Lecture 6: Independence and Probability Calculation

Ye Tian
Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 13, 2022
COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Recap: conditional probability

Definition: Conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Multiplication rule:

- $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B \mid A)$
- $\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid A \cap B)$

Rule of total probability: If $\Omega=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ and A_{1}, \ldots, A_{k} are mutually exclusive (such A_{1}, \ldots, A_{k} are called a partition of the sample space), then for any event B,

$$
\mathbb{P}(B)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B \mid A_{1}\right)+\mathbb{P}\left(A_{2}\right) \mathbb{P}\left(B \mid A_{2}\right)+\ldots+\mathbb{P}\left(A_{k}\right) \mathbb{P}\left(B \mid A_{k}\right)
$$

Recap: Bayes' Theorem

Bayes' Theorem: If A_{1}, \ldots, A_{k} are a partition of sample space Ω, then for any event B,

$$
\mathbb{P}\left(A_{j} \mid B\right)=\frac{\mathbb{P}\left(A_{j} \cap B\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}, \quad j=1, \ldots, k
$$

Tree diagram:

Last lecture: Monty Hall problem

You're given the choice of three doors: Behind one door is an iPhone 13; behind the others, goats.
You randomly pick a door, say No.1, and the host, who knows what's behind the doors, opens another door, say No.3, which has a goat. He then says to you, "Do you want to pick door No.2?"

Question: Would you switch your choice?

Underlying assumptions:

- If the iPhone is behind the door we pick, then the host randomly picks one door from the remaining two to open.
- Otherwise, the host opens the door of goat.

Last lecture: Monty Hall problem

Solution (by Bayes Theorem):

- $\mathbb{P}(\mathrm{iPhone}$ is behind door $i)=1 / 3, i=1,2,3$

Then
$\mathbb{P}($ win iPhone by staying with \#1)
$=\mathbb{P}($ iPhone behind $\# 1 \mid$ host opens $\# 3$ and see a goat $)$
$=\frac{\mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \text { iPhone behind } \# 1) \mathbb{P}(\mathrm{iPhone} \text { behind } \# 1)}{\sum_{i=1}^{3} \mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# i) \mathbb{P}(\mathrm{iPhone} \text { behind } \# i)}$
$=\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+1 \times \frac{1}{3}+0 \times \frac{1}{3}}$
$=\frac{1}{3}$.

Last lecture: Monty Hall problem

Solution (by Bayes Theorem):

- $\mathbb{P}(\mathrm{iPhone}$ is behind door $i)=1 / 3, i=1,2,3$

Then
\mathbb{P} (win iPhone after switching to \#2)
$=\mathbb{P}(\mathrm{iPhone}$ behind $\# 2 \mid$ host opens $\# 3$ and see a goat $)$
$=\frac{\mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# 2) \mathbb{P}(\mathrm{iPhone} \text { behind } \# 2)}{\sum_{i=1}^{3} \mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# i) \mathbb{P}(\mathrm{iPhone} \text { behind } \# i)}$
$=\frac{1 \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+1 \times \frac{1}{3}+0 \times \frac{1}{3}}$
$=\frac{2}{3}>\frac{1}{3} \Longrightarrow$ We should switch $!$

Last lecture: Monty Hall problem (modified)

You randomly pick a door, say No.1, and the host, who doesn't know what's behind the doors, randomly opens another door among the remaining two, say No.3, which has a goat. He then says to you, "Do you want to pick door No.2?"

Question: Would you switch your choice?

Underlying assumptions:

- No matter which one you originally pick, the host always randomly picks one door from the remaining two to open.

Last lecture: Monty Hall problem (modified)

Solution (by Bayes Theorem):

- $\mathbb{P}(\mathrm{iPhone}$ is behind door $i)=1 / 3, i=1,2,3$

Then
\mathbb{P} (win iPhone by staying with $\# 1$)
$=\mathbb{P}($ iPhone behind $\# 1 \mid$ host opens $\# 3$ and see a goat $)$
$=\frac{\mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# 1) \mathbb{P}(\mathrm{iPhone} \text { behind } \# 1)}{\sum_{i=1}^{3} \mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# i) \mathbb{P}(\mathrm{iPhone} \text { behind } \# i)}$
$=\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{3}+0 \times \frac{1}{3}}$
$=\frac{1}{2}$.

