Lecture 8: Population Summary Characteristics

Ye Tian

Department of Statistics, Columbia University Calculus-based Introduction to Statistics (S1201)

July 18, 2022

Recap: random variables

Given an experiment and the sample space Ω , a random variable is a function mapping an outcome ($\omega \in \Omega$) into a real number, i.e.

 $X: \omega \in \Omega \mapsto X(\omega) \in (-\infty, +\infty).$

- When the possible values of a random variable are countable¹, the random variable is discrete.
 Examples: the number of heads/tails of coin flipping, the number of dice etc.
- When *both* of the following apply, the random variable is **continuous**.
 - ▷ The range is uncountable (e.g.: an interval on the number line)
 - ▷ No possible value of the variable has positive probability, i.e. $\mathbb{P}(X = c) = 0$ for any number c.

Examples: the temperature at a random location

¹either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite)

Review: Probability distribution

The (probability) distribution of a random variable X describes how the total probability of 1 is distributed among all possible values of X. It tells us $\mathbb{P}(X \in \mathcal{B}) = \mathbb{P}(\{\omega : X(\omega) \in \mathcal{B}\})$ for any subset \mathcal{B} of number line ².

Three characterizations of the distribution of a random variable:

- cdf: $F(x) = \mathbb{P}(X \le x)$
- $\circ~$ pmf (discrete variables only): $p(x) = \mathbb{P}(X = x)$
- pdf (continuous variables only): *f* such that (any one of the following holds, actually they're equivalent definitions):
 - ▷ $\mathbb{P}(a < X \le b) = F(b) F(a) = \int_a^b f(x) dx$, for any numbers a, b▷ f(x) = F'(x), for any number x▷ $F(x) = \int_{-\infty}^x f(t) dt$, for any number x

²Currently, \mathcal{B} can be any union/intersection of intervals/points on the real line. E.g., \mathcal{B} can be (0, 1), $[-2, +\infty)$, (5, 5.5], $\{1\}$, $\{-1, 2.5\}$, $(-3, -1) \cup (9, 10]$ etc. 3/3

Comparison: discrete and continuous variables

Discrete distribution:

Continuous distribution:

Today's goal

- $\circ~$ Understand the definition and interpretation of expectation and variance
- $\circ~$ Given a distribution, know how to calculate the expectation and variance
- Understand the definition of other population characteristics (e.g.: median, quantile etc.)
- Have a better understanding on population and samples (today, tomorrow and Wednesday)

Joint Distribution of Multiple Variables

Joint distribution and independence between random variables

The joint distribution of two random variables X and Y describes how the total probability of 1 is **distributed** among all possible values of pair (X, Y). It tells us

 $\mathbb{P}(X \in \mathcal{B}_1, Y \in \mathcal{B}_2) = \mathbb{P}(\{\omega : X(\omega) \in \mathcal{B}_1\} \cap \{\omega : Y(\omega) \in \mathcal{B}_2\})$

for any subsets \mathcal{B}_1 and \mathcal{B}_2 of number line.

We can define cdf, pmf and pdf for the joint distribution of (X, Y) similarly:

- $\circ \ \operatorname{cdf:} \ F(x,y) = \mathbb{P}(X \leq x, Y \leq y)$
- $\circ~$ pmf (discrete variables only): $p(x,y) = \mathbb{P}(X=x,Y=y)$
- pdf (continuous variables only): *f* such that (any one of the following holds, actually they're equivalent definitions):
 - $\triangleright \ \mathbb{P}(a < X \leq b, c < Y \leq d) = \int_c^d \int_a^b f(x,y) dx dy$, for any numbers a, b, c and d

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y), \text{ for any number } x$$

▷ $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(r,t) dr dt$, for any numbers x and y

Joint distribution and independence between random variables

Similar to our study on the independence relationship between multiple **events**, we can also study the independence between **random variables**.

But I do want everyone to get a sense what this independence between variables means.

