Lecture 3: Probability Basics (I)

Ye Tian

Department of Statistics, Columbia University Calculus-based Introduction to Statistics (S1201)

July 7, 2022

Review: data visualization tools

- Continuous (numerical) data:
 - $\triangleright~$ Stem-and-leaf plot
 - \triangleright Dot plot
 - Histogram
 - ▷ Box plot
- Categorical (discrete) data:
 - ▷ Bar chart
 - ▷ Pie chart (be careful when using it)

Review: shape of data distribution

• Modality:

- ⊳ Unimodal
- ⊳ Bimodal
- Multimodal
- Almost uniform (no obvious peaks)
- Skewness:
 - Left-skewed
 - Right-skewed
 - ▷ Symmetric

Review: shape of data distribution

modality

Today's goal

- Understand important concepts that are relative to probability: a random experiment, the sample space, outcomes, events and their relationship
- Know the definition and interpretation of probability and three probability axioms
- Know how to calculate probability in the experiment with equal likely outcomes

Warning: We will see more MATH from today. Be prepared!

Concepts before We Define Probability

Experiments and outcomes

- A (random) experiment is any action or process whose outcome is uncertain. E.g. rolling a die
- An **outcome** is the result of a random experiment. E.g. the die lands with face 4 up
- The sample space of an experiment, denoted by Ω , is the set of all possible outcomes of that experiment. E.g.: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- An event is a set (collection) of outcomes. E.g. consider event $A = \{1\}$, event $B = \{3, 5, 6\}$

Exercise: What is the sample space of rolling two dice?

Consider events A and B:

- $\circ~$ Set difference A-B or $A\backslash B$: outcomes that are in A but not in B
- The **complement** of A: denoted as A^c , which is ΩA

A

 $A_c = \nabla - V$

Consider events A and B:

- The union of A and B: denoted as $A \cup B$, which is the event consisting of all outcomes that are in either A or B
- The **intersection** of A and B: denoted as $A \cap B$, which is the event consisting of all outcomes that are in **both** A and B.

Consider events A and B:

- $\circ~$ Let \emptyset denote the **empty set**, which contains no outcomes
- When $A \cap B = \emptyset$, A and B are said to be **mutually exclusive** or **disjoint** events

Example: Consider rolling a die. Events $A = \{1, 4, 5\}$, $B = \{1, 3, 5, 6\}$

$$\circ A \cup B = ?, A - B = ?, A \cap B = ?$$

- $A^c =?, B^c =?$
- $\circ \ A^c \cap B = ?$
- \circ Are A and B mutually exclusive?

Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C:

- The union of A, B and C: denoted as $A \cup B \cup C$, which is the event consisting of all outcomes that are in either A or B or C
- The intersection of A, B and C: denoted as $A \cap B \cap C$, which is the event consisting of all outcomes that are in all A, B and C.

AUBUC

ANBAC

Event (set) operations from set theory: ≥ 3 events

Definitions of union, intersection and mutually exclusive events can be extended to the case of multiple events. Consider events A, B and C:

• When no two events of A, B and C have any outcomes in common (i.e. $A \cap B = A \cap C = B \cap C = \emptyset$), they are said to be **mutually exclusive** events (or (pairwisely) disjoint)

Event (set) operations from set theory: ≥ 3 events

Example: Consider rolling a die. Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$. Events $A = \{1, 4, 5\}$, $B = \{1, 3, 5, 6\}$, $C = \{2\}$.

- $\circ \ A \cup B \cup C = ?$
- $\circ \ (B^c \cap A) \cup C = ?$
- $\circ \ (A \cup B)^c \cap C = ?$
- $\circ~$ Are A and C mutually exclusive? What about A,~B and C?

Event (set) operation properties

- $\circ\,$ When calculating union, intersection and complement involved with $\geq 3\,$ events (sets), these properties may be helpful:
 - $\triangleright \text{ Commutative property: } A \cup B = B \cup A, \ A \cap B = B \cap A$
 - $\triangleright \text{ Associative property: } (A \cup B) \cup C = A \cup (B \cup C)$
 - Distributive property:

$$\diamond \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$\diamond \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

▷ de Morgan rule:

$$\circ (A_1 \cup \ldots \cup A_n)^c = A_1^c \cap \ldots \cap A_n^c \circ (A_1 \cap \ldots \cap A_n)^c = A_1^c \cup \ldots \cup A_n^c$$

Venn diagrams

A pictorial representation of events and manipulations with events is obtained by using **Venn diagrams**.

Probability, Axioms and Interpretations

Probability

Given an experiment and a sample space Ω , we would like to know the likelihood that an event can occur, which is defined as **probability**.

- The objective of probability is to assign to each event A a number $\mathbb{P}(A)$, called the probability of the event AFrom this perspective: $\mathbb{P}(\cdot) : A \in a$ set of all events $\rightarrow a$ number $\mathbb{P}(A)$ (a mapping/function which maps an event to a number)
- According to your intuition/common sense, if we roll a fair die, what's the probability of getting 2 face up (i.e. $\mathbb{P}(\{2\}))$? Can it be 1/5?
- Given an experiment, the probability is a **determined** function. It is an intrinsic function related to the random experiment and it cannot be arbitrary!

Axioms of probability

Given any experiment and a sample space Ω :

$$\circ$$
 0 ≤ P(A) ≤ 1 for any event A ⊆ Ω
 \circ P(Ω) = 1, P(Ø) = 0

 \circ If A_1 , A_2 , A_3 , ..., A_n are disjoint (mutually exclusive) events, then

$$\mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i).$$

Here n can be $+\infty$ (an infinite collection).

Any probability **must** satisfy three axioms above. Do you think these axioms make sense? Can you explain why?

