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Multi-task learning (MTL) and transfer learning (TL)

◦ Multi-task learning (MTL): Perform well on all (or most) tasks
◦ Transfer learning (TL): Perform well on the target task
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Representation MTL and TL
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In neural nets: freezing + fine tuning
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A theoretical formulation
◦ Collected sample {x(t)

i , y
(t)
i }ni=1 from the t-th task, t = 1 : T , and

y
(t)
i = (x

(t)
i )Tβ(t)∗ + 

(t)
i , i = 1 : n,

where β(t)∗ = A∗θ(t)∗, A∗ ∈ Rp×r with (A∗)TA∗ = Ir×r, θ(t)∗ ∈ Rr.
◦ Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
◦ Questions:

⊲ What if the representations are NOT the same?
⊲ Outlier tasks?

◦ We suppose ∃S ⊆ [T ], β(t)∗ = A(t)∗θ(t)∗ with

min
A

max
t∈S

A(t)∗(A(t)∗)T −A(A)T 2 ≤ h.

Sample {x(t)
i , y

(t)
i }ni=1 from t ∈ Sc = [T ]\S can be arbitrarily

distributed. =⇒ Outlier tasks
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Different paradigms of MTL and TL
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Problem review + algorithm

◦ Problem: Collected sample {x(t)
i , y

(t)
i }ni=1 from the t-th task, t = 1 : T .

⊲ ∃S ⊆ [T ], β(t)∗ = A(t)∗θ(t)∗, A(t)∗ ∈ Rp×r with
A(t)∗(A(t)∗)T = Ir×r:

y
(t)
i = (x

(t)
i )Tβ(t)∗ + 

(t)
i , i = 1 : n, t ∈ S.

⊲ Sample {x(t)
i , y

(t)
i }ni=1 from t ∈ Sc = [T ]\S can be arbitrarily

distributed.
◦ Two-step algorithm: λ ≍


r(p+ logT ), γ ≍

√
p+ logT

⊲ A(t), θ(t), A ← Minimize
T
t=1

1
n

n
i=1

[y
(t)
i − (x(t))TA(t)θ(t)]2 + λ√

n
A(t)(A(t))T −A(A)T 2

⊲ β(t) ← Minimize
1
n

n
i=1[y

(t)
i − (x(t))Tβ(t)]2 + γ√

n
β(t) − A(t)θ(t)2
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Upper bounds
Assumptions:
◦ x

(t)
i , (t)i sub-Gaussian

◦ maxt∈S θ(t)∗2 ≤ C < ∞
◦ (Task diversity) Denote B∗

S = (β(t)∗)p×|S|. Require σr(B
∗
S) ≳ 1/

√
r.

◦ (Not too many outlier tasks)  := |Sc|
T ≲ r−3/2

Upper bounds: Let n ≳
√
p+ logT .

◦ ∀t ∈ S, w.p. 1− o(1),

β(t)−β(t)∗2 ≲


r


p

nT  
learn A(t)∗

+
√
rh

A(t)∗not equal

+
√
r


r + logT

n  
learn θ(t)∗

+


p

n
· r3/2

  
outlier tasks


∧


p+ logT
n  

single-task rate

◦ If tasks in Sc also follow linear model: ∀t ∈ Sc, w.p. 1− o(1),

β(t) − β(t)∗2 ≲


p+ logT
n

.
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Lower bounds
Upper bounds: Let n ≳

√
p+ logT .

◦ w.p. 1− o(1),

max
t∈S

β(t)−β(t)∗2 ≲

r


p

nT
+

√
rh+

√
r


r + logT

n
+


p

n
· r3/2


∧


p+ logT
n

◦ If tasks in Sc also follow the linear model: w.p. 1− o(1),

max
t∈[T ]

β(t) − β(t)∗2 ≲


p+ logT
n

.

Lower bounds:
◦ w.p. ≥ 1/10,

max
t∈S

β(t) − β(t)∗2 ≳


pr

nT
+ h+


r + logT

n
+

r√
n


∧


p+ logT
n

.

◦ If tasks in Sc also follow the linear model: w.p. ≥ 1/10,

max
t∈[T ]

β(t) − β(t)∗2 ≳


p+ logT
n

.
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Adaptation to unknown intrinsic dimension r

◦ Our algorithm requires r to be known in priori
⊲ A(t) ∈ Rp×r, θ(t) ∈ Rr

⊲ λ ≍


r(p+ logT )
◦ Most prior works assume r is known: Ando et al. (2005); Chua et al.

(2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022);
Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...

◦ Fact: When A(t)∗ ≡ A∗, we have B∗
p×T := (β(t)∗)t∈[T ] = A∗

p×rΘr×T

Hence σi(B
∗) = 0 for i ≥ r + 1!

◦ Thresholding should work when h and outlier proportion  are small
◦ What happens if h or  is large? → No need to estimate r well
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Adaptation to unknown intrinsic dimension r

A simulation example: p = 6, r = 3

◦ Under almost the same conditions, we can consistently estimate r

when h ≲


p+logT
n and  ≲ r−3/2

◦ Plug the estimated r into the previous algorithm
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Simulation 1: No outlier tasks
T = 6 tasks, n = 100, p = 20, r = 3, no outlier task

0.6

0.9

1.2

0.0 0.2 0.4 0.6 0.8
h

m
ax

t∈
[T

]||β̂
(t)
−
β(t)

∗ || 2

Algorithm RL-MTL-oracle RL-MTL-adaptive RL-MTL-naive Single-task linear regression

Estimation error maxt∈[T ] β(t) − β(t)∗2
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Simulation 2: With outlier tasks
T = 7 tasks (1 outlier task), n = 100, p = 20, r = 3
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Simulation 2: With outlier tasks
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Take-away

◦ Always freezing representations across tasks can lead to negative transfer
◦ We proposed an algorithm to learn from similar linear representations

with outlier tasks, which
⊲ is adaptive to unknown similarity level h and intrinsic dimension r
⊲ is minimax optimal in a large regime
⊲ is robust to a small fraction (∼ r−3/2) of outlier tasks

◦ Our paper on arXiv:

Tian, Y., Gu, Y., & Feng, Y. (2023). Learning from Similar Linear
Representations: Adaptivity, Minimaxity, and Robustness. arXiv preprint
arXiv:2303.17765.

Thanks!
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