• Recall that $\mathbb{P}(X \in \mathcal{B}) = \mathbb{P}(\{\omega : X(\omega) \in \mathcal{B}\})$. Actually r.v.'s X and Y are independent iff $\mathbb{P}(X \in \mathcal{B}_1, Y \in \mathcal{B}_2) = \mathbb{P}(X \in \mathcal{B}_1)\mathbb{P}(Y \in \mathcal{B}_2)$ for any subsets \mathcal{B}_1 and \mathcal{B}_2 of the number line, i.e.

 $\{\omega: X(\omega) \in \mathcal{B}_1\} \perp \{\omega: Y(\omega) \in \mathcal{B}_2\}.$

This means independence between r.v.'s is essentially the independence between multiple pairs of events (n-"tuple" for n r.v.'s)!

 $\circ~$ An equivalent definition for two continuous r.v.'s X and $Y:~X\perp\!\!\!\perp Y$ iff

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y),$$

where $f_{(X,Y)}(x,y)$ are the joint pdf of (X,Y), f_X and f_Y are the marginal pdf of X and Y.

Independence between random variables

Suppose the joint pmf or pdf of X_1, \ldots, X_n is $f(x_1, \ldots, x_n)$. And the marginal pmf or pdf of X_i is $f_i(x_i)$. Then X_1, \ldots, X_n are independent if and only if

$$f(x_1,\ldots,x_n) = \prod_{i=1}^n f_i(x_i),$$

for any numbers x_1, \ldots, x_n .

Things you need to know about the joint distribution and independence between r.v.'s for this course

∘ r.v.'s $X \perp Y$ iff $\mathbb{P}(X \in \mathcal{B}_1, Y \in \mathcal{B}_2) = \mathbb{P}(X \in \mathcal{B}_1)\mathbb{P}(Y \in \mathcal{B}_2)$ for any subsets \mathcal{B}_1 and \mathcal{B}_2 of the number line, i.e. $\{\omega : X(\omega) \in \mathcal{B}_1\} \perp \{\omega : Y(\omega) \in \mathcal{B}_2\}.$

This means independence between r.v.'s is essentially the independence between multiple pairs of events (n-"tuple" for n r.v.'s)!

- Know that we can similarly define the cdf, pmf and pdf for joint distribution as we did for a single variable
- Know how to calculate the expectation and variance of sum of independent variables
- · Understand the definitions of covariance and correlation of two variables
- Know the distribution of sum of independent normally-distributed variables

Expectation and Variance

Population universe and sample universe

Sample universe (what we see)

 $\mathsf{Data} \Rightarrow$

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)

 ${\sf Probability\ distribution} \Rightarrow$

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

Later, we will know why we can use the sample information to infer the population universe.

Sample mean: Data $x_1, \ldots, x_n \Rightarrow \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

Definition: The **expectation** of a r.v. X is defined as

$$\mathbb{E}X = \mu_X = \begin{cases} \sum_j x_j \times \mathbb{P}(X = x_j), & X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x) dx, & X \text{ is continuous and } f \text{ is the pdf} \end{cases}$$

- Expectation (Or expected value) of a random variable is its **long-run** average. When $x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} X$ and $n \to +\infty$, $\bar{x} \approx \mathbb{E}X$.³
- $\circ \ \mathbb{E} X$ indicates the "center" of X. It is not a value that is likely/expected to get.

 $^{^{3}}i.i.d.$ means "identically and independent distributed (as)"

Example 1: Rolling a die. What is the expected number of spots X on the top? $\mathbb{P}(X = 1) = \cdots = \mathbb{P}(X = 6) = \frac{1}{6} \Rightarrow \mathbb{E}X = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = 3.5.$

Example 2: X follows a uniform distribution on [0,1]. (i.e. pdf f(x) = 1 on [0,1] and 0 elsewhere) $\mathbb{E}X = \int_0^1 x f(x) dx = \int_0^1 x dx = \frac{1}{2}x^2 \mid_0^1 = \frac{1}{2}.$

n

Example 3: For a rare disease with 1% prevalence rate, the following group testing is used.

