Lecture 5: Conditional Probability

Ye Tian
Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 12, 2022
Qย COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Recap: product rule and permutations

Product rule: If there are k steps to finish a task, and:

- There are n_{1} ways to do the first step
- Given any choice in the first step, there are n_{2} ways to do the second step
- Given any choices in the first $(k-1)$ steps, there are n_{k} ways to do the k-th step
Then finally there are $n_{1} n_{2} \cdots n_{k}$ ways to finish this task.

Permutations: Any ordered sequence of k objects taken from a set of n distinct objects is called a permutation. The total number of permutations equals

$$
P_{k, n}=n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

Recap: combinations

Any of k objects (unordered) taken from a set of n distinct objects is called a combination. The number of combinations obtained when selecting k objects from n distinct objects to form a group is given by

$$
\binom{n}{k}=\frac{P_{k, n}}{k!}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \ldots(n-k+1)}{k(k-1) \ldots 1} .
$$

Recap: permutation problem or combination problem?

(1) Choose 5 people from 100 to do a job
(2) Choose the winner of the first prize and second prize from 20 people
(3) Choose two winners of the first prize from 20 people
(4) Draw 4 cards from a 52 -card deck (the order doesn't matter)
(5) Draw 4 cards from a 52 -card deck (the order matters)
(6) Figure out a way to put 5 people in a line to get the vaccine

Recap: probability calculation

Theorem: In an experiment consisting of N outcomes with equal probability, denote the number of outcomes that event A contains as $N(A)$. Then for any event A,

$$
\mathbb{P}(A)=\frac{N(A)}{N}
$$

Counting techniques help us to calculate $N(A)$ and N.

Today's goal

- Understand conditional probabilities
- Know the multiplication rule and rule of total probability
- Understand Bayes Theorem and its statistical meanings
- Use all techniques we learn to calculate the probability

Conditional Probability

Conditional probability

- We have learned that given the experiment and the sample space Ω, for an event $A, \mathbb{P}(A)$ represents the probability that A occurs, where $\mathbb{P}(\cdot)$ is a function mapping any event $A \in \Omega$ to a number between 0 and 1 .
- Here we want to discuss how the information "an event B has occurred" affects the probability assigned to A
- Many events are actually related and the event that has happened can provide information about the event that hasn't occurred yet.

Examples:

- Two Columbia students, Claire and Jack, are sampled to do a Covid test.
\triangleright Claire feels good while Jack had a fever last night.
\triangleright Who is more likely to test positive?
- I randomly sample a person on the street in NYC and ask whether he/she knows me or not.
\triangleright Will the probability that this guy knows me be very high?
\triangleright What if I know this guy is a Columbia statistics Ph.D student?

Conditional probability

Definition: Conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Remark:

- It represents the probability that A occurs given that B has occurred
- We require $\mathbb{P}(B)>0$ to make it useful
- Fixing an event B, we can see $\mathbb{P}(\cdot \mid B)$ as a probability function, which satisfies all properties of probability we described before. For example:
$\triangleright 0 \leq \mathbb{P}(A \mid B) \leq 1$ for any event $A, \mathbb{P}(\emptyset \mid B)=0, \mathbb{P}(\Omega \mid B)=1$
$\triangleright \mathbb{P}(A \cup C \mid B)=\mathbb{P}(A \mid B)+\mathbb{P}(C \mid B)-\mathbb{P}(A \cap C \mid B)$ for any A and C
$\triangleright \mathbb{P}\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i} \mid B\right)$ if A_{1}, \ldots, A_{n} are mutually exclusive
$\triangleright \mathbb{P}(\cdot \mid B)$ is a function mapping any event $A \in \Omega$ to a number between 0 and 1 .
- Ω is the sample space when we study $\mathbb{P}(A)$, and $\Omega \cap B=B$ can be seen as the new sample space when we study $\mathbb{P}(A \mid B)$!

Example

Conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Example: Suppose that of all individuals buying a certain digital camera:

- 60\% include an optional memory card in their purchase
- 40% include an extra battery
- 30% include both a card and battery.

Consider randomly selecting a buyer, what's the probability that the buyer purchased the memory card given that he/she purchased the battery?

