Lecture 9: Commonly Used Distributions

Ye Tian
Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 19, 2022
COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Recap: Joint distribution and independence

- The joint distribution of two random variables X and Y describes how the total probability of 1 is distributed among all possible values of pair (X, Y). It tells us

$$
\mathbb{P}\left(X \in \mathcal{B}_{1}, Y \in \mathcal{B}_{2}\right)=\mathbb{P}\left(\left\{\omega: X(\omega) \in \mathcal{B}_{1}\right\} \cap\left\{\omega: Y(\omega) \in \mathcal{B}_{2}\right\}\right)
$$

for any subsets \mathcal{B}_{1} and \mathcal{B}_{2} of number line.

- We can define cdf, pmf and pdf for multiple r.v.'s similar to the one-variable case.
- r.v.'s X and Y are independent iff $\mathbb{P}\left(X \in \mathcal{B}_{1}, Y \in \mathcal{B}_{2}\right)=\mathbb{P}\left(X \in \mathcal{B}_{1}\right) \times$ $\mathbb{P}\left(Y \in \mathcal{B}_{2}\right)$ for any subsets \mathcal{B}_{1} and \mathcal{B}_{2} of the number line, i.e.

$$
\left\{\omega: X(\omega) \in \mathcal{B}_{1}\right\} \Perp\left\{\omega: Y(\omega) \in \mathcal{B}_{2}\right\} .
$$

This means independence between r.v.'s is essentially the independence between multiple pairs of events (n-"tuple" for n r.v.'s)!

Recap: Expectation and expected values

Sample mean: Data $x_{1}, \ldots, x_{n} \Rightarrow \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Definition: The expectation of a r.v. X is defined as

$$
\mathbb{E} X=\mu_{X}= \begin{cases}\sum_{j} x_{j} \times \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete }, \\ \int_{-\infty}^{+\infty} x f(x) d x, & X \text { is continuous and } f \text { is the pdf }\end{cases}
$$

- Expectation (Or expected value) of a random variable is its long-run average. When $x_{1}, \ldots, x_{n} \stackrel{i . i . d .}{\sim} X$ and $n \rightarrow+\infty, \bar{x} \approx \mathbb{E} X$. $\quad 1$
- $\mathbb{E} X$ indicates the "center" of X. It is not a value that is likely/expected to get.
- Linearity of expectations: Suppose a and b are two constants (numbers), then $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$.

[^0]
Recap: Variance and standard deviation

Sample variance: Data $x_{1}, \ldots, x_{n} \Rightarrow s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
Definition: The variance of a r.v. X is defined as
$\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}$

$$
= \begin{cases}\sum_{j}\left(x_{j}-\bar{x}\right)^{2} \times \mathbb{P}\left(X=x_{j}\right), & X \text { is discrete }, \\ \int_{-\infty}^{+\infty}(x-\mathbb{E} X)^{2} f(x) d x, & X \text { is continuous and } f \text { is the pdf }\end{cases}
$$

The standard deviation of X is $\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}$

- A shortcut formula: $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}$
- When $x_{1}, \ldots, x_{n} \stackrel{i . i . d .}{\sim} X$ and $n \rightarrow+\infty, s^{2} \approx \operatorname{Var}(X)$.
- "Linearity" of variances: Suppose a and b are two constants (numbers), then:
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
$\triangleright \mathrm{SD}(a X+b)=|a| \mathrm{SD}(X)$
- The variance and standard deviation is always non-negative.
- When $\operatorname{Var}(X)=0$, we have $\mathbb{P}(X=\mathbb{E} X)=1$.

Recap: Covariance and correlation

Covariance between X and Y :

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)
$$

The correlation between X and Y is defined by

$$
\operatorname{Corr}(X, Y)=\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- $\operatorname{Cov}(X, Y)$ can be positive, negative, or 0 , while $-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- When $\operatorname{Cov}(X, Y)=0$ or $\rho_{X, Y}=0$, we say X and Y are (linearly) uncorrelated.
- Independence \Rightarrow uncorrelation, but uncorrelation \nRightarrow independence
- $\rho_{X, Y}$ measures the strength of linear association between X and Y.

The larger the $\left|\rho_{X, Y}\right|$, the stronger the linear association.

- $\rho_{X, Y}>0$ means positive association/correlation, i.e. larger X tends to associate with large Y and smaller X tends to associate with smaller Y

Recap: Population universe and sample universe

Sample universe (what we see)
Data \Rightarrow

- Sample mean
- Sample variance
- Sample standard deviation
- Sample quantiles (sample median, quartiles...)
- Sample maximum/minimum
- Sample covariance/correlation
- Bar chart (discrete r.v.)
- Histogram (continuous r.v.)

