Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness

Ye Tian

Department of Statistics, Columbia University Columbia Statistical Machine Learning Symposium 2023

April 7, 2023

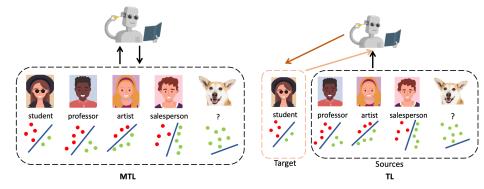
Joint work with

Yuqi Gu (Columbia stats) Yang Feng (NYU biostats)

Greatest thanks to Yuqi and Yang!

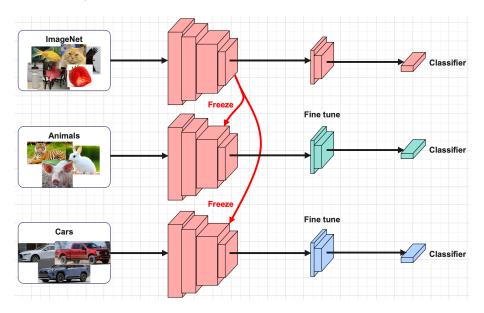
Representation MTL and TL

 $\circ\,$ Multi-task learning (MTL) and transfer learning (TL)



- Representation MTL and TL
 - ▷ Learn a representation jointly and learn a low-dim parameter locally

An example



A theoretical formulation

 $\circ~$ Collected sample $\{\pmb{x}_i^{(t)}, y_i^{(t)}\}_{i=1}^n$ from the t-th task, t=1:T , and

$$y_i^{(t)} = (x_i^{(t)})^T \beta^{(t)*} + \epsilon_i^{(t)}, \quad i = 1:n,$$

where $\boldsymbol{\beta}^{(t)*} = \boldsymbol{A}^* \boldsymbol{\theta}^{(t)*}$, $\boldsymbol{A}^* \in \mathbb{R}^{p \times r}$ with $(\boldsymbol{A}^*)^T \boldsymbol{A}^* = \boldsymbol{I}_{r \times r}$, $\boldsymbol{\theta}^{(t)*} \in \mathbb{R}^r$.

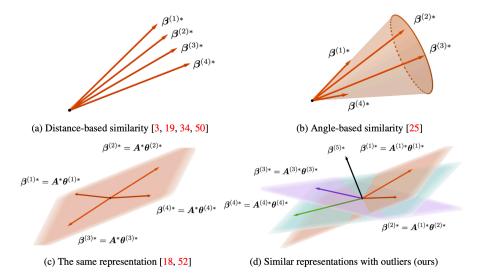
- Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
- Questions:
 - What if the representations are NOT the same?
 - Outlier tasks?
- \circ We suppose $\exists S \subseteq [T]$, $\pmb{\beta}^{(t)*} = \pmb{A}^{(t)*} \pmb{\theta}^{(t)*}$ with

$$\min_{\overline{\boldsymbol{A}}} \max_{t \in S} \|\boldsymbol{A}^{(t)*}(\boldsymbol{A}^{(t)*})^T - \overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^T\|_2 \le h.$$

Sample $\{x_i^{(t)}, y_i^{(t)}\}_{i=1}^n$ from $t \in S^c = [T] \setminus S$ can be arbitrarily distributed. \implies Outlier tasks

Ye Tian

Different paradigms of the linear model



Our contributions

<u>Recall</u>: $\min_{\overline{A}} \max_{t \in S} \| A^{(t)*} (A^{(t)*})^T - \overline{A} (\overline{A})^T \|_2 \le h, \ \beta^{(t)*} = A^{(t)*} \theta^{(t)*},$

- $\circ\,$ Proposed algorithms (based on ERM + penalization) to solve this more general problem under MTL and TL setting
- $\circ~$ Proved upper bounds of the algorithm
 - Adaptivity:

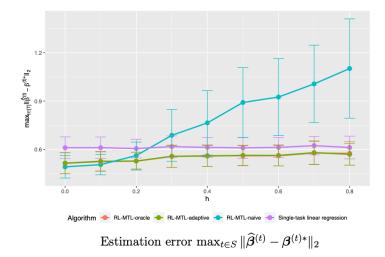
(i) Never perform worse than single-task learning (No negative transfer)

(ii) Benefit from similar representations (i.e., small h)

- ▷ **Robustness**: robust to a small fraction of outlier tasks
- $\circ~$ Proved lower bounds for this problem \Longrightarrow our algorithms are $\mbox{minimax}$ optimal in a large regime
- $\circ\,$ Proposed an algorithm to adapt to unknown intrinsic dimension r
- Our paper: Tian, Y., Gu, Y., & Feng, Y. (2023). Learning from Similar Representations: Adaptivity, Minimaxity, and Robustness. *arXiv preprint arXiv:2303.17765.*

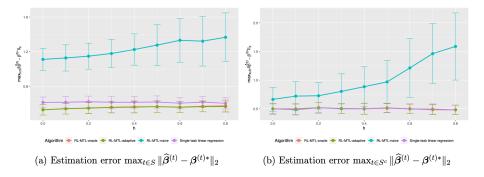
Simulation 1: No outlier tasks

T = 6 tasks, n = 100, p = 20, r = 3, no outlier task



Simulation 2: With outlier tasks

T = 7 tasks (1 outlier task), n = 100, p = 20, r = 3



Thanks!

- Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei, Q. (2020). Few-shot learning via learning the representation, provably. *arXiv* preprint arXiv:2002.09434.
- Tripuraneni, N., Jin, C., and Jordan, M. (2021). Provable meta-learning of linear representations. In *International Conference on Machine Learning*, pages 10434--10443. PMLR.