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Recap: random variables

Given an experiment and the sample space Ω, a random variable is a
function mapping an outcome (ω ∈ Ω) into a real number, i.e.

X : ω ∈ Ω "→ X(ω) ∈ (−∞,+∞).

◦ When the possible values of a random variable are countable1, the
random variable is discrete.
Examples: the number of heads/tails of coin flipping, the number of
dice etc.

◦ When both of the following apply, the random variable is continuous.
⊲ The range is uncountable (e.g.: an interval on the number line)
⊲ No possible value of the variable has positive probability, i.e.
P(X = c) = 0 for any number c.

Examples: the temperature at a random location

1either constitute a finite set or else can be listed in an infinite sequence in which
there is a first element, a second element, and so on ("countably" infinite)
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Review: Probability distribution

The (probability) distribution of a random variable X describes how the
total probability of 1 is distributed among all possible values of X. It tells
us P(X ∈ B) = P({ω : X(ω) ∈ B}) for any subset B of number line 2.

Three characterizations of the distribution of a random variable:
◦ cdf: F (x) = P(X ≤ x)

◦ pmf (discrete variables only): p(x) = P(X = x)

◦ pdf (continuous variables only): f such that (any one of the following
holds, actually they're equivalent definitions):

⊲ P(a < X ≤ b) = F (b)− F (a) =
! b
a f(x)dx, for any numbers a, b

⊲ f(x) = F ′(x), for any number x
⊲ F (x) =

! x
−∞ f(t)dt, for any number x

2Currently, B can be any union/intersection of intervals/points on the real line. E.g.,
B can be (0, 1), [−2,+∞), (5, 5.5], {1}, {−1, 2.5}, (−3,−1) ∪ (9, 10] etc.
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Comparison: discrete and continuous variables
Discrete distribution:

pmf cdf
Continuous distribution:

pdf cdf
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Today's goal

◦ Understand the definition and interpretation of expectation and variance
◦ Given a distribution, know how to calculate the expectation and variance
◦ Understand the definition of other population characteristics (e.g.:

median, quantile etc.)
◦ Have a better understanding on population and samples (today,

tomorrow and Wednesday)
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Joint Distribution of Multiple Variables
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Joint distribution and independence between random
variables
The joint distribution of two random variables X and Y describes how
the total probability of 1 is distributed among all possible values of pair
(X,Y ). It tells us

P(X ∈ B1, Y ∈ B2) = P({ω : X(ω) ∈ B1} ∩ {ω : Y (ω) ∈ B2})
for any subsets B1 and B2 of number line.

We can define cdf, pmf and pdf for the joint distribution of (X,Y )
similarly:
◦ cdf: F (x, y) = P(X ≤ x, Y ≤ y)
◦ pmf (discrete variables only): p(x, y) = P(X = x, Y = y)
◦ pdf (continuous variables only): f such that (any one of the following

holds, actually they're equivalent definitions):
⊲ P(a < X ≤ b, c < Y ≤ d) =

! d
c

! b
a f(x, y)dxdy, for any numbers a,

b, c and d
⊲ f(x, y) = ∂2F

∂x∂y (x, y), for any number x
⊲ F (x, y) =

! y
−∞

! x
−∞ f(r, t)drdt, for any numbers x and y
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Joint distribution and independence between random
variables
Similar to our study on the independence relationship between multiple
events, we can also study the independence between random variables.

But I do want everyone to get a sense what this independence between
variables means.
◦ Recall that P(X ∈ B) = P({ω : X(ω) ∈ B}). Actually r.v.'s X and Y

are independent iff P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2) for any
subsets B1 and B2 of the number line, i.e.

{ω : X(ω) ∈ B1} ⊥⊥ {ω : Y (ω) ∈ B2}.
This means independence between r.v.'s is essentially the independence
between multiple pairs of events (n-"tuple" for n r.v.'s)!

◦ An equivalent definition for two continuous r.v.'s X and Y : X ⊥⊥ Y iff

f(X,Y )(x, y) = fX(x)fY (y),

where f(X,Y )(x, y) are the joint pdf of (X,Y ), fX and fY are the
marginal pdf of X and Y.
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Independence between random variables

Suppose the joint pmf or pdf of X1, . . . , Xn is f(x1, . . . , xn). And the
marginal pmf or pdf of Xi is fi(xi). Then X1, . . . , Xn are independent if
and only if

f(x1, . . . , xn) =

n"

i=1

fi(xi),

for any numbers x1, . . . , xn.
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Things you need to know about the joint distribution and
independence between r.v.'s for this course

◦ r.v.'s X ⊥⊥ Y iff P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2) for any
subsets B1 and B2 of the number line, i.e.