Population universe (inaccessible)
Probability distribution \Rightarrow

- Expectation/Mean
- Variance
- Standard deviation
- Quantiles (median, quartiles ...)
- Maximum/minimum
- Covariance/correlation
- pmf (discrete r.v.)
- pdf (continuous r.v.)

Today's goal: Know some commonly used distributions

Discrete distributions:

- Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Hyper-geometric distribution
- Poisson distribution

Continuous distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- χ^{2}-distribution
- t-distribution
- F-distribution

Discrete Distributions

Bernoulli distribution

Bernoulli trials: (like coin tossing)

- Each trial has two outcomes: denoted as S (success) and F (failure).
- For each trial, $\mathbb{P}(S)=p$ and $\mathbb{P}(F)=q=1-p$.
- The trials are independent.

Associated random variable: A r.v. X satisfies $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p$, then we call X a Bernoulli random variable and the corresponding distribution the Bernoulli distribution, denoted by $X \sim \operatorname{Bernoulli}(p)$.

- $\mathbb{E} X=p, \operatorname{Var}(X)=p(1-p)$

Verification:

$$
\mathbb{E}\left(X^{2}\right)=1^{2} \times p+0^{2} \times(1-p)=p \Rightarrow \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=p-p^{2}
$$

Examples:

- Flipping a fair coin and $X=1$ represents the heads. $p=1 / 2$.
- Quality control: Defective/Good
- Clinical trial: Survival/death
- Sampling survey: Coke/Pepsi

Bernoulli distribution

A r.v. X satisfies $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p$, then we call X a Bernoulli random variable and the corresponding distribution the Bernoulli distribution.

Sometimes people call such p as the probability of success.

Here different values of p define different Bernoulli distributions, which we call a family of distributions. And we call such p as a parameter. Usually people first assume the data come from some distribution, then estimate the corresponding parameter by using the collected data.

Binomial distribution

Bernoulli trials: (like coin tossing)

- Each trial has two outcomes: denoted as S (success) and F (failure).
- For each trial, $\mathbb{P}(S)=p$ and $\mathbb{P}(F)=q=1-p$.
- The trials are independent.

We can carry out Bernoulli trials for many times and see how many "S" we get.

For example, flip a fair coin for 100 times and count the number of heads.

Binomial distribution

Let X be the number of successes in a Bernoulli process with n trials and probability of success p. Then, X follows a Binomial distribution and X is a Binomial variable, denoted by $X \sim \operatorname{Bin}(n, p)$.

- If we denote X_{i} the Bernoulli r.v. corresponding to outcome of i-th Bernoulli trial, then the Binomial r.v. $X=\sum_{i=1}^{n} X_{i}$.
- pmf: $p(x)=\mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, where $x=0, \ldots, n$.
- cdf: $\mathbb{P}(X \leq x)=\sum_{i=0}^{x} \mathbb{P}(X=x)$
- $\mathbb{E} X=n p, \operatorname{Var}(X)=n p(1-p)$

Verification: $\mathbb{E} X=\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=n p$.
Since X_{i} 's are independent, $\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=p-p^{2}$.

Example:

- Flip a fair coin for $n=100$ times and X represents the number of heads. Then $X \sim \operatorname{Bin}(100,1 / 2)$.
- Toss a die for $n=10$ times and X represents the number of times when we get numbers 1 or 3 . Then $X \sim \operatorname{Bin}(10,1 / 3)$.

Binomial distribution: pmf

pmf: $\mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, where $x=0, \ldots, n$.

Geometric distribution

Bernoulli trials:

- Each trial has two outcomes: denoted as S (success) and F (failure).
- For each trial, $\mathbb{P}(\mathrm{S})=p$ and $\mathbb{P}(\mathrm{F})=q=1-p$.
- The trials are independent.

We can carry out Bernoulli trials for many times and see

- Binomial distribution: how many "S" we get.
- Geometric distribution: how many trials until we first get an "S". We denote it as $X \sim \operatorname{Geometric}(p)$.

