Lecture 3: Probability Basics (I)

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 7, 2022
Review: data visualization tools

- Continuous (numerical) data:
 - Stem-and-leaf plot
 - Dot plot
 - Histogram
 - Box plot

- Categorical (discrete) data:
 - Bar chart
 - Pie chart (be careful when using it)
Review: shape of data distribution

- **Modality:**
 - Unimodal
 - Bimodal
 - Multimodal
 - Almost uniform (no obvious peaks)

- **Skewness:**
 - Left-skewed
 - Right-skewed
 - Symmetric
Review: shape of data distribution

- **Modality**
 - Unimodal
 - Bimodal
 - Multimodal
 - Uniform

- **Skewness**
 - Right skew
 - Left skew
 - Symmetric
Today's goal

- Understand important concepts that are relative to probability: a random experiment, the sample space, outcomes, events and their relationship
- Know the definition and interpretation of probability and three probability axioms
- Know how to calculate probability in the experiment with equal likely outcomes

Warning: We will see more MATH from today. Be prepared!
Concepts before We Define Probability
Experiments and outcomes

- A **(random) experiment** is any action or process whose outcome is uncertain. E.g. rolling a die.
- An **outcome** is the result of a random experiment. E.g. the die lands with face 4 up.
- The **sample space** of an experiment, denoted by Ω, is the *set* of all possible outcomes of that experiment. E.g.: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- An **event** is a set (collection) of outcomes. E.g. consider event $A = \{1\}$, event $B = \{3, 5, 6\}$

Exercise: What is the sample space of rolling **two dice**?
Event (set) operations from set theory

Consider events A and B:

- **Set difference** $A - B$ or $A\setminus B$: outcomes that are in A but not in B
- The **complement** of A: denoted as A^c, which is $\Omega - A$

\[
A - B
\]

\[
A^c = \Omega - A
\]
Event (set) operations from set theory

Consider events \(A \) and \(B \):

- The **union** of \(A \) and \(B \): denoted as \(A \cup B \), which is the event consisting of all outcomes that are in **either** \(A \) **or** \(B \).
- The **intersection** of \(A \) and \(B \): denoted as \(A \cap B \), which is the event consisting of all outcomes that are in **both** \(A \) and \(B \).
Event (set) operations from set theory

Consider events A and B:

- Let \emptyset denote the **empty set**, which contains no outcomes.
- When $A \cap B = \emptyset$, A and B are said to be **mutually exclusive** or **disjoint** events.
Event (set) operations from set theory

Example: Consider rolling a die. Events $A = \{1, 4, 5\}$, $B = \{1, 3, 5, 6\}$

- $A \cup B = ?$, $A - B = ?$, $A \cap B = ?$
- $A^c = ?$, $B^c = ?$
- $A^c \cap B = ?$
- Are A and B mutually exclusive?
Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C:

- The **union** of A, B and C: denoted as $A \cup B \cup C$, which is the event consisting of all outcomes that are in **either** A **or** B **or** C.

- The **intersection** of A, B and C: denoted as $A \cap B \cap C$, which is the event consisting of all outcomes that are in **all** A, B **and** C.

$$A \cup B \cup C$$

$$A \cap B \cap C$$
Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C:

- When no two events of A, B and C have any outcomes in common (i.e. $A \cap B = A \cap C = B \cap C = \emptyset$), they are said to be mutually exclusive events (or (pairwisely) disjoint)
Event (set) operations from set theory: ≥ 3 events

Example: Consider rolling a die. Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$. Events $A = \{1, 4, 5\}$, $B = \{1, 3, 5, 6\}$, $C = \{2\}$.

- $A \cup B \cup C =?$
- $(B^c \cap A) \cup C =?$
- $(A \cup B)^c \cap C =?$
- Are A and C mutually exclusive? What about A, B and C?
Event (set) operation properties

- When calculating union, intersection and complement involved with ≥ 3 events (sets), these properties may be helpful:
 - **Commutative property:** $A \cup B = B \cup A$, $A \cap B = B \cap A$
 - **Associative property:** $(A \cup B) \cup C = A \cup (B \cup C)$
 - **Distributive property:**
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - **de Morgan rule:**
 - $(A_1 \cup \ldots \cup A_n)^c = A_1^c \cap \ldots \cap A_n^c$
 - $(A_1 \cap \ldots \cap A_n)^c = A_1^c \cup \ldots \cup A_n^c$
Venn diagrams

A pictorial representation of events and manipulations with events is obtained by using **Venn diagrams**.

- (a) Venn diagram of events A and B
- (b) Shaded region is $A \cap B$
- (c) Shaded region is $A \cup B$
- (d) Shaded region is A'
- (e) Mutually exclusive events
- (f) Shaded region is $A \cup B \cup C$
- (g) Shaded region is $A \cap B \cap C$
Probability, Axioms and Interpretations
Probability

Given an experiment and a sample space Ω, we would like to know the likelihood that an event can occur, which is defined as **probability**.

- The objective of probability is to assign to each event A a number $\mathbb{P}(A)$, called the probability of the event A.
 From this perspective: $\mathbb{P}(: A \in \text{a set of all events} \rightarrow \text{a number } \mathbb{P}(A)$ (a mapping/function which maps an event to a number).

- According to your intuition/common sense, if we roll a fair die, what's the probability of getting 2 face up (i.e. $\mathbb{P}($\{2\}$))? Can it be 1/5?