{ω : X(ω) ∈ B1} ⊥⊥ {ω : Y (ω) ∈ B2}.

This means independence between r.v.'s is essentially the independence
between multiple pairs of events (n-"tuple" for n r.v.'s)!

◦ Know that we can similarly define the cdf, pmf and pdf for joint
distribution as we did for a single variable

◦ Know how to calculate the expectation and variance of sum of
independent variables

◦ Understand the definitions of covariance and correlation of two variables
◦ Know the distribution of sum of independent normally-distributed

variables
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Expectation and Variance
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Population universe and sample universe

Sample universe (what we see)

Data ⇒
◦ Sample mean
◦ Sample variance
◦ Sample standard deviation
◦ Sample quantiles (sample median,

quartiles...)
◦ Sample maximum/minimum
◦ Sample covariance/correlation
◦ Bar chart (discrete r.v.)
◦ Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution ⇒
◦ Expectation/Mean
◦ Variance
◦ Standard deviation
◦ Quantiles (median, quartiles

...)
◦ Maximum/minimum
◦ Covariance/correlation
◦ pmf (discrete r.v.)
◦ pdf (continuous r.v.)

Later, we will know why we can use the sample information to infer the
population universe.
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Expectation or expected values

Sample mean: Data x1, . . . , xn ⇒ x̄ = 1
n

#n
i=1 xi.

Definition: The expectation of a r.v. X is defined as

EX = µX =

$#
j xj × P(X = xj), X is discrete,! +∞

−∞ xf(x)dx, X is continuous and f is the pdf

◦ Expectation (Or expected value) of a random variable is its long-run
average. When x1, . . . , xn

i.i.d.∼ X and n → +∞, x̄ ≈ EX. 3

◦ EX indicates the "center" of X. It is not a value that is likely/expected
to get.

3i.i.d. means "identically and independent distributed (as)"
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Expectation or expected values

Example 1: Rolling a die. What is the expected number of spots X on
the top?
P(X = 1) = · · · = P(X = 6) = 1

6 ⇒EX = 1× 1
6+2× 1

6+ · · ·+6× 1
6 = 3.5.
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Expectation or expected values

Example 2: X follows a uniform distribution on [0, 1]. (i.e. pdf f(x) = 1
on [0, 1] and 0 elsewhere)
EX =

! 1
0 xf(x)dx =

! 1
0 xdx = 1

2x
2 |10= 1

2 .
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Expectation or expected values

Example 3: For a rare disease with 1% prevalence rate, the following
group testing is used.
◦ Pull the blood sample of 10 people together.
◦ If the result is negative, all of them are negative.
◦ If the result is positive, test them individually.
If each test costs $1, what is the expected cost?

Let X = the cost. Then the pmf of X is
◦ P(X = 1) = P({all 10 people are negative}) = 0.9910 = 0.9044

◦ P(X = 11) = 1− P({all 10 people are negative}) = 0.0956

=⇒ EX = 1× P(X = 1) + 11× P(X = 11) = 1.956 (dollars).
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Expectation or expected values

Expected value of a function of a random variable:
Theorem: Suppose new r.v. Y = g(X), where g is some function on the
number line. Then the expectation of Y equals

EY = E(g(X)) =

$#
j g(xj)P(X = xj), X is discrete,! +∞

−∞ g(x)f(x)dx, X is continuous and f is the pdf

You will prove the discrete case in HW3!
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Expectation or expected values

Example 1 (revisited): Rolling a die. Suppose X is the number of spots
on the top. What's the expected value of X2?

Define Y = X2. We know P(X = 1) = · · · = P(X = 6) = 1
6

Way 1: (previous theorem) EX2 = 12 × 1
6 +22 × 1

6 + · · ·+62 × 1
6 = 15.17

Way 2: (definition of EY ) We know P(Y = 12) = P(Y = 22) = · · · =
P(Y = 62) = 1

6EY = 12 × 1
6 + 22 × 1

6 + · · ·+ 62 × 1
6 = 15.17

Example 2 (revisited): X follows a uniform distribution on [0, 1]. (i.e.
pdf f(x) = 1 on [0, 1] and 0 elsewhere)
EX2 =

! 1
0 x2f(x)dx =

! 1
0 x2dx = 1

3x
3 |10= 1

3 .
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Expectation or expected values

Linearity of expectations: Suppose a and b are two constants
(numbers), then E(aX + b) = aE(X) + b.