For example:

- FSFFSF… $X=2$
- FFFFFFS $\cdots X=6$
pmf: $p(x)=\mathbb{P}(X=x)=\mathbb{P}(\{\underbrace{\mathrm{F} \ldots \ldots \ldots \mathrm{F}} \mathrm{S}\})=q^{x-1} p$, where $x=1,2, \ldots$
($x-1$) F's
cdf: $F(x)=1-\mathbb{P}(X>x)=1-\mathbb{P}(\{\underbrace{\mathrm{F} \ldots \ldots \ldots \mathrm{F}}_{x \mathrm{~F}^{\prime} \mathrm{s}}\})=1-q^{x}$
$\mathbb{E} X=1 / p, \operatorname{Var}(X)=1 / p^{2}$

Geometric distribution

Example: A man with n keys wants to open his door and tries the keys at random (unsuccessful keys are not eliminated from further selections).
Exactly one key will open the door.

- What's the probability that he succeeds at the 3rd time.
- What's the probability that he succeeds in 3 times.
- How many times is he expected to try until opening it?

This is a Bernoulli trial process and each time it's a success if the door is open, otherwise it's a failure. The number of trials until opening it, $X \sim \operatorname{Geometric}(1 / n) .(p=1 / n, q=1-1 / n)$

- $\mathbb{P}(X=3)=(1-1 / n)^{2}(1 / n)$
- $\mathbb{P}(X \leq 3)=1-(1-1 / n)^{3}$
- $\mathbb{E} X=n$

Hyper-geometric distribution

Recall: Binomial process with n trials: trials are independent In a sampling survey, one typically draws without replacement.

Suppose there are N products in total with M defective ones and $N-M$ good ones. We sample n from these N products without replacement.

Let X be the number of defective products, which follows a hyper-geometric distribution.

Hyper-geometric distribution

Let X be the number of defect products, which follows a hyper-geometric distribution.
pmf: $\mathbb{P}(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$, if $\max \{0, n-N+M\} \leq x \leq \min \{n, M\}$, and $\mathbb{P}(X=x)=0$ elsewhere.

You will derive it in HW3!
$\mathbb{E} X=n \times \frac{M}{N}$.

Comparison: hyper-geometric distribution and binomial distribution

Suppose there are N products in total with M defective ones and $N-M$ good ones.

- When sampling n times with replacement, the distribution of the number of defective ones is binomial.
- When sampling n times without replacement, the distribution of the number of defective ones is hyper-geometric.
- When sampling a small fraction from a large population, the process is nearly Bernoulli trial process \Rightarrow can use the binomial to approximate the hyper-geometric

Comparison: hyper-geometric distribution and binomial distribution

Example: Randomly draw 4 balls from a bag of 6 red balls and 4 black balls.

- If we draw with replacement, what's the probability of getting 2 reds ones and 2 black ones?
- If we draw without replacement, what's the probability again?
- Calculate and compare when there are 600 red balls and 400 black balls.

- $X=$ number of red balls $\sim \operatorname{Bin}(4,0.6)$. $\mathbb{P}(X=2)=\binom{4}{2} \times 0.6^{2} \times 0.4^{2}=0.3456$
- $X=$ number of red balls \sim Hypergeometric.

$$
\mathbb{P}(X=2)=\frac{\binom{6}{2}\binom{4}{2}}{\binom{10}{4}}=0.4285
$$

Comparison: hyper-geometric distribution and binomial distribution

Example: Randomly draw 4 balls from a bag where there are 6 red balls and 4 black balls.

- If we draw with replacement, what's the probability of getting 2 reds ones and 2 black ones?
- If we draw without replacement, what's the probability again?
- Calculate and compare when there are 600 red balls and 400 black balls.
- $X=$ number of red balls $\sim \operatorname{Bin}(4,0.6) \cdot \mathbb{P}(X=2)=$ $\binom{4}{2} \times 0.6^{2} \times 0.4^{2}=0.3456$
- $X=$ number of red balls \sim Hypergeometric.
$\mathbb{P}(X=2)=\frac{\binom{600}{2}\binom{400}{2}}{\binom{1000}{4}}=0.3462$
- Intuition: taking out a few balls will not affect the ball proportion much...

Poisson distribution (optional)

We say X follows Poisson distribution if its pmf safisfies

$$
\mathbb{P}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2, \ldots
$$

which is denoted by $X \sim \operatorname{Poisson}(\lambda)$. And $\mathbb{E} X=\lambda, \operatorname{Var}(X)=\lambda$.

Motivation: If

- The number of events occurring in any time interval is independent of the number of events in any other non-overlaping interval;
- Almost impossible for two or more events to occur simultaneously;
- The average number of occurrences per time unit is constant λ; then it can be shown that the number of occurrences in a unit time interval \sim Poisson (λ).

