Lecture 8: Population Summary Characteristics

Ye Tian
Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 18, 2022
COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Recap: random variables

Given an experiment and the sample space Ω, a random variable is a function mapping an outcome $(\omega \in \Omega)$ into a real number, i.e.

$$
X: \omega \in \Omega \mapsto X(\omega) \in(-\infty,+\infty)
$$

- When the possible values of a random variable are countable ${ }^{1}$, the random variable is discrete.
Examples: the number of heads/tails of coin flipping, the number of dice etc.
- When both of the following apply, the random variable is continuous.
\triangleright The range is uncountable (e.g.: an interval on the number line)
\triangleright No possible value of the variable has positive probability, i.e. $\mathbb{P}(X=c)=0$ for any number c.
Examples: the temperature at a random location

[^0]
Review: Probability distribution

The (probability) distribution of a random variable X describes how the total probability of 1 is distributed among all possible values of X. It tells us $\mathbb{P}(X \in \mathcal{B})=\mathbb{P}(\{\omega: X(\omega) \in \mathcal{B}\})$ for any subset \mathcal{B} of number line ${ }^{2}$.

Three characterizations of the distribution of a random variable:

- cdf: $F(x)=\mathbb{P}(X \leq x)$
- pmf (discrete variables only): $p(x)=\mathbb{P}(X=x)$
- pdf (continuous variables only): f such that (any one of the following holds, actually they're equivalent definitions):
$\triangleright \mathbb{P}(a<X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x$, for any numbers a, b
$\triangleright f(x)=F^{\prime}(x)$, for any number x
$\triangleright F(x)=\int_{-\infty}^{x} f(t) d t$, for any number x

[^1]
Comparison: discrete and continuous variables

Discrete distribution:

Continuous distribution:

Today's goal

- Understand the definition and interpretation of expectation and variance
- Given a distribution, know how to calculate the expectation and variance
- Understand the definition of other population characteristics (e.g.: median, quantile etc.)
- Have a better understanding on population and samples (today, tomorrow and Wednesday)

Joint Distribution of Multiple Variables

Joint distribution and independence between random

variables

The joint distribution of two random variables X and Y describes how the total probability of 1 is distributed among all possible values of pair (X, Y). It tells us

$$
\mathbb{P}\left(X \in \mathcal{B}_{1}, Y \in \mathcal{B}_{2}\right)=\mathbb{P}\left(\left\{\omega: X(\omega) \in \mathcal{B}_{1}\right\} \cap\left\{\omega: Y(\omega) \in \mathcal{B}_{2}\right\}\right)
$$

for any subsets \mathcal{B}_{1} and \mathcal{B}_{2} of number line.
We can define cdf, pmf and pdf for the joint distribution of (X, Y) similarly:

- cdf: $F(x, y)=\mathbb{P}(X \leq x, Y \leq y)$
- pmf (discrete variables only): $p(x, y)=\mathbb{P}(X=x, Y=y)$
- pdf (continuous variables only): f such that (any one of the following holds, actually they're equivalent definitions):
$\triangleright \mathbb{P}(a<X \leq b, c<Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$, for any numbers a, b, c and d
$\triangleright f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)$, for any number x
$\triangleright F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(r, t) d r d t$, for any numbers x and y

Joint distribution and independence between random

variables

Similar to our study on the independence relationship between multiple events, we can also study the independence between random variables.

But I do want everyone to get a sense what this independence between variables means.

- Recall that $\mathbb{P}(X \in \mathcal{B})=\mathbb{P}(\{\omega: X(\omega) \in \mathcal{B}\})$. Actually r.v.'s X and Y are independent iff $\mathbb{P}\left(X \in \mathcal{B}_{1}, Y \in \mathcal{B}_{2}\right)=\mathbb{P}\left(X \in \mathcal{B}_{1}\right) \mathbb{P}\left(Y \in \mathcal{B}_{2}\right)$ for any subsets \mathcal{B}_{1} and \mathcal{B}_{2} of the number line, i.e.

$$
\left\{\omega: X(\omega) \in \mathcal{B}_{1}\right\} \Perp\left\{\omega: Y(\omega) \in \mathcal{B}_{2}\right\} .
$$

This means independence between r.v.'s is essentially the independence between multiple pairs of events (n-"tuple" for n r.v.'s)!

- An equivalent definition for two continuous r.v.'s X and $Y: X \Perp Y$ iff

$$
f_{(X, Y)}(x, y)=f_{X}(x) f_{Y}(y),
$$

where $f_{(X, Y)}(x, y)$ are the joint pdf of $(X, Y), f_{X}$ and f_{Y} are the marginal pdf of X and Y.

