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Introduction

Representation multi-task (MTL) and transfer learning (TL)

Lack of theoretical understanding

• The representations may NOT be the same! But most of theoretical studies
impose such an assumption.

• As the number of tasks grow, there can be outlier tasks or adversarial attacks.

Multi-task Learning

Problem setting

• T tasks, data {x(t)
i , y

(t)
i }

n
i=1 from the t-th task, with x

(t)
i ∈ Rp, y(t)

i ∈ R;

• There exists an unknown subset S ⊆ [T ], such that for all t ∈ S,

y
(t)
i = (x

(t)
i )Tβ(t)∗ + ε

(t)
i , i = 1 : n, (1)

where β(t)∗ = A(t)∗θ(t)∗, A(t)∗ ∈ Op×r = {A ∈ Rp×r : ATA = Ir},
θ(t)∗ ∈ Rr, r ≤ p, and {ε(t)i }

n
i=1 are i.i.d. zero-mean sub-Gaussian {x(t)

i }
n
i=1;

• minA∈Op×r maxt∈S ‖A(t)∗(A(t)∗)T −A(A)T‖2 ≤ h;

• Data {{x(t)
i , y

(t)
i }

n
i=1}t/∈S from outlier tasks ∼ an arbitrary distribution QSc;

• Goal: jointly learning {β(t)∗}t∈S

Two-step algorithm: (r known) Set λ �
√
r(p + log T ) and γ �

√
p + log T

• {Â(t)}Tt=1, {θ̂(t)}Tt=1, Â ∈ arg min
{A(t)}Tt=1,{θ(t)}Tt=1,A{∑T

t=1
1
n

∑n
i=1[y

(t)
i − (x

(t)
i )TA(t)θ(t)]2 + λ√

n
‖A(t)(A(t))T −A(A)T‖2

}
;

• β̂(t) = arg min
β∈Rp

{1
n

∑n
i=1[y

(t)
i − (x

(t)
i )Tβ]2 + γ√

n
‖β − Â(t)θ̂(t)‖2

}
for t ∈ [T ]

Assumptions

Notations: Coefficient matrix B∗S ∈ Rp×|S|, each column of which is a coefficient

vector in {β(t)∗}t∈S. Σ(t) := E[x(t)(x(t))T ].

A.1 {x(t)
i }

n
i=1 are i.i.d. sub-Gaussian, and 0 < c ≤ λmin(Σ(t)) ≤ λmax(Σ(t)) ≤ C.

A.2 (Task diversity) maxt∈S ‖θ(t)∗‖2 ≤ C <∞, and σr(B
∗
S/
√
T ) ≥ c√

r
.

A.3 (Not many outlier tasks)
|Sc|
T r3/2 ≤ a small constant c.

Upper bounds: When n & p + log T , ∀S ⊆ [T ] and an arbitrary QSc, w.h.p.,

max
t∈S
‖β̂(t)−β(t)∗‖2 .

(
r

√
p

nT
+
√
rh +

√
r

√
r + log T

n
+

√
p

n
· |S

c|
T
r3/2

)
∧
√
p + log T

n
.

If outlier tasks in Sc also follow linear model (1), w.h.p.,

max
t∈[T ]

‖β̂(t) − β(t)∗‖2 .

√
p + log T

n
.

Lower bounds: ∀{β̂(t)}Tt=1, ∃S ⊆ [T ], {β(t)}t∈S, QSc, w.p. ≥ 1/10,

max
t∈S
‖β̂(t) − β(t)∗‖2 &

√
pr

nT
+ h ∧

√
p + log T

n
+

√
r + log T

n
+
εr√
n
.

If outlier tasks in Sc also follow linear model (1), ∀{β̂(t)}Tt=1, ∃{β(t)}Tt=1, w.p.
≥ 1/10,

max
t∈[T ]

‖β̂(t) − β(t)∗‖2 &

√
p + log T

n
.

Transferring to New Tasks

Problem setting:

• Data {(x(0)
i , y

(0)
i )}n0

i=1 from a new task, generated from model (1);

• maxt∈S ‖A(t)∗(A(t)∗)T −A(0)∗(A(0)∗)T‖2 ≤ h;

• Goal: learning β(0)∗

Two-step algorithm: (r known) Take Â from MTL algorithm, γ �
√
p + log T

• θ̂(0) ∈ arg min
θ∈Rr

{ 1
n0

∑n0
i=1[y

(0)
i − (x

(0)
i )T Âθ]2

}
;

• β̂(0) = arg min
β∈Rp

{ 1
n0

∑n0
i=1[y

(0)
i − (x

(0)
i )Tβ]2 + γ√

n0
‖β − Âθ̂(0)‖2

}
for t ∈ [T ]

Assumptions

A.4 {x(0)
i }

n0
i=1 are i.i.d. sub-Gaussian, and 0 < c ≤ λmin(Σ(0)) ≤ λmax(Σ(0)) ≤ C.

A.5 ‖θ(0)∗‖2 ≤ C.

Upper bound: When n, n0 & p + log T , ∀S ⊆ [T ] and arbitrary QSc, w.h.p.,

‖β̂(0) − β(0)∗‖2 .

(
r

√
p

nT
+
√
rh +

√
r

√
r + log T

n
+

√
p

n
· |S

c|
T
r3/2

)
∧
√

p

n0
+

√
r

n0
.

Lower bound: ∀β̂(0), ∃S ⊆ [T ], {β(t)}t∈{0}∪S, QSc, w.p. ≥ 1/10,

‖β̂(0) − β(0)∗‖2 &

(√
pr

nT
+ h

)
∧
√

p

n0
+

√
r

n0
+
εr√
n
∧
√

1

n0
.

Adaptation to Unknown Intrinsic Dimension

Intuition:

• It suffices to estimate r well when h and the proportion of outlier task |Sc|/T are small;

• σr(B∗S/
√
T ) & 1/

√
r, σr+1(B∗S/

√
T ) . h .

√
p+log T
nr . 1/

√
r

• Do a thresholding to estimate r

Consistency: When h .
√
p+log T
rn (MTL) or h .

√
p
rn0

(TL), under A.3, r̂ = r w.h.p.

MTL Simulations

No outlier tasks: n = 100, T = 6, p = 20, r = 3

With outlier tasks: n = 100, T = 7, |Sc| = 1, p = 20, r = 3