Continuous Distributions

Uniform distribution

We say X follow a uniform distribution on $[A, B]$, if:

- Its pdf is $f(x)= \begin{cases}\frac{1}{B-A}, & A \leq x \leq B \\ 0, & \text { elsewhere }\end{cases}$
- Its cdf is $F(x)= \begin{cases}0, & x \leq A \\ \frac{x-A}{B-A}, & A<x \leq B \\ 1, & x>B\end{cases}$

Normal distribution

A continuous r.v. X follows a normal distribution (or Gaussian distribution) if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad-\infty<x<+\infty
$$

denoted by $X \sim N\left(\mu, \sigma^{2}\right)$. μ and σ^{2} are called the mean parameter and variance parameter.

Property:

- $\mathbb{E} X=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- pdf f is symmetric around μ : $f(\mu-x)=f(\mu+x)$ for any x

Normal distribution

$N(0,1)$ is called the standard normal distribution where $\mu=0$ and $\sigma^{2}=1$. It pdf and cdf are denoted as ϕ and Φ, defined by

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \Phi(x)=\int_{-\infty}^{x} \phi(t) d t
$$

$\Phi(x)$ doesn't have an explicit expression... which is bad.

- Standardization property: If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.
- ϕ is symmetric around 0 : $\phi(x)=\phi(-x)$ for any x.
- (Consequence of the second property) $\Phi(-x)=1-\Phi(x)$ for any x

Normal distribution

Standardization property:

- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.

Consequence:

$$
\begin{aligned}
& \circ \mathbb{P}(X \leq x)=\mathbb{P}\left(Z \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right) \\
& \circ \mathbb{P}(a \leq X \leq b)=\mathbb{P}\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

Therefore, if we can calculate the cdf of the standard normal r.v. (i.e. Φ), then we can immediately calculate probability related to any normal r.v.!

The z-table

z-table lists the cdf at a fine grid of points.
Two uses:

- Look up the cdf value at a specific point;
- Given a specific cdf value, look up the corresponding quantile.

See Table A. 3 of "Devore, J. L. (2011). Probability and Statistics for Engineering and the Sciences. Cengage learning. (9th edition)". You can find it on courseworks files as well.

\boldsymbol{z}	$\mathbf{. 0 0}$	$\mathbf{. 0 1}$	$\mathbf{. 0 2}$	$\mathbf{. 0 3}$
$\mathbf{- 3 . 4}$.0003	.0003	.0003	.0003
$\mathbf{- 3 . 3}$.0005	.0005	.0005	.0004
$\mathbf{- 3 . 2}$.0007	.0007	.0006	.0006
$\mathbf{- 3 . 1}$.0010	.0009	.0009	.0009
$\mathbf{- 3 . 0}$.0013	.0013	.0013	.0012

Example: normal distribution

If $X \sim N(3,4)$, compute $\mathbb{P}(1 \leq X \leq 6)$.
We know $\mu=3$ and $\sigma=2$ (not 4).
Step 1 (transforming X to standard normal):

$$
\begin{aligned}
\mathbb{P}(1 \leq X \leq 6) & =\mathbb{P}(\frac{1-3}{2} \leq \underbrace{\frac{X-3}{2}}_{\sim N(0,1)} \leq \frac{6-3}{2}) \\
& =\mathbb{P}(-1 \leq Z \leq 1.5) \\
& =\Phi(1.5)-\Phi(-1)
\end{aligned}
$$

Step 2 (looking up z-table): $\Phi(1.5)-\Phi(-1)=0.9332-0.1587=0.7745$.

Example: normal distribution

If $X \sim N(3,4)$, find its 25% quantile.
We know $\mu=3$ and $\sigma=2$. We want to find x that satisfies

$$
\mathbb{P}(X \leq x)=0.25
$$

Step 1 (transforming X to standard normal):

$$
\begin{aligned}
0.25=\mathbb{P}(X \leq x) & =\mathbb{P}(\underbrace{\frac{X-3}{2}}_{\sim N(0,1)} \leq \frac{x-3}{2}) \\
& =\mathbb{P}\left(Z \leq \frac{x-3}{2}\right) \\
& =\Phi\left(\frac{x-3}{2}\right)
\end{aligned}
$$

Step 2 (looking up z-table): $\frac{x-3}{2}=\Phi^{-1}(0.25) \approx-0.67 \Rightarrow x=1.66$.

68-95-99.7 rule (3σ-rule)

Suppose $X \sim N\left(\mu, \sigma^{2}\right)$.