Last lecture: Monty Hall problem (modified)

Solution (by Bayes Theorem):

- $\mathbb{P}(\mathrm{iPhone}$ is behind door $i)=1 / 3, i=1,2,3$

Then
\mathbb{P} (win iPhone after switching to \#2)
$=\mathbb{P}(\mathrm{iPhone}$ behind $\# 2$ and see a goat|host opens \#3)
$=\frac{\mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# 2) \mathbb{P}(\mathrm{iPhone} \text { behind } \# 2)}{\sum_{i=1}^{3} \mathbb{P}(\text { host opens } \# 3 \text { and see a goat } \mid \mathrm{iPhone} \text { behind } \# i) \mathbb{P}(\mathrm{iPhone} \text { behind } \# i)}$
$=\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{3}+0 \times \frac{1}{3}}$
$=\frac{1}{2} \quad \Longrightarrow$ It doesn't matter!!

Reflection on Monty Hall problem

- Why is the answer so different?
- A more intuitive explanation of the original Monty Hall problem:

Behind door 1	Behind door 2	Behind door 3	Result if staying at door \#1	Result if switching to the door offered
Goat	Goat	iPhone	Wins goat	Wins iPhone
Goat	iPhone	Goat	Wins goat	Wins iPhone
iPhone	Goat	Goat	Wins iPhone	Wins goat

The host always helps us kick out a wrong choice in the remaining two!

- But in the modified version, the host selects the door randomly, which doesn't benefit switching.

Today's goal

- Understand the definition of independence of events
- Know how to decide whether events are independent or not
- Comprehensively use all properties of probability we mentioned before to calculate relative problems

Independence

Intuition

In previous examples, often $\mathbb{P}(A \mid B) \neq \mathbb{P}(A)$, which means the information " B has occurred" resulted in a change in the likelihood of A occurring.

But sometimes, $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, which means the chance that A will occur or has occurred is not affected by knowledge that B has occurred.

Example: A box contains 4 red tickets and 6 white tickets. Pick a ticket at random from the box.

- What is the chance of getting a winning ticket?(5/10)
- If you see that it is a white one, what is the chance of getting a winning ticket?(3/6)

Independence between two events

Definition: Two events A and B are independent if $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, denoted as $A \Perp B$. They are dependent otherwise, denoted as $A \not \Perp B$.

Question: What can we say about \emptyset and Ω ?
Equivalent definitions for $A \Perp B$:

- $\mathbb{P}(B \mid A)=\mathbb{P}(B)$
- $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$ (very useful!)

Properties: A and B are independent iff (if and only if) any of the following holds:

- A and B^{c} are independent
- A^{c} and B are independent
- A^{c} and B^{c} are independent

You will prove these in HW2!

Example

Consider a gas station with six pumps numbered $1,2, \ldots, 6$. Suppose that $\mathbb{P}(\{1\})=\mathbb{P}(\{6\})=0.1, \mathbb{P}(\{2\})=\mathbb{P}(\{5\})=0.15, \mathbb{P}(\{3\})=\mathbb{P}(\{4\})=0.25$.

Define events $A=\{2,4,6\}, B=\{1,2,3\}, C=\{2,3,4,5\}$.
Therefore:

- $\mathbb{P}(A)=0.5, \mathbb{P}(B)=0.5, \mathbb{P}(C)=0.8$.
- $\mathbb{P}(A \cap B)=\mathbb{P}(\{2\})=0.15$
- $\mathbb{P}(B \cap C)=\mathbb{P}(\{2,3\})=0.4$
- $\mathbb{P}(A \cap C)=\mathbb{P}(\{2,4\})=0.4$

Hence:

