Lecture 3: Probability Basics (I)

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

$$
\text { July 7, } 2022
$$

Qย COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Review: data visualization tools

- Continuous (numerical) data:
- Stem-and-leaf plot
\triangleright Dot plot
- Histogram
- Box plot
- Categorical (discrete) data:
- Bar chart
\triangleright Pie chart (be careful when using it)

Review: shape of data distribution

- Modality:
\triangleright Unimodal
\triangleright Bimodal
- Multimodal
\triangleright Almost uniform (no obvious peaks)
- Skewness:
- Left-skewed
\triangleright Right-skewed
\triangleright Symmetric

Review: shape of data distribution

- modality

- skewness

uniform

symmetric

Today's goal

- Understand important concepts that are relative to probability: a random experiment, the sample space, outcomes, events and their relationship
- Know the definition and interpretation of probability and three probability axioms
- Know how to calculate probability in the experiment with equal likely outcomes

Warning: We will see more MATH from today. Be prepared!

Concepts before We Define Probability

Experiments and outcomes

- A (random) experiment is any action or process whose outcome is uncertain. E.g. rolling a die $\because 1$
- An outcome is the result of a random experiment. E.g. the die lands with face 4 up
- The sample space of an experiment, denoted by Ω, is the set of all possible outcomes of that experiment. E.g.: $\Omega=\{1,2,3,4,5,6\}$
- An event is a set (collection) of outcomes. E.g. consider event $A=\{1\}$, event $B=\{3,5,6\}$

Exercise: What is the sample space of rolling two dice?

Event (set) operations from set theory

Consider events A and B :

- Set difference $A-B$ or $A \backslash B$: outcomes that are in A but not in B
- The complement of A : denoted as A^{c}, which is $\Omega-A$

$A-B$

$A^{c}=\Omega-A$

Event (set) operations from set theory

Consider events A and B :

- The union of A and B : denoted as $A \cup B$, which is the event consisting of all outcomes that are in either A or B
- The intersection of A and B : denoted as $A \cap B$, which is the event consisting of all outcomes that are in both A and B .

$A \cup B$

$A \cap B$

Event (set) operations from set theory

Consider events A and B :

- Let \emptyset denote the empty set, which contains no outcomes
- When $A \cap B=\emptyset, A$ and B are said to be mutually exclusive or disjoint events

Event (set) operations from set theory

Example: Consider rolling a die. Events $A=\{1,4,5\}, B=\{1,3,5,6\}$

- $A \cup B=$?, $A-B=$?, $A \cap B=$?
- $A^{c}=$?, $B^{c}=$?
- $A^{c} \cap B=$?
- Are A and B mutually exclusive?

Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C :

- The union of A, B and C : denoted as $A \cup B \cup C$, which is the event consisting of all outcomes that are in either A or B or C
- The intersection of A, B and C : denoted as $A \cap B \cap C$, which is the event consisting of all outcomes that are in all A, B and C.

$A \cup B \cup C$

$A \cap B \cap C$

Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C :

- When no two events of A, B and C have any outcomes in common (i.e. $A \cap B=A \cap C=B \cap C=\emptyset$), they are said to be mutually exclusive events (or (pairwisely) disjoint)

Event (set) operations from set theory: ≥ 3 events

Example: Consider rolling a die. Sample space $\Omega=\{1,2,3,4,5,6\}$.
Events $A=\{1,4,5\}, B=\{1,3,5,6\}, C=\{2\}$.

- $A \cup B \cup C=$?
- $\left(B^{c} \cap A\right) \cup C=$?
- $(A \cup B)^{c} \cap C=$?
- Are A and C mutually exclusive? What about A, B and C ?

Event (set) operation properties

- When calculating union, intersection and complement involved with ≥ 3 events (sets), these properties may be helpful:
\triangleright Commutative property: $A \cup B=B \cup A, A \cap B=B \cap A$
\triangleright Associative property: $(A \cup B) \cup C=A \cup(B \cup C)$
\triangleright Distributive property:

$$
\begin{aligned}
& \diamond A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& \diamond A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

\triangleright de Morgan rule:

$$
\begin{aligned}
& \diamond\left(A_{1} \cup \ldots \cup A_{n}\right)^{c}=A_{1}^{c} \cap \ldots \cap A_{n}^{c} \\
& \diamond\left(A_{1} \cap \ldots \cap A_{n}\right)^{c}=A_{1}^{c} \cup \ldots \cup A_{n}^{c}
\end{aligned}
$$

Venn diagrams

A pictorial representation of events and manipulations with events is obtained by using Venn diagrams.

(a) Venn diagram of events A and B

(b) Shaded region is $A \cap B$

(c) Shaded region is $A \cup B$

(d) Shaded region is A^{\prime}

(e) Mutually exclusive events

(f) Shaded region is $A \cup B \cup C$

(g) Shaded region is $A \cap B \cap C$

Probability, Axioms and Interpretations

Probability

Given an experiment and a sample space Ω, we would like to know the likelihood that an event can occur, which is defined as probability.

- The objective of probability is to assign to each event A a number $\mathbb{P}(A)$, called the probability of the event A
From this perspective: $\mathbb{P}(\cdot): A \in$ a set of all events \rightarrow a number $\mathbb{P}(A)$ (a mapping/function which maps an event to a number)
- According to your intuition/common sense, if we roll a fair die, what's the probability of getting 2 face up (i.e. $\mathbb{P}(\{2\}))$? Can it be $1 / 5$?
- Given an experiment, the probability is a determined function. It is an intrinsic function related to the random experiment and it cannot be arbitrary!