Interpretations of probability

Now we are tossing a fair coin and denote event A as "the heads face up". We know $\mathbb{P}(A)=0.5.$

Now we repeat this game for n times and denote n(A) as the number of replications on which A occurs. We call n(A)/n as **relative frequency**.

The relative frequency of an event will converge to its probability when $n \to +\infty!$ In other words, the probability of an event can be seen as its **long-run relative frequency**.

Probability Calculation

Properties of probability (I)

Suppose A, B and C are some events.

$$\circ \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

$$\circ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B)$$

$$\circ \mathbb{P}(A \cup B \cup C) =$$

$$\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

$$\mathbb{P}(A \cap B \cap C) =$$

$$\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cup B) - \mathbb{P}(A \cup C) - \mathbb{P}(B \cup C) + \mathbb{P}(A \cup B \cup C)$$

Proof:

• A and A^c are mutually exclusive; $A \cup A^c = \Omega$; Then by Axioms 2 and 3 • Venn diagram:

Properties of probability (II)

Suppose A and B are some events.

- $\circ~$ If $A~{\rm and}~B~{\rm are}$ mutually exclusive, then $\mathbb{P}(A\cap B)=0$
- $\circ \ \text{ If } A \subseteq B \text{, then } \mathbb{P}(A) \leq \mathbb{P}(B)$

Proof:

- $A \cap B = \emptyset$; Then by Axiom 2
- $B = (A \cap B) \cup (A^c \cap B) = A \cup (A^c \cap B)$; A and $A^c \cap B$ are mutually exclusive; Then by Axiom 3. (Why does "=" hold?)

Exercise

Suppose A and B are some events, and $\mathbb{P}(A) = 0.2$, $\mathbb{P}(B) = 0.9$.

- $\circ~$ Is it possible for A and B to be mutually exclusive?
- $\circ~$ Give the range for all possible values of $\mathbb{P}(A\cup B)$ and $\mathbb{P}(A\cap B)$
- Can you illustrate the most "extreme" scenarios (when $\mathbb{P}(A \cup B)$ and $\mathbb{P}(A \cap B)$ achieve maximum or minimum) by Venn diagram?

Proof:

- $\circ~$ No. If that's true, then $1\geq \mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)=1.1!$
- $B \subseteq A \cup B$, therefore $0.9 = \mathbb{P}(B) \leq \mathbb{P}(A \cup B) \leq 1$. Hence $\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) = 1.1 - \mathbb{P}(A \cup B) \in [0.1, 0.2]$ Check: give examples corresponding to the endpoints to verify that these numbers are indeed achievable.

Equally likely outcomes

In many experiments consisting of N outcomes, it is reasonable to assign equal probabilities to all N simple events. **Example**:

- tossing a fair coin ($\Omega = \{H, T\}, N = 2$) or fair die ($\Omega = \{1, 2, \dots, 6\}, N = 6$)
- \circ selecting one or several cards from a well-shuffled deck of 52 (N=52)

Denote event $A_i = \{i \text{-th outcome}\}$, since A_1, \ldots, A_N are mutually exclusive, $1 = \mathbb{P}(\Omega) = \mathbb{P}(\cup_{i=1}^N A_i) = \sum_{i=1}^N \mathbb{P}(A_i)$, implying that $\mathbb{P}(A_i) = 1/N$ for $i = 1, \ldots, N$

Consequence: Denote the number of outcomes that event A contains as $\overline{N(A)}$. Then for any event A,

$$\mathbb{P}(A) = \frac{N(A)}{N}.$$

Equally likely outcomes

<u>Theorem</u>: In an experiment consisting of N outcomes with equal probability, denote the number of outcomes that event A contains as N(A). Then for any event A,

$$\mathbb{P}(A) = \frac{N(A)}{N}.$$

Remark:

• This result can only be used in the experiment where each outcome has **equal** probability

Counter-example: Tossing an unfair coin/die, spinning the wheel on the right

 $\circ\,$ For such experiments, calculating probability = counting the number of outcomes included in the event!

Example 1

We are rolling a fair die $\begin{tabular}{ll} \bullet \end{tabular}$. $\Omega = \{1, \dots, 6\}.$

- $\circ~$ What's the probability that we get 2 face up? $\mathbb{P}(\{2\})=1/N=1/6$
- $\circ~$ What's the probability that we get $2~{\rm or}~5$ face up? $\mathbb{P}(\{2,5\})=2/N=2/6=1/3$

Now consider two fair dice

Example 2

Now consider two fair dice \frown \frown $\Omega = \{(i, j) : 1 \le i, j \le 6\}, N = |\Omega| = 6 \times 6 = 36$

	>	<u> </u>	2	ک	4	5	6
Die	1	(1儿)	$(\underline{1}, \underline{2})$	(1,3)	(1,4)	(1,5)	(1,6)
1	2	(2,1)	(2,2)	(2,3)	(),4)	(2,5)	(2,6)
	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
	4	(4,五)	(4.2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(2,2)	(2'3)	(5,4)	(5,5)	(5,6)
	6	(b, <u>1</u>)	(6,2)	(6,3)	(6.4)	(6.5)) (b_b)

Die	2
-----	---

- What's the probability that one die is 4 and the other is 1? $A = \{(4,1), (1,4)\}, \mathbb{P}(A) = 2/N = 2/36 = 1/18$
- What's the probability that the sum of two dice is more than 9? $B = \{(4,6), (5,5), (5,6), (6,4), (6,5), (6,6)\}$ $\mathbb{P}(B) = 6/N = 6/36 = 1/6$

Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
 - \triangleright Chapter 2.1 and 2.2
- "OpenIntro statistics" (4th edition, free online, download [here]):
 - ▷ Chapter 3.1.1-3.1.4

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years