Solution: Let $A=\{$ memory card purchased $\}$ and $B=\{$ battery purchased $\}$. We want to know $\mathbb{P}(A \mid B)$.
Therefore, $\mathbb{P}(A)=0.6, \mathbb{P}(B)=0.4$ and $\mathbb{P}(A \cap B)=0.3$. Hence,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{0.3}{0.4}=0.75
$$

More examples

A news magazine publishes three columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Reading habits of a randomly selected reader with respect to these columns are

Read regularly	A	B	C	$A \cap B$	$A \cap C$	$B \cap C$	$A \cap B \cap C$
Probability	.14	.23	.37	.08	.09	.13	.05

What's the probability that the selected individual regularly reads the Art column given that he or she regularly reads at least one of the other two columns?

Solution:

$\mathbb{P}(A \mid B \cup C)=\frac{\mathbb{P}(A \cap(B \cup C))}{\mathbb{P}(B \cup C)}=\frac{0.04+0.03+0.05}{0.2+0.04+0.08+0.05+0.03+0.07}=0.255$.

The multiplication rule

Multiplication rule:

- $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B \mid A)$
- $\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid A \cap B)$
- $\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)=$
$\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots \mathbb{P}\left(A_{n} \mid A_{1} \cap A_{2} \cap \ldots \ldots A_{n-1}\right)$.

Remark:

- This is very useful when calculating the probability of intersection of events
- Intuition: process information "step by step"

Example

A box contains 10 tickets. Three of them are winning tickets. Pick three at random without replacement.

- What is the chance that the first three randomly picked tickets are the winning ones?
- What is the chance that the second ticket is a winning one?
- Solution 1: Let A and B be the event of interest in two subproblems.
\triangleright View it as an unordered problem: Sample space $\Omega=\{$ all ways to draw 3 from 10 tickets $\}$. We draw 3 tickets at the same time and the order doesn't matter.

$$
\begin{aligned}
& N=N(\Omega)=\binom{10}{3}=120 \\
& N(A)=\binom{3}{3}=1 . \text { Hence, } \mathbb{P}(A)=\frac{N(A)}{N}=1 / 120
\end{aligned}
$$

\triangleright View it as an ordered problem: Sample space $\Omega=\{$ all ways to draw 3 from 10 tickets in 3 steps $\}$. In each of three steps, we draw one ticket.
By product rule: $N=N(\Omega)=10 \times 9 \times 8=720$
$N(A)=3 \times 2 \times 1=6$. Hence, $\mathbb{P}(A)=\frac{N(A)}{N}=1 / 120$.

Example

A box contains 10 tickets. Three of them are winning tickets. Pick three at random without replacement.

- What is the chance that the first three randomly picked tickets are the winning ones?
- What is the chance that the second ticket is a winning one?
- Solution 2: Let W_{i} be the event that the i-th draw is a winning ticket.

$$
\begin{aligned}
\mathbb{P}\left(W_{1} \cap W_{2} \cap W_{3}\right) & =\mathbb{P}\left(W_{1}\right) \mathbb{P}\left(W_{2} \mid W_{1}\right) \mathbb{P}\left(W_{3} \mid W_{1} \cap W_{2}\right) \\
& =\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \\
& =\frac{1}{120}
\end{aligned}
$$

Think about how we obtain the values of $\mathbb{P}\left(W_{1}\right), \mathbb{P}\left(W_{2} \mid W_{1}\right)$, $\mathbb{P}\left(W_{3} \mid W_{1} \cap W_{2}\right)$.

Example

A box contains 10 tickets. Three of them are winning tickets. Pick three at random without replacement.

- What is the chance that the first three randomly picked tickets are the winning ones?
- What is the chance that the second ticket is a winning one?
- Solution 1: We have to view it as an ordered problem. Denote the event as B. Sample space
$\Omega=\{$ all possible ways to select 3 from 10 tickets in 3 steps $\}$. In each of three steps, we draw one ticket.
By product rule: $N=N(\Omega)=10 \times 9 \times 8=720$
Event B contains all outcomes in the form " $X W X$ ", where X can be any tickets while W is the winning one.

Example

A box contains 10 tickets. Three of them are winning tickets. Pick three at random without replacement.