- $\mathbb{P}(\mu-\sigma \leq X \leq \mu+\sigma)=\Phi(3)-\Phi(-3)=0.6826 \approx 0.68$
- $\mathbb{P}(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=\Phi(2)-\Phi(-2)=0.9544 \approx 0.95$
$\circ \mathbb{P}(\mu-3 \sigma \leq X \leq \mu+3 \sigma)=\Phi(1)-\Phi(-1)=0.9974 \approx 0.997$

This will be useful in a wide range of practical settings, especially when trying to make a quick estimate without a calculator or z-table.

The "linearity" of expectation and variance (A general version)

Suppose X_{1}, \ldots, X_{n} are random variables. a_{1}, \ldots, a_{n}, b are constants.

- $\mathbb{E}\left[\left(\sum_{i=1}^{n} a_{i} X_{i}\right)+b\right]=\sum_{i=1}^{n}\left(a_{i} \mathbb{E} X_{i}\right)+b$
- If X_{1}, \ldots, X_{n} are independent, then
$\operatorname{Var}\left[\left(\sum_{i=1}^{n} a_{i} X_{i}\right)+b\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$

Sum of independent normal variables

Suppose $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ and $X \Perp Y$.
Theorem: $X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
Warning: This only holds when X and Y are independent!
Counter-example when $X \not \Perp Y: Y=-X$

Consequence:

$$
\begin{aligned}
& \circ X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right) \text {. Then } \sum_{i=1}^{n} X_{i} \sim N\left(\sum_{i}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right) \\
& \circ X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right) . \text { Then } \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)
\end{aligned}
$$

Proof: By induction: $\sum_{i=1}^{n} X_{i} \sim N\left(\tilde{\mu}, \tilde{\sigma}^{2}\right)$. Next we will find $\tilde{\mu}$ and $\tilde{\sigma}^{2}$. Since X_{i} 's are independent: $\tilde{\mu}=\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mu_{i}$, $\tilde{\sigma}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n} \sigma_{i}^{2}$.

Review the general "linearity" of expectation and variance from last lecture!

Exponential distribution

A continuous r.v. X follows a exponential distribution if its pdf is given by

$$
f(x)=\lambda \exp (-\lambda x), \quad x \geq 0,
$$

denoted by $X \sim \operatorname{Exp}(\lambda)$, where λ is the parameter.

Property:

- cdf: $F(x)=\int_{0}^{x} \lambda \exp (-\lambda t) d t=1-\exp (-\lambda x), \quad x \geq 0$.
- $\mathbb{E} X=\int_{0}^{x} t \lambda \exp (-\lambda t) d t=\lambda^{-1}, \operatorname{Var}(X)=\lambda^{-2}$. (You will prove them in HW3)

Exponential distribution: the memoryless property
The exponential distribution has the following memoryless property: Suppose $X \sim \operatorname{Exp}(\lambda)$, then

$$
\mathbb{P}(X>a+x \mid X>a)=\frac{\mathbb{P}(X>a+x)}{\mathbb{P}(X>a)}=\exp (-\lambda x)=\mathbb{P}(X>x),
$$

for any $a \geq 0$ and $x \geq 0$.

$$
\text { " }=\text { ": LBS }=\frac{\exp (-\lambda(a+x))}{\exp (-\lambda a)}=\exp (-\lambda x) .
$$

"I'm still here!"
 How long do ? expect to wait? "Still 5 minutes!!"

Exponential distribution

Suppose that an average of 30 customers per hour enter a store and the time between arrivals is exponentially distributed.

- Suppose the last customer just arrived. What's the probability that the next customer will show up in 3 minutes?
- Suppose that 10 minutes has passed since the last customer arrived. Will your answer change?
- On average 2 minutes elapse between successive visits. Therefore waiting time (unit: minute) $X \sim \operatorname{Exp}(\lambda)$ and $\mathbb{E} X=\lambda^{-1}=2 \Rightarrow \lambda=1 / 2$. Thus $\mathbb{P}(X \leq 3)=1-e^{-3}=0.9502$.
- Since this is an unusually long amount of time, it would seem more likely for a customer to arrive within the next minute. But by memoryless property, the waiting time from now until the next customer arrives still follows $\operatorname{Exp}(1 / 2)$, therefore the answer is the same!

Many thanks to

- Yang Feng
- Joyce Robbins
- Chengliang Tang
- Owen Ward
- Wenda Zhou
- And all my teachers in the past 25 years

[^0]: ${ }^{1}$ i.i.d. means "identically and independent distributed (as)"

