Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness

Ye Tian
Department of Statistics, Columbia University 2023 Berkeley-Columbia Meeting in Engineering and Statistics

April 20, 2023

Joint work with

Yuqi Gu (Columbia stats) Yang Feng (NYU biostats)

Greatest thanks to Yuqi and Yang!

Multi-task learning (MTL) and transfer learning (TL)

- Multi-task learning (MTL): Perform well on all (or most) tasks
- Transfer learning (TL): Perform well on the target task

MTL

TL

Representation MTL and TL

In neural nets: freezing + fine tuning

A theoretical formulation

- Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$, and

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n,
$$

where $\boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{*} \theta^{(t) *}, \boldsymbol{A}^{*} \in \mathbb{R}^{p \times r}$ with $\left(\boldsymbol{A}^{*}\right)^{T} \boldsymbol{A}^{*}=\boldsymbol{I}_{r \times r}, \theta^{(t) *} \in \mathbb{R}^{r}$.

- Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)

Questions:

\triangleright What if the representations are NOT the same?
 \triangleright Outlier tasks?

A theoretical formulation

- Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$, and

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n,
$$

where $\boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{*} \theta^{(t) *}, \boldsymbol{A}^{*} \in \mathbb{R}^{p \times r}$ with $\left(\boldsymbol{A}^{*}\right)^{T} \boldsymbol{A}^{*}=\boldsymbol{I}_{r \times r}, \theta^{(t) *} \in \mathbb{R}^{r}$.

- Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
- Questions:
\triangleright What if the representations are NOT the same?
\triangleright Outlier tasks?
We suppose $\exists S \subseteq[T], \beta^{(t) *}=A^{(t) *} \theta^{(t) *}$ with

A theoretical formulation

- Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$, and

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n
$$

where $\boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{*} \theta^{(t) *}, \boldsymbol{A}^{*} \in \mathbb{R}^{p \times r}$ with $\left(\boldsymbol{A}^{*}\right)^{T} \boldsymbol{A}^{*}=\boldsymbol{I}_{r \times r}, \theta^{(t) *} \in \mathbb{R}^{r}$.

- Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
- Questions:
\triangleright What if the representations are NOT the same?
\triangleright Outlier tasks?
- We suppose $\exists S \subseteq[T], \boldsymbol{\beta}^{(t) *}=A^{(t) *} \theta^{(t) *}$ with

$$
\min _{\overline{\boldsymbol{A}}} \max _{t \in S}\left\|\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}-\overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^{T}\right\|_{2} \leq h
$$

Sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from $t \in S^{c}=[T] \backslash S$ can be arbitrarily distributed. \Longrightarrow Outlier tasks

Different paradigms of MTL and TL

(a) Distance-based similarity [3, 19, 34, 50]

(c) The same representation $[18,52]$

$$
\boldsymbol{\beta}^{(4) *}
$$

(b) Angle-based similarity [25]

$$
\boldsymbol{\beta}^{(4) *}=\boldsymbol{A}^{(4) *} \boldsymbol{\theta}^{(4) *}
$$

$$
\boldsymbol{\beta}^{(5) *} \quad \boldsymbol{\beta}^{(1) *}=\boldsymbol{A}^{(1) *} \boldsymbol{\theta}^{(1) *}
$$

$$
\boldsymbol{\beta}^{(3) *}=\boldsymbol{A}^{(3) *} \boldsymbol{\theta}^{(3) *}
$$

(d) Similar representations with outliers (ours)

Problem review + algorithm

- Problem: Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$.
$\triangleright \exists S \subseteq[T], \boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{(t) *} \theta^{(t) *}, \boldsymbol{A}^{(t) *} \in \mathbb{R}^{p \times r}$ with

$$
\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}=\boldsymbol{I}_{r \times r}:
$$