Independence between random variables

Suppose the joint pmf or pdf of X_{1}, \ldots, X_{n} is $f\left(x_{1}, \ldots, x_{n}\right)$. And the marginal pmf or pdf of X_{i} is $f_{i}\left(x_{i}\right)$. Then X_{1}, \ldots, X_{n} are independent if and only if

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

for any numbers x_{1}, \ldots, x_{n}.

Things you need to know about the joint distribution and independence between r.v.'s for this course

- r.v.'s $X \Perp Y$ iff $\mathbb{P}\left(X \in \mathcal{B}_{1}, Y \in \mathcal{B}_{2}\right)=\mathbb{P}\left(X \in \mathcal{B}_{1}\right) \mathbb{P}\left(Y \in \mathcal{B}_{2}\right)$ for any subsets \mathcal{B}_{1} and \mathcal{B}_{2} of the number line, i.e.

$$
\left\{\omega: X(\omega) \in \mathcal{B}_{1}\right\} \Perp\left\{\omega: Y(\omega) \in \mathcal{B}_{2}\right\} .
$$

This means independence between r.v.'s is essentially the independence between multiple pairs of events (n-"tuple" for n r.v.'s)!

- Know that we can similarly define the cdf, pmf and pdf for joint distribution as we did for a single variable
- Know how to calculate the expectation and variance of sum of independent variables
- Understand the definitions of covariance and correlation of two variables
- Know the distribution of sum of independent normally-distributed variables

Expectation and Variance

Population universe and sample universe

Sample universe (what we see)

$$
\text { Data } \Rightarrow
$$

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution \Rightarrow

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

Later, we will know why we can use the sample information to infer the population universe.

Expectation or expected values

Sample mean: Data $x_{1}, \ldots, x_{n} \Rightarrow \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Definition: The expectation of a r.v. X is defined as

$$
\mathbb{E} X=\mu_{X}= \begin{cases}\sum_{j} x_{j} \times \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete, } \\ \int_{-\infty}^{+\infty} x f(x) d x, & X \text { is continuous and } f \text { is the pdf }\end{cases}
$$

- Expectation (Or expected value) of a random variable is its long-run average. When $x_{1}, \ldots, x_{n} \stackrel{\text { i.i.d. }}{\sim} X$ and $n \rightarrow+\infty, \bar{x} \approx \mathbb{E} X$.
- $\mathbb{E} X$ indicates the "center" of X. It is not a value that is likely/expected to get.

[^2]
Expectation or expected values

Example 1: Rolling a die. What is the expected number of spots X on the top?
$\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=\frac{1}{6} \Rightarrow \mathbb{E} X=1 \times \frac{1}{6}+2 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=3.5$.

Expectation or expected values

Example 2: X follows a uniform distribution on $[0,1]$. (i.e. pdf $f(x)=1$ on [0, 1] and 0 elsewhere)
$\mathbb{E} X=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}$.

Expectation or expected values

Example 3: For a rare disease with 1% prevalence rate, the following group testing is used.

- Pull the blood sample of 10 people together.
- If the result is negative, all of them are negative.
- If the result is positive, test them individually.

If each test costs $\$ 1$, what is the expected cost?

Let $X=$ the cost. Then the pmf of X is

- $\mathbb{P}(X=1)=\mathbb{P}(\{$ all 10 people are negative $\})=0.99^{10}=0.9044$
- $\mathbb{P}(X=11)=1-\mathbb{P}(\{$ all 10 people are negative $\})=0.0956$
$\Longrightarrow \mathbb{E} X=1 \times \mathbb{P}(X=1)+11 \times \mathbb{P}(X=11)=1.956$ (dollars).

Expectation or expected values

Expected value of a function of a random variable:
Theorem: Suppose new r.v. $Y=g(X)$, where g is some function on the number line. Then the expectation of Y equals
$\mathbb{E} Y=\mathbb{E}(g(X))= \begin{cases}\sum_{j} g\left(x_{j}\right) \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete, } \\ \int_{-\infty}^{+\infty} g(x) f(x) d x, & X \text { is continuous and } f \text { is the pdf }\end{cases}$

You will prove the discrete case in HW3!

Expectation or expected values

Example 1 (revisited): Rolling a die. Suppose X is the number of spots on the top. What's the expected value of X^{2} ?

Define $Y=X^{2}$. We know $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=\frac{1}{6}$
Way 1: (previous theorem) $\mathbb{E} X^{2}=1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+\cdots+6^{2} \times \frac{1}{6}=15.17$
Way 2: (definition of $\mathbb{E} Y)$ We know $\mathbb{P}\left(Y=1^{2}\right)=\mathbb{P}\left(Y=2^{2}\right)=\cdots=$ $\bar{P}\left(Y=6^{2}\right)=\frac{1}{6} \mathbb{E} Y=1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+\cdots+6^{2} \times \frac{1}{6}=15.17$

Example 2 (revisited): X follows a uniform distribution on $[0,1]$. (i.e. pdf $f(x)=1$ on $[0,1]$ and 0 elsewhere)
$\mathbb{E} X^{2}=\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}$.

