Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
Ye Tian ${ }^{\dagger}$, Yuqi Gut, and Yang Feng ${ }^{\ddagger}$
\dagger Department of Statistics, Columbia University *Department of Biostatistics, School of Global Public Health, New York University

Introduction

Representation multi-task (MTL) and transfer learning (TL)

Lack of theoretical understanding

- The representations may NOT be the same! But most of theoretical studies As the such an assumption
- As the number of tasks grow, there can be outlier tasks or adversarial attacks.

Multi-task Learning

Problem setting

- T tasks, data $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, with $\boldsymbol{x}_{i}^{(t)} \in \mathbb{R}^{p}, y_{i}^{(t)} \in \mathbb{R}$;
- There exists an unknown subset $S \subseteq[T]$, such that for all $t \in S$,

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n
$$

where $\boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{(t) *} \theta^{(t) *}, \boldsymbol{A}^{(t) *} \in \mathcal{O}^{p \times r}=\left\{\boldsymbol{A} \in \mathbb{R}^{p \times r}: \boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{I}_{r}\right\}$ $\theta^{(t) *} \in \mathbb{R}^{r}, r \leq p$, and $\left\{\epsilon_{i}^{(t)}\right\}_{i=1}^{n}$ are i.i.d. zero-mean sub-Gaussian $\left\{\boldsymbol{x}_{i}^{(t)}\right\}_{i=1}^{n} ;$

- $\min _{\overline{\boldsymbol{A}} \in \mathcal{O}^{p \times r}} \max _{t \in S}\left\|\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}-\overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^{T}\right\|_{2} \leq h ;$
- Data $\left\{\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}\right\}_{t \notin S}$ from outlier tasks \sim an arbitrary distribution $\mathbb{Q}_{S^{c}}$;
- Goal: jointly learning $\left\{\boldsymbol{\beta}^{(t) *}\right\}_{t \in S}$

Two-step algorithm: $(r$ known) Set $\lambda \asymp \sqrt{r(p+\log T)}$ and $\gamma \asymp \sqrt{p+\log T}$ - $\left\{\widehat{\boldsymbol{A}}^{(t)}\right\}_{t=1}^{T},\left\{\widehat{\boldsymbol{\theta}}^{(t)}\right\}_{t=1}^{T}, \widehat{\overline{\boldsymbol{A}}} \in \quad \arg \min$

$$
\left\{\boldsymbol{A}^{(t)}\right\}_{t=1}^{T},\left\{\boldsymbol{\theta}^{(t)}\right\}_{T}^{T}, \overline{\boldsymbol{A}}
$$

$$
\left\{\sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n}\left[y_{i}^{(t)}-\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{A}^{(t)} \boldsymbol{\theta}^{(t)}\right]^{2}+\frac{\lambda}{\sqrt{n}}\left\|\boldsymbol{A}^{(t)}\left(\boldsymbol{A}^{(t)}\right)^{T}-\overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^{T}\right\|_{2}\right\} ;
$$

$$
\text { - } \widehat{\boldsymbol{\beta}}^{(t)}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}^{(t)}-\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}\right]^{2}+\frac{\gamma}{\sqrt{n}}\left\|\boldsymbol{\beta}-\widehat{\boldsymbol{A}}^{(t)} \widehat{\boldsymbol{\theta}}^{(t)}\right\|_{2}\right\} \text { for } t \in[T]
$$

Assumptions

Notations: Coefficient matrix $\boldsymbol{B}_{S}^{*} \in \mathbb{R}^{p \times|S|}$, each column of which is a coefficient vector in $\left\{\boldsymbol{\beta}^{(t) *}\right\}_{t \in S .} . \boldsymbol{\Sigma}^{(t)}:=\mathbb{E}\left[\boldsymbol{x}^{(t)}\left(\boldsymbol{x}^{(t)}\right)^{T}\right]$.
A. $1\left\{\boldsymbol{x}_{i}^{(t)}\right\}_{i=1}^{n}$ are i.i.d. sub-Gaussian, and $0<c \leq \lambda_{\min }\left(\boldsymbol{\Sigma}^{(t)}\right) \leq \lambda_{\max }\left(\boldsymbol{\Sigma}^{(t)}\right) \leq C$. A. 2 (Task diversity) $\max _{t \in S}\left\|\boldsymbol{\theta}^{(t) *}\right\|_{2} \leq C<\infty$, and $\sigma_{r}\left(\boldsymbol{B}_{S}^{*} / \sqrt{T}\right) \geq \frac{c}{\sqrt{r}}$ A. 3 (Not many outlier tasks) $\frac{\left|S^{c}\right|}{T} r^{3 / 2} \leq$ a small constant c.

Upper bounds: When $n \gtrsim p+\log T, \forall S \subseteq[T]$ and an arbitrary $\mathbb{Q}_{S^{c}}$, w.h.p.
$\max _{t \in S}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim\left(r \sqrt{\frac{p}{n T}}+\sqrt{r} h+\sqrt{r} \sqrt{\frac{r+\log T}{n}}+\sqrt{\frac{p}{n}} \cdot \frac{\left|S^{c}\right|}{T} r^{3 / 2}\right) \wedge \sqrt{\frac{p+\log T}{n}}$. If outlier tasks in S^{c} also follow linear model (1), w.h.p.,

$$
\max _{t \in[T]}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim \sqrt{\frac{p+\log T}{n}} .
$$