- $\mathbb{P}(A \cap B) \neq \mathbb{P}(A) \mathbb{P}(B) \Longrightarrow A \not \Perp B$
- $\mathbb{P}(B \cap C)=\mathbb{P}(B) \mathbb{P}(C) \Longrightarrow B \Perp C$
- $\mathbb{P}(A \cap C)=\mathbb{P}(A) \mathbb{P}(C) \Longrightarrow A \Perp C$

Independence between multiple events

Definition: Events A_{1}, \ldots, A_{n} are (mutually) independent if for every $k=2,3, \ldots, n$ and every subset of indices $i_{1}, i_{2}, \ldots, i_{k}$,

$$
\mathbb{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \mathbb{P}\left(A_{i_{2}}\right) \cdots \mathbb{P}\left(A_{i_{k}}\right)
$$

- When $n=2$: it reduces to $\mathbb{P}\left(A_{1} \cap A_{2}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right)$
- When $n=3$: it reduces to (all the following conditions have to hold at the same time):

$$
\begin{aligned}
& \triangleright \mathbb{P}\left(A_{1} \cap A_{2}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right) \\
& \triangleright \mathbb{P}\left(A_{2} \cap A_{3}\right)=\mathbb{P}\left(A_{2}\right) \mathbb{P}\left(A_{3}\right) \\
& \triangleright \mathbb{P}\left(A_{1} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{3}\right) \\
& \triangleright \mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right) \mathbb{P}\left(A_{3}\right)
\end{aligned}
$$

Therefore, independence is often an idealistic assumption in practice!

Independence between multiple events

Theorem: If A_{1}, \ldots, A_{n} are mutually independent, then for any index sets
$\left\{i_{1}, \ldots, i_{k}\right\}$ and $\left\{j_{1}, \ldots, j_{r}\right\}$ where $\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{r}\right\}=\emptyset$,

$$
\begin{aligned}
& \text { intersections/unions between } A_{i_{1}}, \ldots, A_{i_{k}} \Perp \\
& \text { intersections/unions between } A_{j_{1}}, \ldots, A_{j_{r}} \text {. }
\end{aligned}
$$

The events $A_{i_{1}}, \ldots, A_{i_{k}}$ and $A_{j_{1}}, \ldots, A_{j_{r}}$ can be replaced by their complements.

For example:

- $\left(A_{1} \cup A_{2}\right) \Perp\left(A_{3} \cap A_{4}\right)$
- $\left(A_{1} \cap A_{2}^{c} \cup A_{5}\right) \Perp\left(A_{3} \cup A_{4}\right)$
- $A_{2} \Perp\left(A_{1}^{c} \cap A_{4} \cap A_{3}\right)$
- ...

Example: parallel system

A system consists of 5 independent components C_{1}, \ldots, C_{5}.
$\mathbb{P}\left(C_{i}\right.$ works properly $)=0.9, i=1, \ldots, 5$. The chance that the system will work properly $=$?

$\{$ The whole system works $\}=\left(C_{1} \cup C_{2}\right) \cap\left(C_{3} \cup C_{4} \cup C_{5}\right)$
$\mathbb{P}($ The whole system works $)=\mathbb{P}\left(\left(C_{1} \cup C_{2}\right) \cap\left(C_{3} \cup C_{4} \cup C_{5}\right)\right)$

$$
=\mathbb{P}\left(C_{1} \cup C_{2}\right) \times \mathbb{P}\left(C_{3} \cup C_{4} \cup C_{5}\right)
$$

- $\mathbb{P}\left(C_{1} \cup C_{2}\right)=1-\mathbb{P}\left(C_{1}^{c} \cap C_{2}^{c}\right)=1-\mathbb{P}\left(C_{1}^{c}\right) \mathbb{P}\left(C_{2}^{c}\right)=0.99$;
- $\mathbb{P}\left(C_{3} \cup C_{4} \cup C_{5}\right)=1-\mathbb{P}\left(C_{3}^{c}\right) \mathbb{P}\left(C_{4}^{c}\right) \mathbb{P}\left(C_{5}^{c}\right)=1-0.1^{3}=0.999$
$\Longrightarrow \mathbb{P}($ The whole system works $)=0.99 \times 0.999=0.989$

Example: parallel system 2

A system consists of 3 independent components C_{1}, C_{2}, C_{3}. $\mathbb{P}\left(C_{i}\right.$ works properly $)=0.7, i=1, \ldots, 3$. The chance that the system will work properly $=$?