- What is the chance that the first three randomly picked tickets are the winning ones?
- What is the chance that the second ticket is a winning one?
- Solution 2: Let W_{i} be the event that the i-th draw is a winning ticket.

$$
\begin{aligned}
\mathbb{P}\left(W_{2}\right) & =\mathbb{P}\left(W_{1} \cap W_{2}\right)+\mathbb{P}\left(W_{1}^{c} \cap W_{2}\right) \\
& =\mathbb{P}\left(W_{1}\right) \mathbb{P}\left(W_{2} \mid W_{1}\right)+\mathbb{P}\left(W_{1}^{c}\right) \mathbb{P}\left(W_{2} \mid W_{1}^{c}\right) \\
& =\frac{3}{10} \times \frac{2}{9}+\frac{7}{10} \times \frac{3}{9} \\
& =\frac{3}{10}
\end{aligned}
$$

Think about how we obtain the values of $\mathbb{P}\left(W_{1}\right), \mathbb{P}\left(W_{2} \mid W_{1}\right)$, $\mathbb{P}\left(W_{2} \mid W_{1}^{c}\right)$.

Rule of total probability

Rule of total probability: If $\Omega=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ and A_{1}, \ldots, A_{k} are mutually exclusive (such A_{1}, \ldots, A_{k} are called a partition of the sample space), then for any event B,

$$
\mathbb{P}(B)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B \mid A_{1}\right)+\mathbb{P}\left(A_{2}\right) \mathbb{P}\left(B \mid A_{2}\right)+\ldots+\mathbb{P}\left(A_{k}\right) \mathbb{P}\left(B \mid A_{k}\right)
$$

Proof: $B=\cup_{i=1}^{k}\left(A_{k} \cap B\right)$ where these $A_{k} \cap B$ are mutually exclusive (why?). Then $\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(A_{k} \cap B\right)=\sum_{i=1}^{k} \mathbb{P}\left(A_{k}\right) \mathbb{P}\left(B \mid A_{k}\right)$.

Remark: Sometimes the conditional probability $\mathbb{P}\left(B \mid A_{k}\right)$ is much straightforward to calculate than $\mathbb{P}(B)$. Then the rule of total probability can be useful.

Example

An individual has 3 different email accounts.

- 70\% of her messages come into account \#1
- 20\% come into account \#2
- the remaining 10% into account \#3

Of the messages into account $\# 1$, only 1% are spam, whereas the corresponding percentages for accounts \#2 and \#3 are 2% and 5\%, respectively. What is the probability that a randomly selected message is spam?

Solution: First we translate the problem by math language. Denote $A_{i}=\{$ message is from account $\# i\}, i=1,2,3, B=\{$ message is spam $\}$. The problem implies that

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right)=0.7, \quad \mathbb{P}\left(A_{2}\right)=0.2, \quad \mathbb{P}\left(A_{3}\right)=0.1 \\
\mathbb{P}\left(B \mid A_{1}\right)=0.01, \quad \mathbb{P}\left(B \mid A_{2}\right)=0.02, \quad \mathbb{P}\left(B \mid A_{3}\right)=0.05
\end{aligned}
$$

Finally by rule of total probability, $\mathbb{P}(B)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B \mid A_{1}\right)+\mathbb{P}\left(A_{2}\right) \mathbb{P}\left(B \mid A_{2}\right)+\mathbb{P}\left(A_{3}\right) \mathbb{P}\left(B \mid A_{3}\right)=0.016$.

Bayes' Theorem

Bayes' Theorem: If A_{1}, \ldots, A_{k} are a partition of sample space Ω, then for any event B,

$$
\mathbb{P}\left(A_{j} \mid B\right)=\frac{\mathbb{P}\left(A_{j} \cap B\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}, \quad j=1, \ldots, k
$$

Remark:

- Proof: by rule of total probability
- In many cases, B is the "consequence" while A_{1}, \ldots, A_{k} are different "conditions" or "causes" of B. We may know each $\mathbb{P}\left(B \mid A_{i}\right)$ (given cause A_{i}, the probability that consequence B happens), and would like to infer "the probability that the consequence B is caused by A_{j} ", i.e. the probability that A_{j} occurs given that B has occurred (which is $\left.\mathbb{P}\left(A_{j} \mid B\right)\right)$.

Example (revisited)

An individual has 3 different email accounts.

- 70% of her messages come into account \#1
- 20\% come into account \#2
- the remaining 10% into account \#3

Of the messages into account $\# 1$, only 1% are spam, whereas the corresponding percentages for accounts \#2 and \#3 are 2% and 5%, respectively. We randomly select a spam message. What's the probability that it is from account \#2?

