| > |z|)$

$$= P\left(|Z| > \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \right) = 2\Phi\left(-\left|\frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \right|\right)$$
Two-sided large-sample z-test for proportion

Suppose we have data X_1, \ldots, X_n i.i.d. \sim Bernoulli(p).

$$H_0 : p = p_0 \quad \text{v.s.} \quad H_a : p \neq p_0,$$

for some constant p_0. We want to control Type-I error rate $\leq \alpha$.

- Test statistic $Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \overset{d}{\approx} N(0, 1)$

- The test: reject H_0 if $Z < -z_{\alpha/2}$ or $Z > z_{\alpha/2}$, otherwise accept H_0.

This is called the two-sided large-sample z-test for proportion with level α.

- p-value $= \mathbb{P}(\left|Z\right| > |z|) = 2\Phi\left(-\left|\frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}}\right|\right)$

- When $p = p_1$, $\hat{p} \overset{d}{\approx} N(p_1, p_1(1-p_1)/n) \Rightarrow \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \overset{d}{\approx} N(0, 1)$.

Type-II error rate $= \mathbb{P}(-z_{\alpha/2} \leq Z = \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \leq z_{\alpha/2}) \approx$

$$\mathbb{P}\left(\frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} - \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)}} z_{\alpha/2} \leq \frac{\sqrt{n}(\hat{p} - p_1)}{\sqrt{p_1(1-p_1)}} \leq \frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} + \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)}} z_{\alpha/2}\right)$$

$$\approx \Phi\left(\frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} + \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)}} z_{\alpha/2}\right) - \Phi\left(\frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} - \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)}} z_{\alpha/2}\right)$$
Example: proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that the proportion of students that texted during the exam is significantly different from 5%?

H_0 : the proportion of cheating students $p = 0.05$ v.s. $H_a : p \neq 0.05$

- The test: reject H_0 if $|Z| > z_{0.005} = 2.58$, otherwise accept H_0
- Sample proportion $\hat{p} = \frac{27}{267} = 0.10$, sample test statistic we observed

$$z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} = \frac{\sqrt{267 \times (0.10 - 0.05)}}{\sqrt{0.05 \times 0.95}} = 3.75 > 2.58 \Rightarrow \text{reject } H_0,$$

i.e. under 5% significance level, there's sufficient evidence that the proportion significantly deviates from 5%

- Under H_0, test statistic $Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \overset{d}{\approx} N(0, 1)$

- p-value $= P(|Z| > |z|) = P(|Z| > 3.75) = 2\Phi(-3.75) \approx 0 < 0.01 \Rightarrow \text{reject } H_0$
Example: proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that the proportion of students that texted during the exam is significantly different from 5%?

\[H_0 : \text{the proportion of cheating students } p = 0.05 \quad \text{v.s.} \quad H_a : p \neq 0.05 \]

- The test: reject \(H_0 \) if \(|Z| > 2.58 \), otherwise accept \(H_0 \)

- When \(p = 0.03 \) (\(H_a \) true), we'd make Type-II error if accept \(H_0 \) (\(|Z| \leq 2.58 \)).

Type-II error rate = \(\mathbb{P}\left(-2.58 \leq Z = \frac{\sqrt{267(\hat{p} - 0.05)}}{\sqrt{0.05\times 0.95}} \leq 2.58\right) \)

\[
= \mathbb{P}\left(-2.58 \frac{\sqrt{0.05\times 0.95}}{\sqrt{0.03\times 0.97}} + \frac{\sqrt{267\times 0.02}}{\sqrt{0.03\times 0.97}} \leq \frac{\sqrt{267(\hat{p} - 0.03)}}{\sqrt{0.03 \times 0.97}} \leq \right)
\]

\[
\approx N(0,1)
\]

\[
2.58\frac{\sqrt{0.05\times 0.95}}{\sqrt{0.03\times 0.97}} + \frac{\sqrt{267\times 0.02}}{\sqrt{0.03\times 0.97}} \approx \Phi(5.21) - \Phi(-1.38) = 0.9172
\]
Example (revisited): proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that more than 5% of all students in the population sampled had texted during an exam?

\[H_0 : \text{the proportion of cheating students} \ p = 0.05 \quad \text{v.s.} \quad H_a : p > 0.05 \]
One-sided large-sample z-test for proportion: derivation

Suppose we have data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Bernoulli}(p)$.

$$H_0 : p = p_0 \quad \text{v.s.} \quad H_a : p > p_0,$$

for some constant p_0. We want to control Type-I error rate $\leq \alpha$.