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n, \quad t \in S .
$$

\triangleright Sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from $t \in S^{c}=[T] \backslash S$ can be arbitrarily distributed.
Two-step algorithm: $\lambda \asymp \sqrt{r(p+\log T)}, \gamma \asymp \sqrt{p+\log T}$

Problem review + algorithm

- Problem: Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$.
$\triangleright \exists S \subseteq[T], \boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{(t) *} \theta^{(t) *}, \boldsymbol{A}^{(t) *} \in \mathbb{R}^{p \times r}$ with $\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}=\boldsymbol{I}_{r \times r}:$

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n, \quad t \in S .
$$

\triangleright Sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from $t \in S^{c}=[T] \backslash S$ can be arbitrarily distributed.

- Two-step algorithm: $\lambda \asymp \sqrt{r(p+\log T)}, \gamma \asymp \sqrt{p+\log T}$
$\triangleright \widehat{\boldsymbol{A}}^{(t)}, \widehat{\boldsymbol{\theta}}^{(t)}, \widehat{\overline{\boldsymbol{A}}} \leftarrow$ Minimize

$$
\sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n}\left[y_{i}^{(t)}-\left(\boldsymbol{x}^{(t)}\right)^{T} \boldsymbol{A}^{(t)} \boldsymbol{\theta}^{(t)}\right]^{2}+\frac{\lambda}{\sqrt{n}}\left\|\boldsymbol{A}^{(t)}\left(\boldsymbol{A}^{(t)}\right)^{T}-\overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^{T}\right\|_{2}
$$

Problem review + algorithm

- Problem: Collected sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from the t-th task, $t=1: T$.
$\triangleright \exists S \subseteq[T], \boldsymbol{\beta}^{(t) *}=\boldsymbol{A}^{(t) *} \theta^{(t) *}, \boldsymbol{A}^{(t) *} \in \mathbb{R}^{p \times r}$ with $\boldsymbol{A}^{(t) *}\left(\boldsymbol{A}^{(t) *}\right)^{T}=\boldsymbol{I}_{r \times r}:$

$$
y_{i}^{(t)}=\left(\boldsymbol{x}_{i}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t) *}+\epsilon_{i}^{(t)}, \quad i=1: n, \quad t \in S .
$$

\triangleright Sample $\left\{\boldsymbol{x}_{i}^{(t)}, y_{i}^{(t)}\right\}_{i=1}^{n}$ from $t \in S^{c}=[T] \backslash S$ can be arbitrarily distributed.

- Two-step algorithm: $\lambda \asymp \sqrt{r(p+\log T)}, \gamma \asymp \sqrt{p+\log T}$
$\triangleright \widehat{\boldsymbol{A}}^{(t)}, \widehat{\boldsymbol{\theta}}^{(t)}, \widehat{\overline{\boldsymbol{A}}} \leftarrow$ Minimize

$$
\sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n}\left[y_{i}^{(t)}-\left(\boldsymbol{x}^{(t)}\right)^{T} \boldsymbol{A}^{(t)} \boldsymbol{\theta}^{(t)}\right]^{2}+\frac{\lambda}{\sqrt{n}}\left\|\boldsymbol{A}^{(t)}\left(\boldsymbol{A}^{(t)}\right)^{T}-\overline{\boldsymbol{A}}(\overline{\boldsymbol{A}})^{T}\right\|_{2}
$$

- $\widehat{\boldsymbol{\beta}}^{(t)} \leftarrow$ Minimize
$\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}^{(t)}-\left(\boldsymbol{x}^{(t)}\right)^{T} \boldsymbol{\beta}^{(t)}\right]^{2}+\frac{\gamma}{\sqrt{n}}\left\|\boldsymbol{\beta}^{(t)}-\widehat{\boldsymbol{A}}^{(t)} \widehat{\boldsymbol{\theta}}^{(t)}\right\|_{2}$

Upper bounds

Assumptions:

- $\boldsymbol{x}_{i}^{(t)}, \epsilon_{i}^{(t)}$ sub-Gaussian
- $\max _{t \in S}\left\|\boldsymbol{\theta}^{(t) *}\right\|_{2} \leq C<\infty$
- (Task diversity) Denote $\boldsymbol{B}_{S}^{*}=\left(\boldsymbol{\beta}^{(t) *}\right)_{p \times|S|}$. Require $\sigma_{r}\left(\boldsymbol{B}_{S}^{*}\right) \gtrsim 1 / \sqrt{r}$.
- (Not too many outlier tasks) $\epsilon:=\frac{\left|S^{c}\right|}{T} \lesssim r^{-3 / 2}$

Upper bounds: Let $n \gtrsim \sqrt{p+\log T}$.

- $\forall t \in S$, w.p. $1-o(1)$,

- If tasks in S^{c} also follow linear model:

Upper bounds

Assumptions:

- $\boldsymbol{x}_{i}^{(t)}, \epsilon_{i}^{(t)}$ sub-Gaussian
- $\max _{t \in S}\left\|\boldsymbol{\theta}^{(t) *}\right\|_{2} \leq C<\infty$
- (Task diversity) Denote $\boldsymbol{B}_{S}^{*}=\left(\boldsymbol{\beta}^{(t) *}\right)_{p \times|S|}$. Require $\sigma_{r}\left(\boldsymbol{B}_{S}^{*}\right) \gtrsim 1 / \sqrt{r}$.
- (Not too many outlier tasks) $\epsilon:=\frac{\left|S^{c}\right|}{T} \lesssim r^{-3 / 2}$

Upper bounds: Let $n \gtrsim \sqrt{p+\log T}$.

- $\forall t \in S$, w.p. $1-o(1)$,

$$
\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim(\underbrace{r \sqrt{\frac{p}{n T}}}_{\text {learn } \boldsymbol{A}^{(t) *}}+\underbrace{\sqrt{r} h}_{\boldsymbol{A}^{(t) *} \text { not equal }}+\underbrace{\sqrt{r} \sqrt{\frac{r+\log T}{n}}}_{\text {learn } \theta^{(t) *}}+\underbrace{\left.\sqrt{\frac{p}{n} \cdot \epsilon r^{3 / 2}}\right) \wedge \underbrace{\sqrt{\frac{p+\log T}{n}}}_{\text {single-task rate }}}_{\text {outlier tasks }}
$$

- If tasks in S^{c} also follow linear model: $\forall t \in S^{c}$, w.p. $1-o(1)$,

$$
\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim \sqrt{\frac{p+\log T}{n}} .
$$

Lower bounds

Upper bounds: Let $n \gtrsim \sqrt{p+\log T}$.

- w.p. 1-o(1),

$$
\max _{t \in S}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim\left(r \sqrt{\frac{p}{n T}}+\sqrt{r} h+\sqrt{r} \sqrt{\frac{r+\log T}{n}}+\sqrt{\frac{p}{n}} \cdot \operatorname{cr}^{3 / 2}\right) \wedge \sqrt{\frac{p+\log T}{n}}
$$

- If tasks in S^{c} also follow the linear model: w.p. $1-o(1)$,

$$
\max _{t \in[T]}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \lesssim \sqrt{\frac{p+\log T}{n}} .
$$

Lower bounds:

- w.p. $\geq 1 / 10$,

$$
\max _{t \in S}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \gtrsim\left(\sqrt{\frac{p r}{n T}}+h+\sqrt{\frac{r+\log T}{n}}+\frac{\epsilon r}{\sqrt{n}}\right) \wedge \sqrt{\frac{p+\log T}{n}} .
$$

- If tasks in S^{c} also follow the linear model: w.p. $\geq 1 / 10$,

$$
\max _{t \in[T]}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2} \gtrsim \sqrt{\frac{p+\log T}{n}}
$$