Lower bounds: $\forall\left\{\widehat{\boldsymbol{\beta}}^{(t)}\right\}_{t=1}^{T}, \exists S \subseteq[T],\left\{\boldsymbol{\beta}^{(t)}\right\}_{t \in S}, \mathbb{Q}_{S^{c}}$, w.p. $\geq 1 / 10$,

$$
\max _{t \in S}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \gtrsim \sqrt{\frac{p r}{n T}}+h \wedge \sqrt{\frac{p+\log T}{n}}+\sqrt{\frac{r+\log T}{n}}+\frac{\epsilon r}{\sqrt{n}} .
$$

If outlier tasks in S^{c} also follow linear model (1), $\forall\left\{\widehat{\boldsymbol{\beta}}^{(t)}\right\}_{t=1}^{T}, \exists\left\{\boldsymbol{\beta}^{(t)}\right\}_{t=1}^{T}$, w.p. $\geq 1 / 10$,

$$
\max _{t \in[T]}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \gtrsim \sqrt{\frac{p+\log T}{n}} .
$$

Transferring to New Tasks

Problem setting:

- Data $\left\{\left(\boldsymbol{x}_{i}^{(0)}, y_{i}^{(0)}\right)\right\}_{i=1}^{n_{0}}$ from a new task, generated from model (1)
- $\max _{t \in S}\left\|\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}-\boldsymbol{A}^{(0) *}\left(\boldsymbol{A}^{(0) *}\right)^{T}\right\|_{2} \leq h$
- Goal: learning $\boldsymbol{\beta}^{(0) *}$

Two-step algorithm: (r known) Take $\hat{\overline{\boldsymbol{A}}}$ from MTL algorithm, $\gamma \asymp \sqrt{p+\log T}$

$$
\begin{aligned}
& \text { - } \widehat{\boldsymbol{\theta}}^{(0)} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{r}}{\arg \min }\left\{\frac{1}{n_{0}} \sum_{i=1}^{n_{0}}\left[y_{i}^{(0)}-\left(\boldsymbol{x}_{i}^{(0)}\right)^{T} \hat{\overline{\boldsymbol{A}}} \boldsymbol{\theta}\right]^{2}\right\} ; \\
& \text { - } \widehat{\boldsymbol{\beta}}^{(0)}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{n_{0}} \sum_{i=1}^{n_{0}}\left[y_{i}^{(0)}-\left(\boldsymbol{x}_{i}^{(0)}\right)^{T} \boldsymbol{\beta}\right]^{2}+\frac{\gamma}{\sqrt{n_{0}}}\left\|\boldsymbol{\beta}-\hat{\overline{\boldsymbol{A}}} \widehat{\boldsymbol{\theta}}^{(0)}\right\|_{2}\right\} \text { for } t \in[T]
\end{aligned}
$$

Assumptions

$\overline{\text { A. } 4\left\{\boldsymbol{x}_{i}^{(0)}\right\}_{i=1}^{n_{0}}}$ are i.i.d. sub-Gaussian, and $0<c \leq \lambda_{\min }\left(\boldsymbol{\Sigma}^{(0)}\right) \leq \lambda_{\max }\left(\boldsymbol{\Sigma}^{(0)}\right) \leq C$.
A. $5\left\|\boldsymbol{\theta}^{(0) *}\right\|_{2} \leq C$.

Upper bound: When $n, n_{0} \gtrsim p+\log T, \forall S \subseteq[T]$ and arbitrary $\mathbb{Q}_{S^{c}, \text {, w.h.p., }}$

$$
\left\|\widehat{\boldsymbol{\beta}}^{(0)}-\boldsymbol{\beta}^{(0) *}\right\|_{2} \lesssim\left(r \sqrt{\frac{p}{n T}}+\sqrt{r} h+\sqrt{r} \sqrt{\frac{r+\log T}{n}}+\sqrt{\frac{p}{n}} \cdot \frac{\left|S^{c}\right|}{T} r^{3 / 2}\right) \wedge \sqrt{\frac{p}{n_{0}}}+\sqrt{\frac{r}{n_{0}}}
$$

Lower bound: $\forall \widehat{\boldsymbol{\beta}}^{(0)}, \exists S \subseteq[T],\left\{\boldsymbol{\beta}^{(t)}\right\}_{t \in\{0\} \cup S}, \mathbb{Q}_{S c}$, w.p. $\geq 1 / 10$,

$$
\left\|\widehat{\boldsymbol{\beta}}^{(0)}-\boldsymbol{\beta}^{(0) *}\right\|_{2} \gtrsim\left(\sqrt{\frac{p r}{n T}}+h\right) \wedge \sqrt{\frac{p}{n_{0}}}+\sqrt{\frac{r}{n_{0}}}+\frac{\epsilon r}{\sqrt{n}} \wedge \sqrt{\frac{1}{n_{0}}} .
$$

Adaptation to Unknown Intrinsic Dimension

Intuition

- It suffices to estimate r well when h and the proportion of outlier task $\left|S^{C}\right| / T$ are small;
- $\sigma_{r}\left(\boldsymbol{B}_{S}^{*} / \sqrt{T}\right) \gtrsim 1 / \sqrt{r}, \sigma_{r+1}\left(\boldsymbol{B}_{S}^{*} / \sqrt{T}\right) \lesssim h \lesssim \sqrt{\frac{p+\log T}{n r}} \lesssim 1 / \sqrt{r}$
- Do a thresholding to estimate r

Consistency: When $h \lesssim \sqrt{\frac{p+\log T}{r n}}(\mathrm{MTL})$ or $h \lesssim \sqrt{\frac{p}{r n_{0}}}(\mathrm{TL})$, under A.3, $\widehat{r}=r$ w.h.p.
MTL Simulations

No outlier tasks: $n=100, T=6, p=20, r=3$

With outlier tasks: $n=100, T=7,\left|S^{C}\right|=1, p=20, r=3$