Expectation or expected values

Linearity of expectations: Suppose a and b are two constants (numbers), then $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$.

Can be easily proved by considering a function of r.v. X as $Y=a X+b$, then calculating the expected value of function of r.v. You will prove it in HW3.

Variance and standard deviation

Sample variance: Data $x_{1}, \ldots, x_{n} \Rightarrow s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
Definition: The variance of a r.v. X is defined as

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}
$$

$$
= \begin{cases}\sum_{j}\left(x_{j}-\mathbb{E} X\right)^{2} \times \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete, } \\ \int_{-\infty}^{+\infty}(x-\mathbb{E} X)^{2} f(x) d x, & X \text { is continuous and } f \text { is pdf }\end{cases}
$$

The standard deviation of X is $\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}$

- The standard deviation shows the likely size of the deviation of the r.v. X from $\mathbb{E} X$.
- When $x_{1}, \ldots, x_{n} \stackrel{i . i . d .}{\sim} X$ and $n \rightarrow+\infty, s^{2} \approx \operatorname{Var}(X)$.
- The variance and standard deviation is always non-negative.
- When $\operatorname{Var}(X)=0$, we have $\mathbb{P}(X=\mathbb{E} X)=1$.

Variance and standard deviation

A shortcut formula to calculate $\operatorname{Var}(X): \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}$
Remark: Note that $\mathbb{E}\left(X^{2}\right)$ and $(\mathbb{E} X)^{2}$ are totally different!

$$
\begin{aligned}
& \mathbb{E}\left(X^{2}\right)= \begin{cases}\sum_{j} x_{j}^{2} \times \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete, } \\
\int_{-\infty}^{+\infty} x^{2} f(x) d x, & X \text { is continuous and } f \text { is the pdf }\end{cases} \\
&(\mathbb{E} X)^{2}= \begin{cases}{\left[\sum_{j} x_{j} \times \mathbb{P}\left(X=x_{j}\right)\right]^{2},} & X \text { is discrete, } \\
{\left[\int_{-\infty}^{+\infty} x^{2} f(x) d x\right]^{2},} & X \text { is continuous and } f \text { is the pdf }\end{cases}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2} & =\mathbb{E}\left[X^{2}-2 X(\mathbb{E} X)+(\mathbb{E} X)^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2(\mathbb{E} X) \times(\mathbb{E} X)+(\mathbb{E} X)^{2} \\
& =\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}
\end{aligned}
$$

Question: Why does " $=$ " hold?

Variance and standard deviation

Example 1 (revisited): Rolling a die. Suppose X is the number of spots on the top.

We know $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=\frac{1}{6}$
We have already obtained $\mathbb{E} X^{2}=1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+\cdots+6^{2} \times \frac{1}{6}=15.17$, $\mathbb{E} X=1 \times \frac{1}{6}+2 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=3.5$. Then by the shortcut formula,

$$
\begin{aligned}
& \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=15.7-3.5^{2}=3.45 \\
& \operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}=1.86
\end{aligned}
$$

Example 2 (revisited): X follows a uniform distribution on $[0,1]$. (i.e. pdf $f(x)=1$ on $[0,1]$ and 0 elsewhere)
We have already obtained $\mathbb{E} X^{2}=\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}$, $\mathbb{E} X=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}$. Then by the shortcut formula,

$$
\begin{aligned}
& \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=1 / 3-(1 / 2)^{2}=1 / 12 \\
& \mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=0.289
\end{aligned}
$$

Variance and standard deviation

'Linearity" of variances: Suppose a and b are two constants (numbers), then:

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- $\operatorname{SD}(a X+b)=|a| \operatorname{SD}(X)$

Can be easily proved by the definition of variance $\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}$. You will prove it in HW3.

For the variance of a function of a random variable: first use the shortcut formula, then use the conclusion for expectations:
$\operatorname{Var}[g(X)]=\mathbb{E}\left[g^{2}(X)\right]-[\mathbb{E} g(X)]^{2}$.

Other Summary Characteristics of Distributions

Quantiles

Sample quantiles: Data $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} \Rightarrow k$-th percentile or $k \%$ quantile is the value where $k \%$ of the values are below.

Definition: The k-th percentile or $k \%$ quantile of a continuous r.v. X is defined as the number $\eta(k \%)$ that satisfies

$$
k \%=F(\eta(k \%))=\mathbb{P}(X \leq \eta(k))=\int_{-\infty}^{\eta(k)} f(x) d x
$$

where f and F are the pdf and cdf of X.

- We don't study the discrete case here. But you can imagine that the trick of interpolation can be applied to help define the quantile.
- Median $=\eta(50 \%)$.
- When $x_{1}, \ldots, x_{n} \stackrel{i . i . d .}{\sim} X$ and $n \rightarrow+\infty$, sample $k \%$ quantile $\approx \eta(k \%)$.