- Given an experiment, the probability is a **determined** function. It is an intrinsic function related to the random experiment and it cannot be arbitrary!
Axioms of probability

Given any experiment and a sample space Ω:

- $0 \leq P(A) \leq 1$ for any event $A \subseteq \Omega$
- $P(\Omega) = 1$, $P(\emptyset) = 0$
- If $A_1, A_2, A_3, \ldots, A_n$ are disjoint (mutually exclusive) events, then

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^{n} P(A_i).$$

Here n can be $+\infty$ (an infinite collection).

Any probability **must** satisfy three axioms above. Do you think these axioms make sense? Can you explain why?
Interpretations of probability

Now we are tossing a fair coin and denote event A as "the heads face up". We know $\mathbb{P}(A) = 0.5$.

Now we repeat this game for n times and denote $n(A)$ as the number of replications on which A occurs. We call $n(A)/n$ as relative frequency.

The relative frequency of an event will converge to its probability when $n \to +\infty$! In other words, the probability of an event can be seen as its long-run relative frequency.
Probability Calculation
Properties of probability (I)

Suppose A, B and C are some events.

- $P(A^c) = 1 - P(A)$
- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 - $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

 - $P(A \cap B \cap C) = P(A) + P(B) + P(C) - P(A \cup B) - P(A \cup C) - P(B \cup C) + P(A \cup B \cup C)$

Proof:

- A and A^c are mutually exclusive; $A \cup A^c = \Omega$; Then by Axioms 2 and 3
- Venn diagram:
Properties of probability (II)

Suppose A and B are some events.

- If A and B are mutually exclusive, then $\mathbb{P}(A \cap B) = 0$
- If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Proof:

- $A \cap B = \emptyset$; Then by Axiom 2
- $B = (A \cap B) \cup (A^c \cap B) = A \cup (A^c \cap B)$; A and $A^c \cap B$ are mutually exclusive; Then by Axiom 3. (Why does "=" hold?)
Exercise

Suppose A and B are some events, and $P(A) = 0.2$, $P(B) = 0.9$.

- Is it possible for A and B to be mutually exclusive?
- Give the range for all possible values of $P(A \cup B)$ and $P(A \cap B)$
- Can you illustrate the most "extreme" scenarios (when $P(A \cup B)$ and $P(A \cap B)$ achieve maximum or minimum) by Venn diagram?

Proof:

- No. If that's true, then $1 \geq P(A \cup B) = P(A) + P(B) = 1.1!$
- $B \subseteq A \cup B$, therefore $0.9 = P(B) \leq P(A \cup B) \leq 1$. Hence $P(A \cap B) = P(A) + P(B) - P(A \cup B) = 1.1 - P(A \cup B) \in [0.1, 0.2]$

Check: give examples corresponding to the endpoints to verify that these numbers are indeed achievable.
Equally likely outcomes

In many experiments consisting of \(N \) outcomes, it is reasonable to assign equal probabilities to all \(N \) simple events.

Example:
- tossing a fair coin \((\Omega = \{H, T\}, N = 2) \) or fair die \((\Omega = \{1, 2, \ldots, 6\}, N = 6) \)
- selecting one or several cards from a well-shuffled deck of 52 \((N = 52) \)

Denote event \(A_i = \{i\text{-th outcome}\} \), since \(A_1, \ldots, A_N \) are mutually exclusive, \(1 = \mathbb{P}(\Omega) = \mathbb{P}(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} \mathbb{P}(A_i) \), implying that \(\mathbb{P}(A_i) = 1/N \) for \(i = 1, \ldots, N \)

Consequence: Denote the number of outcomes that event \(A \) contains as \(N(A) \). Then for any event \(A \),

\[
\mathbb{P}(A) = \frac{N(A)}{N}.
\]
Equally likely outcomes

Theorem: In an experiment consisting of \(N \) outcomes with equal probability, denote the number of outcomes that event \(A \) contains as \(N(A) \). Then for any event \(A \),

\[
\mathbb{P}(A) = \frac{N(A)}{N}.
\]

Remark:

- This result can only be used in the experiment where each outcome has equal probability

Counter-example: Tossing an unfair coin/die, spinning the wheel on the right

- For such experiments, calculating probability = counting the number of outcomes included in the event!
Example 1

We are rolling a fair die. \(\Omega = \{1, \ldots, 6\} \).

- What's the probability that we get 2 face up?
 \[P(\{2\}) = \frac{1}{N} = \frac{1}{6} \]

- What's the probability that we get 2 or 5 face up?
 \[P(\{2, 5\}) = \frac{2}{N} = \frac{2}{6} = \frac{1}{3} \]

Now consider two fair dice.
Example 2

Now consider two fair dice. \(\Omega = \{(i, j) : 1 \leq i, j \leq 6\} \), \(N = |\Omega| = 6 \times 6 = 36 \)

<table>
<thead>
<tr>
<th>Die 1</th>
<th>Die 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)</td>
</tr>
<tr>
<td>3</td>
<td>(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)</td>
</tr>
<tr>
<td>4</td>
<td>(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)</td>
</tr>
<tr>
<td>5</td>
<td>(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)</td>
</tr>
<tr>
<td>6</td>
<td>(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)</td>
</tr>
</tbody>
</table>

- What's the probability that one die is 4 and the other is 1?
 \(A = \{(4,1), (1,4)\} \), \(\mathbb{P}(A) = 2/N = 2/36 = 1/18 \)
- What's the probability that the sum of two dice is more than 9?
 \(B = \{(4,6), (5,5), (5,6), (6,4), (6,5), (6,6)\} \)
 \(\mathbb{P}(B) = 6/N = 6/36 = 1/6 \)
Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
 - Chapter 2.1 and 2.2
- "OpenIntro statistics" (4th edition, free online, download [here]):
 - Chapter 3.1.1-3.1.4
Many thanks to
- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years