- Pull the blood sample of 10 people together.
- If the result is negative, all of them are negative.
- If the result is positive, test them individually.

If each test costs \$1, what is the expected cost?

Let X = the cost. Then the pmf of X is $\circ \mathbb{P}(X = 1) = \mathbb{P}(\{\text{all 10 people are negative}\}) = 0.99^{10} = 0.9044$ $\circ \mathbb{P}(X = 11) = 1 - \mathbb{P}(\{\text{all 10 people are negative}\}) = 0.0956$ $\implies \mathbb{E}X = 1 \times \mathbb{P}(X = 1) + 11 \times \mathbb{P}(X = 11) = 1.956 \text{ (dollars)}.$

Expected value of a **function** of a random variable:

<u>Theorem</u>: Suppose new r.v. Y = g(X), where g is some function on the number line. Then the expectation of Y equals

$$\mathbb{E}Y = \mathbb{E}(g(X)) = \begin{cases} \sum_{j} g(x_{j}) \mathbb{P}(X = x_{j}), & X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} g(x) f(x) dx, & X \text{ is continuous and } f \text{ is the pdf} \end{cases}$$

You will prove the discrete case in HW3!

Example 1 (revisited): Rolling a die. Suppose X is the number of spots on the top. What's the expected value of X^2 ?

Define $Y = X^2$. We know $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = \frac{1}{6}$ <u>Way 1: (previous theorem)</u> $\mathbb{E}X^2 = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \dots + 6^2 \times \frac{1}{6} = 15.17$

$$\frac{\text{Way 2: (definition of } \mathbb{E}Y)}{\mathbb{P}(Y=6^2) = \frac{1}{6}\mathbb{E}Y = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \cdots + 6^2 \times \frac{1}{6} = 15.17}$$

Example 2 (revisited): X follows a uniform distribution on [0, 1]. (i.e. pdf f(x) = 1 on [0, 1] and 0 elsewhere) $\mathbb{E}X^2 = \int_0^1 x^2 f(x) dx = \int_0^1 x^2 dx = \frac{1}{3}x^3 \mid_0^1 = \frac{1}{3}.$

Linearity of expectations: Suppose a and b are two constants (numbers), then $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.

Can be easily proved by considering a function of r.v. X as Y = aX + b, then calculating the expected value of function of r.v. You will prove it in HW3.

Sample variance: Data $x_1, \ldots, x_n \Rightarrow s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$. Definition: The variance of a r.v. X is defined as

$$\begin{split} \mathsf{Var}(X) &= \mathbb{E}(X - \mathbb{E}X)^2 \\ &= \begin{cases} \sum_j (x_j - \mathbb{E}X)^2 \times \mathbb{P}(X = x_j), & X \text{ is discrete}, \\ \int_{-\infty}^{+\infty} (x - \mathbb{E}X)^2 f(x) dx, & X \text{ is continuous and } f \text{ is pdf} \end{cases} \end{split}$$

The standard deviation of X is $SD(X) = \sqrt{Var(X)}$

- $\circ~$ The standard deviation shows the likely size of the deviation of the r.v. X from $\mathbb{E} X.$
- \circ When $x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} X$ and $n \to +\infty$, $s^2 \approx \operatorname{Var}(X)$.
- The variance and standard deviation is always non-negative.
- $\circ\;$ When ${\rm Var}(X)=0,$ we have $\mathbb{P}(X=\mathbb{E}X)=1.$

A shortcut formula to calculate Var(X) : $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2$

<u>Remark</u>: Note that $\mathbb{E}(X^2)$ and $(\mathbb{E}X)^2$ are totally different!

$$\mathbb{E}(X^2) = \begin{cases} \sum_j x_j^2 \times \mathbb{P}(X = x_j), & X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x^2 f(x) dx, & X \text{ is continuous and } f \text{ is the pdf} \end{cases}$$
$$(\mathbb{E}X)^2 = \begin{cases} \left[\sum_j x_j \times \mathbb{P}(X = x_j)\right]^2, & X \text{ is discrete,} \\ \left[\int_{-\infty}^{+\infty} x^2 f(x) dx\right]^2, & X \text{ is continuous and } f \text{ is the pdf} \end{cases}$$