Can be easily proved by considering a function of r.v. X as Y = aX + b,
then calculating the expected value of function of r.v. You will prove it in
HW3.
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Variance and standard deviation

Sample variance: Data x1, . . . , xn ⇒ s2 = 1
n−1

#n
i=1(xi − x̄)2.

Definition: The variance of a r.v. X is defined as

Var(X) = E(X − EX)2

=

$#
j(xj − EX)2 × P(X = xj), X is discrete,! +∞

−∞ (x− EX)2f(x)dx, X is continuous and f is pdf

The standard deviation of X is SD(X) =
%

Var(X)

◦ The standard deviation shows the likely size of the deviation of the r.v.
X from EX.

◦ When x1, . . . , xn
i.i.d.∼ X and n → +∞, s2 ≈ Var(X).

◦ The variance and standard deviation is always non-negative.
◦ When Var(X) = 0, we have P(X = EX) = 1.
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Variance and standard deviation
A shortcut formula to calculate Var(X) : Var(X) = E(X2)− (EX)2

Remark: Note that E(X2) and (EX)2 are totally different!

E(X2) =

$#
j x

2
j × P(X = xj), X is discrete,! +∞

−∞ x2f(x)dx, X is continuous and f is the pdf

(EX)2 =

$&#
j xj × P(X = xj)

'2
, X is discrete,& ! +∞

−∞ x2f(x)dx
'2
, X is continuous and f is the pdf

Proof:

Var(X) = E(X − EX)2 = E[X2 − 2X(EX) + (EX)2]

=E(X2)− 2(EX)× (EX) + (EX)2

= E(X2)− (EX)2

Question: Why does "=" hold?
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Variance and standard deviation
Example 1 (revisited): Rolling a die. Suppose X is the number of spots
on the top.

We know P(X = 1) = · · · = P(X = 6) = 1
6

We have already obtained EX2 = 12 × 1
6 + 22 × 1

6 + · · ·+ 62 × 1
6 = 15.17,

EX = 1× 1
6 + 2× 1

6 + · · ·+ 6× 1
6 = 3.5.Then by the shortcut formula,

Var(X) = E(X2)− (EX)2 = 15.7− 3.52 = 3.45,

SD(X) =
%

Var(X) = 1.86.

Example 2 (revisited): X follows a uniform distribution on [0, 1]. (i.e.
pdf f(x) = 1 on [0, 1] and 0 elsewhere)
We have already obtained EX2 =

! 1
0 x2f(x)dx =

! 1
0 x2dx = 1

3x
3 |10= 1

3 ,
EX =

! 1
0 xf(x)dx =

! 1
0 xdx = 1

2x
2 |10= 1

2 . Then by the shortcut formula,
Var(X) = E(X2)− (EX)2 = 1/3− (1/2)2 = 1/12,

SD(X) =
%

Var(X) = 0.289.
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Variance and standard deviation

"Linearity" of variances: Suppose a and b are two constants (numbers),
then:
◦ Var(aX + b) = a2Var(X)

◦ SD(aX + b) = |a|SD(X)

Can be easily proved by the definition of variance Var(X) = E(X − EX)2.
You will prove it in HW3.

For the variance of a function of a random variable: first use the shortcut
formula, then use the conclusion for expectations:
Var[g(X)] = E[g2(X)]− [Eg(X)]2.
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Other Summary Characteristics of
Distributions
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Quantiles

Sample quantiles: Data x(1) ≤ x(2) ≤ · · · ≤ x(n) ⇒ k-th percentile or
k% quantile is the value where k% of the values are below.

Definition: The k-th percentile or k% quantile of a continuous r.v. X
is defined as the number η(k%) that satisfies

k% = F (η(k%)) = P(X ≤ η(k)) =

( η(k)

−∞
f(x)dx,

where f and F are the pdf and cdf of X.

◦ We don't study the discrete case here. But you can imagine that the
trick of interpolation can be applied to help define the quantile.