Adaptation to unknown intrinsic dimension r

- Our algorithm requires r to be known in priori

$$
\begin{aligned}
& \triangleright \widehat{\boldsymbol{A}}^{(t)} \in \mathbb{R}^{p \times r}, \widehat{\boldsymbol{\theta}}^{(t)} \in \mathbb{R}^{r} \\
& \triangleright \lambda \asymp \sqrt{r(p+\log T)}
\end{aligned}
$$

- Most prior works assume r is known: Ando et al. (2005); Chua et al. (2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022); Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
 What happens if h or ϵ is large? \rightarrow No need to estimate r well

Adaptation to unknown intrinsic dimension r

- Our algorithm requires r to be known in priori

$$
\begin{aligned}
& \triangleright \widehat{\boldsymbol{A}}^{(t)} \in \mathbb{R}^{p \times r}, \widehat{\boldsymbol{\theta}}^{(t)} \in \mathbb{R}^{r} \\
& \triangleright \lambda \asymp \sqrt{r(p+\log T)}
\end{aligned}
$$

- Most prior works assume r is known: Ando et al. (2005); Chua et al. (2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022); Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
- Fact: When $\boldsymbol{A}^{(t) *} \equiv \boldsymbol{A}^{*}$, we have $\boldsymbol{B}_{p \times T}^{*}:=\left(\boldsymbol{\beta}^{(t) *}\right)_{t \in[T]}=\boldsymbol{A}_{p \times r}^{*} \boldsymbol{\Theta}_{r \times T}$ Hence $\sigma_{i}\left(\boldsymbol{B}^{*}\right)=0$ for $i \geq r+1$!
Thresholding should work when h and outlier proportion ϵ are small What happens if h or ϵ is large? \rightarrow No need to estimate r well

Adaptation to unknown intrinsic dimension r

- Our algorithm requires r to be known in priori

$$
\begin{aligned}
& \triangleright \widehat{\boldsymbol{A}}^{(t)} \in \mathbb{R}^{p \times r}, \widehat{\boldsymbol{\theta}}^{(t)} \in \mathbb{R}^{r} \\
& \triangleright \lambda \asymp \sqrt{r(p+\log T)}
\end{aligned}
$$

- Most prior works assume r is known: Ando et al. (2005); Chua et al. (2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022); Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
- Fact: When $\boldsymbol{A}^{(t) *} \equiv \boldsymbol{A}^{*}$, we have $\boldsymbol{B}_{p \times T}^{*}:=\left(\boldsymbol{\beta}^{(t) *}\right)_{t \in[T]}=\boldsymbol{A}_{p \times r}^{*} \boldsymbol{\Theta}_{r \times T}$ Hence $\sigma_{i}\left(\boldsymbol{B}^{*}\right)=0$ for $i \geq r+1$!
- Thresholding should work when h and outlier proportion ϵ are small

Adaptation to unknown intrinsic dimension r

- Our algorithm requires r to be known in priori

$$
\begin{aligned}
& \triangleright \widehat{\boldsymbol{A}}^{(t)} \in \mathbb{R}^{p \times r}, \widehat{\boldsymbol{\theta}}^{(t)} \in \mathbb{R}^{r} \\
& \triangleright \lambda \asymp \sqrt{r(p+\log T)}
\end{aligned}
$$

- Most prior works assume r is known: Ando et al. (2005); Chua et al. (2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022); Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
- Fact: When $\boldsymbol{A}^{(t) *} \equiv \boldsymbol{A}^{*}$, we have $\boldsymbol{B}_{p \times T}^{*}:=\left(\boldsymbol{\beta}^{(t) *}\right)_{t \in[T]}=\boldsymbol{A}_{p \times r}^{*} \boldsymbol{\Theta}_{r \times T}$ Hence $\sigma_{i}\left(\boldsymbol{B}^{*}\right)=0$ for $i \geq r+1$!
- Thresholding should work when h and outlier proportion ϵ are small
- What happens if h or ϵ is large?