Solution: Denote $A_{i}=\{$ message is from account $\# i\}, i=1,2,3$, $B=\{$ message is spam $\}$. The problem implies that

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right)=0.7, \quad \mathbb{P}\left(A_{2}\right)=0.2, \quad \mathbb{P}\left(A_{3}\right)=0.1 \\
\mathbb{P}\left(B \mid A_{1}\right)=0.01, \quad \mathbb{P}\left(B \mid A_{2}\right)=0.02, \quad \mathbb{P}\left(B \mid A_{3}\right)=0.05
\end{aligned}
$$

Then $\mathbb{P}\left(A_{2} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{2}\right) \mathbb{P}\left(A_{2}\right)}{\mathbb{P}(B)}=\frac{0.02 \times 0.2}{0.016}=0.25$.

Example (revisited)

Denote $A_{i}=\{$ message is from account $\# i\}, i=1,2,3$, $B=\{$ message is spam $\}$. The problem implies that

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right)=0.7, \quad \mathbb{P}\left(A_{2}\right)=0.2, \quad \mathbb{P}\left(A_{3}\right)=0.1 \\
\mathbb{P}\left(B \mid A_{1}\right)=0.01, \quad \mathbb{P}\left(B \mid A_{2}\right)=0.02, \quad \mathbb{P}\left(B \mid A_{3}\right)=0.05
\end{aligned}
$$

Then $\mathbb{P}\left(A_{2} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{2}\right) \mathbb{P}\left(A_{2}\right)}{\mathbb{P}(B)}=\frac{0.02 \times 0.2}{0.016}=0.25$.

More examples

Lab tests produce positive and negative results. Assume that for a lab test, 95% of patients with disease obtain positive results and only 2% of patients without disease obtain positive results. Assume that 1% of the population has the disease.

- Pick one person at random. What is the chance that lab test will be positive?
- Pick one person at random. The lab test shows positive result. What is the chance that the person really has the disease?
- What is the probability that, given that the lab test shows a negative result, the person does not have the disease?

Solution: First we translate the problem by math language. Denote $A=\{$ test positive $\}, D=\{$ have the disease $\}$.Then

$$
\mathbb{P}(A \mid D)=0.95, \quad \mathbb{P}\left(A \mid D^{c}\right)=0.02, \quad \mathbb{P}(D)=0.01
$$

- $\mathbb{P}(A)=\mathbb{P}(D) \mathbb{P}(A \mid D)+\mathbb{P}\left(D^{c}\right) \mathbb{P}\left(A \mid D^{c}\right)=0.01 \times 0.95+0.99 \times 0.02=$ 2.93%

More examples

Lab tests produce positive and negative results. Assume that for a lab test, 95% of patients with disease obtain positive results and only 2% of patients without disease obtain positive results. Assume that 1% of the population has the disease.

- Pick one person at random. What is the chance that lab test will be positive?
- Pick one person at random. The lab test shows positive result. What is the chance that the person really has the disease?
- What is the probability that, given that the lab test shows a negative result, the person does not have the disease?

Solution: First we translate the problem by math language. Denote $A=\{$ test positive $\}, D=\{$ have the disease $\}$. Then

$$
\mathbb{P}(A \mid D)=0.95, \quad \mathbb{P}\left(A \mid D^{c}\right)=0.02, \quad \mathbb{P}(D)=0.01
$$

- $\mathbb{P}(D \mid A)=\frac{\mathbb{P}(D \cap A)}{\mathbb{P}(A)}=\frac{\mathbb{P}(A \mid D) \mathbb{P}(D)}{\mathbb{P}(A)}=\frac{0.95 \times 0.01}{2.93 \%}=32.4 \%$

More examples

Lab tests produce positive and negative results. Assume that for a lab test, 95% of patients with disease obtain positive results and only 2% of patients without disease obtain positive results. Assume that 1% of the population has the disease.

- Pick one person at random. What is the chance that lab test will be positive?
- Pick one person at random. The lab test shows positive result. What is the chance that the person really has the disease?
- What is the probability that, given that the lab test shows a negative result, the person does not have the disease?