Proof:

$$\begin{aligned} \mathsf{Var}(X) &= \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}[X^2 - 2X(\mathbb{E}X) + (\mathbb{E}X)^2] \\ &= \mathbb{E}(X^2) - 2(\mathbb{E}X) \times (\mathbb{E}X) + (\mathbb{E}X)^2 \\ &= \mathbb{E}(X^2) - (\mathbb{E}X)^2 \end{aligned}$$

Question: Why does "=" hold?

Example 1 (revisited): Rolling a die. Suppose X is the number of spots on the top.

We know $\mathbb{P}(X=1) = \cdots = \mathbb{P}(X=6) = \frac{1}{6}$

We have already obtained $\mathbb{E}X^2 = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \dots + 6^2 \times \frac{1}{6} = 15.17$, $\mathbb{E}X = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = 3.5$. Then by the shortcut formula, $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = 15.7 - 3.5^2 = 3.45$, $SD(X) = \sqrt{Var(X)} = 1.86$.

Example 2 (revisited): X follows a uniform distribution on [0, 1]. (i.e. pdf f(x) = 1 on [0, 1] and 0 elsewhere) We have already obtained $\mathbb{E}X^2 = \int_0^1 x^2 f(x) dx = \int_0^1 x^2 dx = \frac{1}{3}x^3 |_0^1 = \frac{1}{3}$, $\mathbb{E}X = \int_0^1 x f(x) dx = \int_0^1 x dx = \frac{1}{2}x^2 |_0^1 = \frac{1}{2}$. Then by the shortcut formula, $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = 1/3 - (1/2)^2 = 1/12$, $\operatorname{SD}(X) = \sqrt{\operatorname{Var}(X)} = 0.289$.

"Linearity" of variances: Suppose *a* and *b* are two constants (numbers), then:

- $\circ \ \mathsf{Var}(aX+b) = a^2\mathsf{Var}(X)$
- $\circ \ \mathsf{SD}(aX+b) = |a|\mathsf{SD}(X)$

Can be easily proved by the definition of variance $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$. You will prove it in HW3.

For the variance of a **function** of a random variable: first use the shortcut formula, then use the conclusion for expectations: $Var[g(X)] = \mathbb{E}[g^2(X)] - [\mathbb{E}g(X)]^2.$

Other Summary Characteristics of Distributions

Quantiles

Sample quantiles: Data $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)} \Rightarrow k$ -th percentile or k% quantile is the value where k% of the values are below.

Definition: The k-th **percentile** or k% **quantile** of a **continuous** r.v. X is defined as the number $\eta(k\%)$ that satisfies

$$k\% = F(\eta(k\%)) = \mathbb{P}(X \le \eta(k)) = \int_{-\infty}^{\eta(k)} f(x)dx,$$

where f and F are the pdf and cdf of X.

- We don't study the discrete case here. But you can imagine that the trick of interpolation can be applied to help define the quantile.
- Median = $\eta(50\%)$.
- When $x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} X$ and $n \to +\infty$, sample k% quantile $\approx \eta(k\%)$.

Quantiles

Example 2 (revisited): X follows a uniform distribution on [0,1]. (i.e. pdf f(x) = 1 on [0,1] and 0 elsewhere)

By definition, $F(x)=\int_{-\infty}^x 1dt=\int_0^x 1dt=x$ when $x\in[0,1].$ Thus by letting

 $F(\eta(k\%)) = 0.01k,$

we obtain

$$\eta(k\%) = 0.01k,$$

for $k \in [0, 100]$. $\Rightarrow k\%$ quantile = 0.01k.

Covariance

Covariance and correlation help us understand the strength of **linear** association/correlation between two random variables.