◦ Median = η(50%).
◦ When x1, . . . , xn

i.i.d.∼ X and n → +∞, sample k% quantile ≈ η(k%).
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Quantiles

Example 2 (revisited): X follows a uniform distribution on [0, 1]. (i.e.
pdf f(x) = 1 on [0, 1] and 0 elsewhere)

By definition, F (x) =
! x
−∞ 1dt =

! x
0 1dt = x when x ∈ [0, 1]. Thus by

letting
F (η(k%)) = 0.01k,

we obtain
η(k%) = 0.01k,

for k ∈ [0, 100].
⇒ k% quantile = 0.01k.
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Covariance

Covariance and correlation help us understand the strength of linear
association/correlation between two random variables.

Recall that the variance is defined as Var(X) = E(X − EX)2. The
covariance between X and Y is "similarly" defined by

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E(XY )− (EX)(EY )

◦ Cov(X,Y ) can be positive, negative, or zero
◦ When Cov(X,Y ) = 0, we say X and Y are (linearly) uncorrelated.
◦ Independence ⇒ uncorrelation, but uncorrelation ∕⇒ independence
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Correlation
Correlation is a "standardized" version of covariance.

The correlation between X and Y is defined by
Corr(X,Y ) = ρX,Y =

Cov(X,Y )%
Var(X)Var(Y )

◦ −1 ≤ Corr(X,Y ) ≤ 1 (can be shown by the integral version of
Cauchy-Schwarz inequality, which we will not cover)

◦ ρX,Y measures the strength of linear association between X and Y .
The larger the |ρX,Y |, the stronger the linear association.

◦ ρX,Y > 0 means positive association/correlation, i.e. larger X tends to
associate with large Y and smaller X tends to associate with smaller Y

◦ When ρX,Y = 0, X and Y are (linearly) uncorrelated.
◦ Independence ⇒ uncorrelation, but uncorrelation ∕⇒ independence
◦ ρX,Y is invariant under different measurement units, i.e.

Corr(aX + b, cY + d) = Corr(X,Y ) for any numbers a ∕= 0, c ∕= 0, b
and d.
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Sample covariance and sample correlation
Sample covariance and correlation: Data (x1, y1), . . . , (xn, yn) ⇒

)Cov(X,Y ) =
1

n− 1

n*

i=1

(xi − x̄)(yi − ȳ) =

+
1

n− 1

n*

i=1

xiyi

,
− x̄ȳ,

ρ̂X,Y =
)Cov(X,Y )

sxsy

where sample mean x̄ = 1
n

#n
i=1 xi, sample mean ȳ = 1

n

#n
i=1 yi, sample

variance s2x = 1
n−1

#n
i=1(xi − x̄)2, s2y = 1

n−1

#n
i=1(yi − ȳ)2

Compare with the population covariance and correlation:

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E(XY )− (EX)(EY ),

ρX,Y =
Cov(X,Y )%

Var(X)Var(Y )
.
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The "linearity" of expectation and variance (A general
version)

Suppose X1, . . . , Xn are random variables. a1, . . . , an, b1, . . . , bn are
constants.
◦ E[

#n
i=1(aiXi + bi)] =

#n
i=1(aiEXi + bi)

◦ If X1, . . . , Xn are independent, then
Var[

#n
i=1(aiXi + bi)] =

#n
i=1 a

2
i Var(Xi)

Remark:
◦ The conclusion of expectation holds even when X1, . . . , Xn are

dependent!
◦ Some simple examples: For r.v. X and Y :

⊲ E(X + 2Y ) = EX + 2EY
⊲ E(−X + 3Y + 10) = − EX + 3EY + 10
⊲ Var(−X + 3Y + 10) = We don't know!
⊲ If X ⊥⊥ Y , then Var(−X + 3Y + 10) = Var(X) + 9Var(Y )
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Population universe and sample universe

Sample universe (what we see)

Data ⇒
◦ Sample mean
◦ Sample variance
◦ Sample standard deviation
◦ Sample quantiles (sample median,

quartiles...)
◦ Sample maximum/minimum
◦ Sample covariance/correlation
◦ Bar chart (discrete r.v.)
◦ Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution ⇒
◦ Expectation/Mean
◦ Variance
◦ Standard deviation
◦ Quantiles (median, quartiles

...)
◦ Maximum/minimum
◦ Covariance/correlation
◦ pmf (discrete r.v.)
◦ pdf (continuous r.v.)

Later, we will know why we can use the sample information to infer the
population universe.
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