Step 1: Under H_0, by CLT, $\bar{p} = \bar{X} \overset{d}{\approx} N(p_0, p_0(1 - p_0)/n) \Rightarrow$

$$Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \overset{d}{\approx} N(0, 1)$$

Step 2: The larger Z is, more likely H_a is true. Therefore the rejection region would be in the form $Z > c$. Note that

$$\mathbb{P}(Z > z_\alpha) \approx \alpha.$$

Step 3: The rejection region is $Z > z_\alpha$. p-value $= \mathbb{P}(Z > z) = \mathbb{P}\left(Z > \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}}\right) \approx 1 - \Phi\left(\frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}}\right)$

![Graph of acceptance and rejection regions](attachment:graph.png)
One-sided large-sample z-test for proportion

Suppose we have data \(X_1, \ldots, X_n\) \(\sim \text{Bernoulli}(p)\).

\[
H_0 : p = p_0 \quad \text{v.s.} \quad H_a : p > p_0,
\]

for some constant \(p_0\). We want to control Type-I error rate \(\leq \alpha\).

- Test statistic \[Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \overset{d}{\approx} N(0,1) \]
- The test: reject \(H_0\) if \(Z < -z_{\alpha/2}\) or \(Z > z_{\alpha/2}\), otherwise accept \(H_0\). This is called the two-sided large-sample z-test for proportion with level \(\alpha\).

- \(p\)-value \[= \mathbb{P}(Z > z) = 1 - \Phi\left(- \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}}\right) \]

- When \(p = p_1\), \(\hat{p} \overset{d}{\approx} N(p_1, p_1(1 - p_1)/n) \Rightarrow \frac{\sqrt{n}(\bar{X} - \mu_1)}{S} \overset{d}{\approx} N(0, 1)\).

Type-II error rate \[= \mathbb{P}\left(Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \leq z_{\alpha/2}\right) \]
\[\approx \mathbb{P}\left(\frac{\sqrt{n}(\hat{p} - p_1)}{\sqrt{p_1(1-p_1)}} \leq \frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} + \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)} z_{\alpha/2}}\right) \]
\[\approx \Phi\left(\frac{\sqrt{n}(p_0-p_1)}{\sqrt{p_1(1-p_1)}} + \frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_1(1-p_1)} z_{\alpha/2}}\right) \]
Example: proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that more than 5% of all students in the population sampled had texted during an exam?

\[H_0 : \text{the proportion of cheating students } p = 0.05 \quad \text{v.s.} \quad H_a : p > 0.05 \]

- The test: reject \(H_0 \) if \(Z > z_{0.01} = 2.33 \), otherwise accept \(H_0 \)
- Sample proportion \(\hat{p} = \frac{27}{267} = 0.10 \), sample test statistic we observed
 \[z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} = \frac{\sqrt{267\times(0.10-0.05)}}{\sqrt{0.05\times0.95}} = 3.75 > 2.33 \Rightarrow \text{reject } H_0, \ \text{i.e.} \]
 under 5% significance level, there's sufficient evidence that the proportion significantly deviates from 5%

- Under \(H_0 \), test statistic \(Z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1-p_0)}} \overset{d}{=} N(0,1) \)
- \(p\)-value = \(P(Z > z) = P(Z > 3.75) = \Phi(-3.75) \approx 0 < 0.01 \Rightarrow \text{reject } H_0 \)
Example: proportion of cheating students

27 of the 267 students in a sample admitted to texting during an exam. Can it be concluded at significance level 0.01 that more than 5% of all students in the population sampled had texted during an exam?

\[H_0 : \text{the proportion of cheating students } p = 0.05 \quad \text{v.s.} \quad H_a : p > 0.05 \]

- The test: reject \(H_0 \) if \(Z > 2.33 \), otherwise accept \(H_0 \)
- When \(p = 0.08 \) (\(H_a \) true), we'd make Type-II error if accept \(H_0 \) (\(Z \leq 2.33 \)).

\[
\text{Type-II error rate} = P \left(Z = \frac{\sqrt{267}(\hat{p} - 0.05)}{\sqrt{0.05 \times 0.95}} \leq 2.33 \right) \\
= P \left(\frac{\sqrt{267}(\hat{p} - 0.08)}{\sqrt{0.08 \times 0.92}} \leq 2.33 \frac{\sqrt{0.05 \times 0.95}}{\sqrt{0.08 \times 0.92}} - \frac{\sqrt{267 \times 0.03}}{\sqrt{0.08 \times 0.92}} \right) \\
\approx N(0,1) \\
\approx \Phi(0.06) = 0.5239
\]
Many thanks to

- Joyce Robbins
- Chengliang Tang
- Yang Feng
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years