Axioms of probability

Given any experiment and a sample space Ω :

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A \subseteq \Omega$
- $\mathbb{P}(\Omega)=1, \mathbb{P}(\emptyset)=0$
- If $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are disjoint (mutually exclusive) events, then

$$
\mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

Here n can be $+\infty$ (an infinite collection).

Any probability must satisfy three axioms above. Do you think these axioms make sense? Can you explain why?

Interpretations of probability

Now we are tossing a fair coin and denote event A as "the heads face up". We know $\mathbb{P}(A)=0.5$.

Now we repeat this game for n times and denote $n(A)$ as the number of replications on which A occurs. We call $n(A) / n$ as relative frequency.

The relative frequency of an event will converge to its probability when $n \rightarrow+\infty$! In other words, the probability of an event can be seen as its long-run relative frequency.

Probability Calculation

Properties of probability (I)

Suppose A, B and C are some events.

$$
\begin{aligned}
& \circ \\
& \circ \\
& \left.\circ \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A) B\right)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \\
& \mathbb{P}(A \cap B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cup B)
\end{aligned}
$$

- $\mathbb{P}(A \cup B \cup C)=$
$\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A \cap B)-\mathbb{P}(A \cap C)-\mathbb{P}(B \cap C)+\mathbb{P}(A \cap B \cap C)$
$\mathbb{P}(A \cap B \cap C)=$
$\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A \cup B)-\mathbb{P}(A \cup C)-\mathbb{P}(B \cup C)+\mathbb{P}(A \cup B \cup C)$

Proof:

- A and A^{c} are mutually exclusive; $A \cup A^{c}=\Omega$; Then by Axioms 2 and 3
- Venn diagram:

Properties of probability (II)

Suppose A and B are some events.

- If A and B are mutually exclusive, then $\mathbb{P}(A \cap B)=0$
- If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Proof:

- $A \cap B=\emptyset$; Then by Axiom 2
- $B=(A \cap B) \cup\left(A^{c} \cap B\right)=A \cup\left(A^{c} \cap B\right) ; A$ and $A^{c} \cap B$ are mutually exclusive; Then by Axiom 3. (Why does " $=$ " hold?)

Exercise

Suppose A and B are some events, and $\mathbb{P}(A)=0.2, \mathbb{P}(B)=0.9$.

- Is it possible for A and B to be mutually exclusive?
- Give the range for all possible values of $\mathbb{P}(A \cup B)$ and $\mathbb{P}(A \cap B)$
- Can you illustrate the most "extreme" scenarios (when $\mathbb{P}(A \cup B)$ and $\mathbb{P}(A \cap B)$ achieve maximum or minimum) by Venn diagram?

Proof:

- No. If that's true, then $1 \geq \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)=1.1$!
- $B \subseteq A \cup B$, therefore $0.9=\mathbb{P}(B) \leq \mathbb{P}(A \cup B) \leq 1$. Hence $\mathbb{P}(A \cap B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cup B)=1.1-\mathbb{P}(A \cup B) \in[0.1,0.2]$ Check: give examples corresponding to the endpoints to verify that these numbers are indeed achievable.

Equally likely outcomes

In many experiments consisting of N outcomes, it is reasonable to assign equal probabilities to all N simple events.

Example:

- tossing a fair coin $(\Omega=\{\mathrm{H}, \mathrm{T}\}, N=2)$ or fair die $(\Omega=\{1,2, \ldots, 6\}$,

$$
N=6)
$$

- selecting one or several cards from a well-shuffled deck of $52(N=52)$

Denote event $A_{i}=\{i$-th outcome $\}$, since A_{1}, \ldots, A_{N} are mutually exclusive, $1=\mathbb{P}(\Omega)=\mathbb{P}\left(\cup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \mathbb{P}\left(A_{i}\right)$, implying that $\mathbb{P}\left(A_{i}\right)=1 / N$ for $i=1, \ldots, N$
Consequence: Denote the number of outcomes that event A contains as $N(A)$. Then for any event A,

$$
\mathbb{P}(A)=\frac{N(A)}{N}
$$

Equally likely outcomes

Theorem: In an experiment consisting of N outcomes with equal probability, denote the number of outcomes that event A contains as $N(A)$. Then for any event A,

$$
\mathbb{P}(A)=\frac{N(A)}{N} .
$$

Remark:

- This result can only be used in the experiment where each outcome has equal probability
Counter-example: Tossing an unfair coin/die, spinning the wheel on the right
- For such experiments, calculating probability $=$ counting the number of outcomes included in the event!

Example 1

We are rolling a fair die $\because \bullet \square=\{1, \ldots, 6\}$.

- What's the probability that we get 2 face up?
$\mathbb{P}(\{2\})=1 / N=1 / 6$
- What's the probability that we get 2 or 5 face up? $\mathbb{P}(\{2,5\})=2 / N=2 / 6=1 / 3$
Now consider two fair dice

Example 2

Now consider two fair dice $\Omega=\{(i, j): 1 \leq i, j \leq 6\}$, $N=|\Omega|=6 \times 6=36$

$$
\text { Die } 2
$$

	1	2	3	4	5	6
Die	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
1	$(1,6)$					
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)(2,6)$	
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)(3,6)$	
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)(5,6)$	
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)(6,6)$	

- What's the probability that one die is 4 and the other is 1 ?

$$
A=\{(4,1),(1,4)\}, \mathbb{P}(A)=2 / N=2 / 36=1 / 18
$$

- What's the probability that the sum of two dice is more than 9 ?
$B=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
$\mathbb{P}(B)=6 / N=6 / 36=1 / 6$

Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
\triangleright Chapter 2.1 and 2.2
- "OpenIntro statistics" (4th edition, free online, download [here]):
\triangleright Chapter 3.1.1-3.1.4

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