$\{$ The whole system works $\}=\left(C_{1} \cap C_{2}\right) \cup C_{3}$
$\mathbb{P}($ The whole system works $)=\mathbb{P}\left(\left(C_{1} \cap C_{2}\right) \cup C_{3}\right)$

$$
\begin{aligned}
& =\mathbb{P}\left(C_{1} \cap C_{2}\right)+\mathbb{P}\left(C_{3}\right)-\mathbb{P}\left(C_{1} \cap C_{2} \cap C_{3}\right) \\
& =\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(C_{2}\right)+\mathbb{P}\left(C_{3}\right)-\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(C_{2}\right) \mathbb{P}\left(C_{3}\right)
\end{aligned}
$$

$$
=0.7^{2}+0.7-0.7^{3}
$$

$$
=0.847
$$

Example: coffee purchase

The accompanying table gives information on the type of coffee selected by someone purchasing a single cup.

	Small	Medium	Large
Regular	14%	20%	26%
Decaf	20%	10%	10%

Consider randomly selecting such a coffee purchaser.

- Is "buying decaf coffee" independent with "buying medium-size coffee"?
- Are "buying regular coffee", "buying small-size coffee" and "buying medium-size coffee" mutually independent?
$\mathbb{P}($ decaf \cap medium $)=10 \% \neq 40 \% \times 30 \%=\mathbb{P}($ decaf $) \times \mathbb{P}($ medium $)$
\Rightarrow decaf 쑈 medium
Can we claim that $\{$ regular\}, $\{s m a l l\}$ and $\{$ medium $\}$ are NOT mutually independent?

Review: Probability Calculation

Review: Probability Calculation

$\mathbb{P}(\cdot): A \in$ a set of all events \rightarrow a number $\mathbb{P}(A)$ (a mapping/function which maps an event to a number)

Three axioms:

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A \subseteq \Omega$
- $\mathbb{P}(\Omega)=1, \mathbb{P}(\emptyset)=0$
- If $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ is a collection of disjoint (mutually exclusive) events, then

$$
\mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

Theorem: In an experiment consisting of N outcomes with equal probability, for any event A,

$$
\mathbb{P}(A)=\frac{N(A)}{N}
$$

where we use counting techniques to calculate $N(A)$ and N.

Review: Probability Calculation

General idea to calculate probability:

(1) Translate the conditions and the event of interest by probability language
(2) Calculate.
\triangleright For equally likely outcomes, consider $\mathbb{P}(A)=\frac{N(A)}{N}$ combined with counting techniques
\triangleright If conditioning probability is easier to calculate or it is given, consider conditional multiplication rule, rule of total probability, and Bayes' Theorem
\triangleright See whether there are independence or not, which may help us to do the calculation

Example 1

Given A and B, such that $\mathbb{P}(A)=\mathbb{P}\left(A^{c} \cap B\right)=0.4$ and $\mathbb{P}(A \cap B)=0.1$.

- Find $\mathbb{P}(A \cup B)$
- Are A and B independent?
- Venn diagram:

Or:

$$
\triangleright \mathbb{P}(B)=\mathbb{P}\left(A^{c} \cap B\right)+\mathbb{P}(A \cap B)=0.4+0.1=0.5
$$

\triangleright Then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

$$
=0.4+0.5-0.1=0.8
$$

- No,because $\mathbb{P}(A \cap B)=0.1 \neq 0.4 \times 0.5=\mathbb{P}(A) \times \mathbb{P}(B)$.

Example 2

5 faculty members (3 pro- A and 2 pro- B) vote for the department chair from candidate A and B one by one in a random order.