Quantiles

Example 2 (revisited): X follows a uniform distribution on $[0,1]$. (i.e. pdf $f(x)=1$ on $[0,1]$ and 0 elsewhere)

By definition, $F(x)=\int_{-\infty}^{x} 1 d t=\int_{0}^{x} 1 d t=x$ when $x \in[0,1]$. Thus by letting

$$
F(\eta(k \%))=0.01 k
$$

we obtain

$$
\eta(k \%)=0.01 k
$$

for $k \in[0,100]$.
$\Rightarrow k \%$ quantile $=0.01 k$.

Covariance

Covariance and correlation help us understand the strength of linear association/correlation between two random variables.
Recall that the variance is defined as $\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}$. The covariance between X and Y is "similarly" defined by

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)
$$

- $\operatorname{Cov}(X, Y)$ can be positive, negative, or zero
- When $\operatorname{Cov}(X, Y)=0$, we say X and Y are (linearly) uncorrelated.
- Independence \Rightarrow uncorrelation, but uncorrelation \nRightarrow independence

Correlation

Correlation is a "standardized" version of covariance.
The correlation between X and Y is defined by

$$
\operatorname{Corr}(X, Y)=\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- $-1 \leq \operatorname{Corr}(X, Y) \leq 1$ (can be shown by the integral version of Cauchy-Schwarz inequality, which we will not cover)
- $\rho_{X, Y}$ measures the strength of linear association between X and Y. The larger the $\left|\rho_{X, Y}\right|$, the stronger the linear association.
- $\rho_{X, Y}>0$ means positive association/correlation, i.e. larger X tends to associate with large Y and smaller X tends to associate with smaller Y
- When $\rho_{X, Y}=0, X$ and Y are (linearly) uncorrelated.
- Independence \Rightarrow uncorrelation, but uncorrelation \nRightarrow independence
- $\rho_{X, Y}$ is invariant under different measurement units, i.e. $\operatorname{Corr}(a X+b, c Y+d)=\operatorname{Corr}(X, Y)$ for any numbers $a \neq 0, c \neq 0, b$ and d.

Sample covariance and sample correlation

Sample covariance and correlation: Data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \Rightarrow$

$$
\begin{aligned}
\widehat{\operatorname{Cov}}(X, Y) & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\left(\frac{1}{n-1} \sum_{i=1}^{n} x_{i} y_{i}\right)-\bar{x} \bar{y} \\
\hat{\rho}_{X, Y} & =\frac{\widehat{\operatorname{Cov}}(X, Y)}{s_{x} s_{y}}
\end{aligned}
$$

where sample mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, sample mean $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$, sample variance $s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}, s_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$

Compare with the population covariance and correlation:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y) \\
\rho_{X, Y} & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
\end{aligned}
$$

The "linearity" of expectation and variance (A general version)

Suppose X_{1}, \ldots, X_{n} are random variables. $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are constants.

- $\mathbb{E}\left[\sum_{i=1}^{n}\left(a_{i} X_{i}+b_{i}\right)\right]=\sum_{i=1}^{n}\left(a_{i} \mathbb{E} X_{i}+b_{i}\right)$
- If X_{1}, \ldots, X_{n} are independent, then
$\operatorname{Var}\left[\sum_{i=1}^{n}\left(a_{i} X_{i}+b_{i}\right)\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$

Remark:

- The conclusion of expectation holds even when X_{1}, \ldots, X_{n} are dependent!
- Some simple examples: For r.v. X and Y :
$\triangleright \mathbb{E}(X+2 Y)=\mathbb{E} X+2 \mathbb{E} Y$
$\triangleright \mathbb{E}(-X+3 Y+10)=-\mathbb{E} X+3 \mathbb{E} Y+10$
$\triangleright \operatorname{Var}(-X+3 Y+10)=$ We don't know!
- If $X \Perp Y$, then $\operatorname{Var}(-X+3 Y+10)=\operatorname{Var}(X)+9 \operatorname{Var}(Y)$

Population universe and sample universe

Sample universe (what we see)

$$
\text { Data } \Rightarrow
$$

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution \Rightarrow

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

Later, we will know why we can use the sample information to infer the population universe.

Many thanks to

- Chengliang Tang
- Joyce Robbins
- Yang Feng
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

[^0]: ${ }^{1}$ either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite)

[^1]: ${ }^{2}$ Currently, \mathcal{B} can be any union/intersection of intervals/points on the real line. E.g., \mathcal{B} can be $(0,1),[-2,+\infty),(5,5.5],\{1\},\{-1,2.5\},(-3,-1) \cup(9,10]$ etc.

[^2]: ${ }^{3}$ i.i.d. means "identically and independent distributed (as)"