Adaptation to unknown intrinsic dimension r

- Our algorithm requires r to be known in priori

$$
\begin{aligned}
& \triangleright \widehat{\boldsymbol{A}}^{(t)} \in \mathbb{R}^{p \times r}, \widehat{\boldsymbol{\theta}}^{(t)} \in \mathbb{R}^{r} \\
& \triangleright \lambda \asymp \sqrt{r(p+\log T)}
\end{aligned}
$$

- Most prior works assume r is known: Ando et al. (2005); Chua et al. (2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022); Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
- Fact: When $\boldsymbol{A}^{(t) *} \equiv \boldsymbol{A}^{*}$, we have $\boldsymbol{B}_{p \times T}^{*}:=\left(\boldsymbol{\beta}^{(t) *}\right)_{t \in[T]}=\boldsymbol{A}_{p \times r}^{*} \boldsymbol{\Theta}_{r \times T}$ Hence $\sigma_{i}\left(\boldsymbol{B}^{*}\right)=0$ for $i \geq r+1$!
- Thresholding should work when h and outlier proportion ϵ are small
- What happens if h or ϵ is large? \rightarrow No need to estimate r well

Adaptation to unknown intrinsic dimension r

A simulation example: $p=6, r=3$

- Under almost the same conditions, we can consistently estimate r when $h \lesssim \sqrt{\frac{p+\log T}{n}}$ and $\epsilon \lesssim r^{-3 / 2}$
- Plug the estimated r into the previous algorithm

Simulation 1: No outlier tasks

$T=6$ tasks, $n=100, p=20, r=3$, no outlier task

Estimation error $\max _{t \in[T]}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2}$

Simulation 2: With outlier tasks

$T=7$ tasks (1 outlier task), $n=100, p=20, r=3$

Estimation error $\max _{t \in S}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2}$

Simulation 2: With outlier tasks

$T=7$ tasks (1 outlier task), $n=100, p=20, r=3$

Estimation error $\max _{t \in S^{c}}\left\|\widehat{\boldsymbol{\beta}}^{(t)}-\boldsymbol{\beta}^{(t) *}\right\|_{2}$

Take-away

- Always freezing representations across tasks can lead to negative transfer
- We proposed an algorithm to learn from similar linear representations with outlier tasks, which
\triangleright is adaptive to unknown similarity level h and intrinsic dimension r
\triangleright is minimax optimal in a large regime
\triangleright is robust to a small fraction $\left(\sim r^{-3 / 2}\right)$ of outlier tasks
- Our paper on arXiv:

Tian, Y., Gu, Y., \& Feng, Y. (2023). Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness. arXiv preprint arXiv:2303.17765.

Thanks!

References I

Ando, R. K., Zhang, T., and Bartlett, P. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(11).
Chua, K., Lei, Q., and Lee, J. D. (2021). How fine-tuning allows for effective meta-learning. Advances in Neural Information Processing Systems, 34:8871--8884.
Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. (2021).
Exploiting shared representations for personalized federated learning. In International Conference on Machine Learning, pages 2089--2099. PMLR.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei, Q. (2020).
Few-shot learning via learning the representation, provably. arXiv preprint arXiv:2002.09434.
Duan, Y. and Wang, K. (2022). Adaptive and robust multi-task learning. arXiv preprint arXiv:2202.05250.

References II

Duchi, J., Feldman, V., Hu, L., and Talwar, K. (2022). Subspace recovery from heterogeneous data with non-isotropic noise. arXiv preprint arXiv:2210.13497.

Maurer, A., Pontil, M., and Romera-Paredes, B. (2016). The benefit of multitask representation learning. Journal of Machine Learning Research, 17(81):1--32.
Tripuraneni, N., Jin, C., and Jordan, M. (2021). Provable meta-learning of linear representations. In International Conference on Machine Learning, pages 10434--10443. PMLR.