The probability that " A remains ahead of B throughout the vote count" = ? (e.g., "AABAB" is OK, but not "ABBAA")

Some observations:

- Permutation problem
- The last one has to vote for B. (Why?)
- The first one must vote for A. (Why?)
- So it has to be "ABAAB", "AABAB" or "AAABB"
$N(\Omega)=P_{5,5}=5!=120$
$N(\mathrm{~A}$ remains ahead of B$)=3 \times P_{3,3} \times P_{2,2}=36$
$\mathbb{P}(\mathrm{A}$ remains ahead of B$)=\frac{N(\mathrm{~A} \text { remains ahead of } \mathrm{B})}{N(\Omega)}=0.3$

Example 3

Randomly select a student at Columbia:

- $A=\{$ the selected student has a American Express card $\}$
$B=\{$ the selected student has a Barclays card $\}$
$C=\{$ the selected student has a Chase card $\}$
- $\mathbb{P}(A)=0.6, \mathbb{P}(B)=0.4, \mathbb{P}(C)=0.2$.
$\mathbb{P}(A \cap B)=0.3, \mathbb{P}(A \cap C)=0.15, \mathbb{P}(B \cap C)=0.1$
$\mathbb{P}(A \cap B \cap C)=0.08$
(1) The probability that the selected student has ≥ 1 of 3 types of cards=?
(2) $\mathbb{P}(B \mid A)=$?, $\mathbb{P}(A \mid B)=$?

$$
\begin{aligned}
& \circ \mathbb{P}(A \cup B \cup C)=0.73 \\
& \circ \mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}=0.5, \\
& \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=0.75
\end{aligned}
$$

Example 3

Randomly select a student at Columbia:

- $A=\{$ the selected student has a American Express card\}
$B=\{$ the selected student has a Barclays card $\}$
$C=\{$ the selected student has a Chase card $\}$
- $\mathbb{P}(A)=0.6, \mathbb{P}(B)=0.4, \mathbb{P}(C)=0.2$.
$\mathbb{P}(A \cap B)=0.3, \mathbb{P}(A \cap C)=0.15, \mathbb{P}(B \cap C)=0.1$
$\mathbb{P}(A \cap B \cap C)=0.08$
(3) Given that the student has an American Express card, what is the probability that she/he has ≥ 1 of the other two types of cards?

$$
\begin{aligned}
& \circ \mathbb{P}(B \cup C \mid A)=\frac{\mathbb{P}((B \cup C) \cap A)}{\mathbb{P}(A)}= \\
& \frac{0.22+0.08+0.07}{0.6}=0.617
\end{aligned}
$$

Example 4

A system consists of 7 independent components A_{1}, \ldots, D.
$\mathbb{P}\left(A_{1}\right.$ works $)=\mathbb{P}\left(A_{2}\right.$ works $)=0.9$
$\mathbb{P}\left(B_{1}\right.$ works $)=\mathbb{P}\left(B_{2}\right.$ works $)=0.8$
$\mathbb{P}\left(C_{1}\right.$ works $)=\mathbb{P}\left(C_{2}\right.$ works $)=0.7, \mathbb{P}(D$ works $)=0.95$
The chance that the system will work properly $=$?

$$
\begin{aligned}
& \mathbb{P}(\{\text { the system works }\})=\mathbb{P}\left(\left(\left(A_{1} \cap B_{1} \cap C_{1}\right) \cup\left(A_{2} \cap B_{2} \cap C_{2}\right)\right) \cap D\right) \\
& =\mathbb{P}\left(\left(A_{1} \cap B_{1} \cap C_{1}\right) \cup\left(A_{2} \cap B_{2} \cap C_{2}\right)\right) \mathbb{P}(D) \\
& =\left[2 \mathbb{P}\left(A_{1} \cap B_{1} \cap C_{1}\right)-\mathbb{P}\left(\left(A_{1} \cap B_{1} \cap C_{1}\right) \cap\left(A_{2} \cap B_{2} \cap C_{2}\right)\right)\right] \mathbb{P}(D) \\
& =\left[2 \mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{1}\right) \mathbb{P}\left(C_{1}\right)-\mathbb{P}\left(A_{1} \cap B_{1} \cap C_{1}\right) \mathbb{P}\left(A_{2} \cap B_{2} \cap C_{2}\right)\right] \mathbb{P}(D) \\
& =\left[2 \times 0.9 \times 0.8 \times 0.7-(0.9 \times 0.8 \times 0.7)^{2}\right] \times 0.95 \\
& =0.717
\end{aligned}
$$