Solution: First we translate the problem by math language. Denote $A=\{$ test positive $\}, D=\{$ have the disease $\}$. Then

$$
\mathbb{P}(A \mid D)=0.95, \quad \mathbb{P}\left(A \mid D^{c}\right)=0.02, \quad \mathbb{P}(D)=0.01
$$

$\circ \mathbb{P}\left(D^{c} \mid A^{c}\right)=\frac{\mathbb{P}\left(D^{c} \cap A^{c}\right)}{\mathbb{P}\left(A^{c}\right)}=\frac{\mathbb{P}\left(A^{c} \mid D^{c}\right) \mathbb{P}\left(D^{c}\right)}{\mathbb{P}\left(A^{c}\right)}=\frac{\left[1-\mathbb{P}\left(A \mid D^{c}\right)\right] \mathbb{P}\left(D^{c}\right)}{1-\mathbb{P}(A)}=99.95 \%$

More examples: coffee purchase

The accompanying table gives information on the type of coffee selected by someone purchasing a single cup at a particular airport kiosk.

Consider randomly selecting such a coffee purchaser.

- What is the probability that the individual purchased a small cup? A cup of decaf coffee?

We can see that $S=(S \cap R) \cup(S \cap D)$ which are mutually exclusive, thus $\mathbb{P}(S)=\mathbb{P}(S \cap R)+\mathbb{P}(S \cap D)=14 \%+20 \%=34 \%$.
Similarly, $D=(D \cap S) \cup(D \cap M) \cup(D \cap L)$, thus
$\mathbb{P}(D)=\mathbb{P}(D \cap S)+\mathbb{P}(D \cap M)+\mathbb{P}(D \cap L)=20 \%+10 \%+10 \%=40 \%$

More examples: coffee purchase

The accompanying table gives information on the type of coffee selected by someone purchasing a single cup at a particular airport kiosk.

	Small	Medium	Large
Regular	14%	20%	26%
Decaf	20%	10%	10%

Consider randomly selecting such a coffee purchaser.

- If we learn that the selected individual purchased a small cup, what now is the probability that he/she chose decaf coffee?
$\mathbb{P}(D \mid S)=\frac{\mathbb{P}(D \cap S)}{\mathbb{P}(S)}=\frac{20 \%}{34 \%}=58.8 \%$

More examples: coffee purchase

The accompanying table gives information on the type of coffee selected by someone purchasing a single cup at a particular airport kiosk.

	Small	Medium	Large
Regular	14%	20%	26%
Decaf	20%	10%	10%

Consider randomly selecting such a coffee purchaser.

- If we learn that the selected individual purchased decaf, what now is the probability that a small size was selected?
$\mathbb{P}(S \mid D)=\frac{\mathbb{P}(S \cap D)}{\mathbb{P}(D)}=\frac{20 \%}{40 \%}=50 \%$

More examples: accident rate and seatbelt wearing

A recent Maryland highway safety study found that in 77% of all accidents the driver was wearing a seatbelt. Accident reports indicated that 92% of those drivers escaped serious injury (hospitalization or death), but only 63% of the nonbelted drivers were so fortunate.
What's the probability that a driver who was seriously injured wasn't wearing a seatbelt?

Denote $B=\{$ the driver was wearing a seatbelt $\}$ and $I=\{$ serious injury or death $\}$. Then

$$
\mathbb{P}(B)=0.77, \quad \mathbb{P}(I \mid B)=1-0.92=0.08, \quad \mathbb{P}\left(I \mid B^{c}\right)=1-0.63=0.37
$$

Thus
$\mathbb{P}\left(B^{c} \mid I\right)=\frac{\mathbb{P}\left(I \cap B^{c}\right)}{\mathbb{P}(I)}=\frac{\mathbb{P}\left(I \mid B^{c}\right) \mathbb{P}\left(B^{c}\right)}{\mathbb{P}\left(I \mid B^{c}\right) \mathbb{P}\left(B^{c}\right)+\mathbb{P}(I \mid B) \mathbb{P}(B)}=\frac{0.37 \times 0.23}{0.37 \times 0.23+0.08 \times 0.77}=0.580$

The last example: Monty Hall problem

You're given the choice of three doors: Behind one door is an iPhone 13; behind the others, goats.
You pick a door, say No.1, and the host, who knows what's behind the doors, opens another door, say No.3, which has a goat. He then says to you, "Do you want to pick door No. 2?"

Question: Would you switch your choice?

We have to make an assumption about the host: If the iPhone is behind the door we pick, then the host randomly picks one door from the remaining two to open.

Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
- Chapter 2.4
- "OpenIntro statistics" (4th edition, free online, download [here]):
\triangleright Chapter 3.2 (skip Chapter 3.2.6 for now)

Many thanks to

- Chengliang Tang
- Joyce Robbins
- Yang Feng
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