Recall that the variance is defined as $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$. The covariance between X and Y is "similarly" defined by

 $\mathsf{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}(XY) - (\mathbb{E}X)(\mathbb{E}Y)$

- $\circ~\mathsf{Cov}(X,Y)$ can be positive, negative, or zero
- When Cov(X, Y) = 0, we say X and Y are (linearly) uncorrelated.
- $\circ~$ Independence \Rightarrow uncorrelation, but uncorrelation \Rightarrow independence

Correlation

Correlation is a "standardized" version of covariance.

The correlation between X and Y is defined by C = (X, Y)

$$\operatorname{Corr}(X,Y) = \rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\circ\ -1 \leq {\rm Corr}(X,Y) \leq 1$ (can be shown by the integral version of Cauchy-Schwarz inequality, which we will not cover)
- $\rho_{X,Y}$ measures the strength of **linear** association between X and Y. The larger the $|\rho_{X,Y}|$, the stronger the linear association.
- $\circ~\rho_{X,Y}>0$ means positive association/correlation, i.e. larger X tends to associate with large Y and smaller X tends to associate with smaller Y
- When $\rho_{X,Y} = 0$, X and Y are (linearly) uncorrelated.
- $\circ~$ Independence \Rightarrow uncorrelation, but uncorrelation \nRightarrow independence
- $\rho_{X,Y}$ is **invariant** under different measurement units, i.e. $\operatorname{Corr}(aX + b, cY + d) = \operatorname{Corr}(X, Y)$ for any numbers $a \neq 0$, $c \neq 0$, band d.

Sample covariance and sample correlation

Sample covariance and correlation: Data $(x_1, y_1), \ldots, (x_n, y_n) \Rightarrow$

$$\widehat{\mathsf{Cov}}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \left(\frac{1}{n-1} \sum_{i=1}^{n} x_i y_i\right) - \bar{x}\bar{y},$$
$$\hat{\rho}_{X,Y} = \frac{\widehat{\mathsf{Cov}}(X,Y)}{s_x s_y}$$

where sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, sample variance $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$, $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

Compare with the population covariance and correlation:

$$\begin{split} \mathsf{Cov}(X,Y) &= \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}(XY) - (\mathbb{E}X)(\mathbb{E}Y),\\ \rho_{X,Y} &= \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}}. \end{split}$$

The "linearity" of expectation and variance (A general version)

Suppose X_1, \ldots, X_n are random variables. $a_1, \ldots, a_n, b_1, \ldots, b_n$ are constants.

- $\mathbb{E}\left[\sum_{i=1}^{n} (a_i X_i + b_i)\right] = \sum_{i=1}^{n} (a_i \mathbb{E} X_i + b_i)$
- If X_1, \ldots, X_n are **independent**, then $Var[\sum_{i=1}^n (a_i X_i + b_i)] = \sum_{i=1}^n a_i^2 Var(X_i)$

Remark:

- $\circ\;$ The conclusion of expectation holds even when X_1,\ldots,X_n are dependent!
- $\circ~$ Some simple examples: For r.v. X and Y:

$$\begin{array}{l} \triangleright \ \mathbb{E}(X+2Y) = \mathbb{E}X + 2\mathbb{E}Y \\ \triangleright \ \mathbb{E}(-X+3Y+10) = -\mathbb{E}X + 3\mathbb{E}Y + 10 \\ \triangleright \ \mathsf{Var}(-X+3Y+10) = \mathsf{We} \ \mathsf{don't} \ \mathsf{know!} \\ \triangleright \ \mathsf{If} \ X \perp Y, \ \mathsf{then} \ \mathsf{Var}(-X+3Y+10) = \mathsf{Var}(X) + 9\mathsf{Var}(Y) \end{array}$$

Population universe and sample universe

Sample universe (what we see)

 $\mathsf{Data} \Rightarrow$

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution \Rightarrow

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- $\circ~pdf$ (continuous r.v.)

Later, we will know why we can use the sample information to infer the population universe.

Many thanks to

- Chengliang Tang
- Joyce Robbins
- Yang Feng
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years