Conditional independence

Independence: Two events A and B are independent if $\overline{\mathbb{P}}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$, denoted as $A \Perp B$. They are dependent otherwise, denoted as $A \not \Perp B$.

Conditional independence: Two events A and B are independent conditioning on event C if $\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \mathbb{P}(B \mid C)$, denoted as $(A \Perp B) \mid C$. They are dependent otherwise, denoted as $(A \not \Perp B) \mid C$.

Can be extended to the case of multiple (≥ 2) events too.

Example 5

- 5% of the population has a certain disease
- A diagnostic test:
\triangleright correctly detects the presence of the disease 98% of the time
\triangleright correctly detects the absence of the disease 99% of the time
- Randomly select an individual -> run tests twice -> Both positive
- The two test results are independent given the presence/absence of the disease on the selected individual

Question: The probability that this individual has the disease $=$?

- $P_{i}=\{i$-th test positive $\}, i=1,2$
- $D=\{$ this individual has the disease $\}$
- Goal: $\mathbb{P}\left(D \mid P_{1} \cap P_{2}\right)=$?
- What we know:
$\triangleright \mathbb{P}(D)=0.05 . \mathbb{P}\left(P_{i} \mid D\right)=0.98, \mathbb{P}\left(P_{i}^{c} \mid D^{c}\right)=0.99, i=1,2$
$\triangleright P_{1} \Perp P_{2}$ given $D, P_{1} \Perp P_{2}$ given D^{c}

Example 5

- $P_{i}=\{i$-th test positive $\}, i=1,2$
- $D=\{$ this individual has the disease $\}$
- Goal: $\mathbb{P}\left(D \mid P_{1} \cap P_{2}\right)=$?
- What we know:
$\triangleright \mathbb{P}(D)=0.05 . \mathbb{P}\left(P_{i} \mid D\right)=0.98, \mathbb{P}\left(P_{i}^{c} \mid D^{c}\right)=0.99, i=1,2$
$\triangleright P_{1} \Perp P_{2}$ given $D, P_{1} \Perp P_{2}$ given D^{c}
By Bayes' Theorem,

$$
\begin{aligned}
& \mathbb{P}\left(D \mid P_{1} \cap P_{2}\right)=\frac{\mathbb{P}\left(P_{1} \cap P_{2} \mid D\right) \mathbb{P}(D)}{\mathbb{P}\left(P_{1} \cap P_{2} \mid D\right) \mathbb{P}(D)+\mathbb{P}\left(P_{1} \cap P_{2} \mid D^{c}\right) \mathbb{P}\left(D^{c}\right)} \\
& =\frac{\mathbb{P}\left(P_{1} \mid D\right) \mathbb{P}\left(P_{2} \mid D\right) \mathbb{P}(D)}{\mathbb{P}\left(P_{1} \mid D\right) \mathbb{P}\left(P_{2} \mid D\right) \mathbb{P}(D)+\mathbb{P}\left(P_{1} \mid D^{c}\right) \mathbb{P}\left(P_{2} \mid D^{c}\right) \mathbb{P}\left(D^{c}\right)} \\
& =\frac{0.98 \times 0.98 \times 0.05}{0.98 \times 0.98 \times 0.05+0.01 \times 0.01 \times 0.95}=0.998
\end{aligned}
$$

Reading list (optional)

- "Probability and Statistics for Engineering and the Sciences" (9th edition):
- Chapter 2.5
- "OpenIntro statistics" (4th edition, free online, download [here]):
\triangleright Chapter 3.1.7 and 3.2.6

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

