RASE: RANDOM SUBSPACE ENSEMBLE CLASSIFICATION

Random subspace method

LDA, QDA, kNN, Its main idea is

- merge these learners to get an ensemble learner

However, in high-dimensional problem, most random subspaces are useless!

• Ensemble learner
$$C_n^{RaSE}(\boldsymbol{x}) \leftarrow \mathbbm{1}\left(B_1^{-1}\sum_{b_1=1}^{B_1} C_n^{S_{b_1*}-\mathcal{T}}(\boldsymbol{x}) > \alpha\right)$$

Criterion to evaluate subspaces

- Multiple choices, e.g. AIC, BIC, eBIC, cross-validation error, ...
- A new criterion, ratio information criterion (RIC) [4], is defined as

$$\operatorname{RIC}(S) = -2\pi_0 \operatorname{KL}(f_S^{(0)} || f_S^{(1)}) - 2\pi_1 \operatorname{KL}(f_S^{(1)} || f_S^{(0)}) + c_n \cdot \operatorname{deg}(S).$$

Iterative RaSE

Assigning sampling weights based on the selected frequency of each feature in the last

Ye Tian[†] and Yang Feng[‡]

[†]Department of Statistics, Columbia University [‡]Department of Biostatistics, School of Global Public Health, New York University

teature 4 feature 3 feature 2 feature

 $\sim *$

- When p is large (e.g. p > 100), it's hard to sample a subspace covering the whole S^* . (thinking about $1/\binom{100}{5} \approx 10^{-8}$). \Rightarrow stringent requirement of B_2
- But it's still possible to cover partial S^* . $\binom{95}{4}\binom{5}{1}/\binom{100}{5} \approx 0.21$
- Under some stepwise detectable conditions, after several iterations, $P(S_{1*} \supseteq S^*) \to 1$ holds with moderate B_2 settings.

A Simulated QDA Example

Model set-up

- $\boldsymbol{x}|y = r \sim f^{(r)} = N(\boldsymbol{\mu}^{(r)}, \Sigma^{(r)}), r = 0, 1.$ And p = 200.
- $S^* = \{1, 2, 10, 30, 50\}$, where $\{1, 2\}$ contributes to the linear part while $\{10, 30, 50\}$ contributes to the quadratic part.

Test error rates

Method	n = 200	n = 400	n = 1000
RaSE-LDA	37.26 _{2.86}	36.08 _{1.99}	35.67 _{1.66}
RaSE-QDA	32.19 _{2.87}	30.57 _{2.82}	$29.05_{1.91}$
RaSE- k NN	30.92 _{2.92}	27.72 _{2.41}	25.28 _{1.75}
RaSE ₁ -LDA	35.81 _{2.97}	33.36 _{2.13}	$32.81_{1.64}$
RaSE ₁ -QDA	27.18 _{2.69}	25.19 _{1.97}	$24.20_{1.44}$
$RaSE_1-kNN$	29.44 _{3.15}	27.05 _{2.30}	25.47 _{1.58}
RaSE ₂ -LDA	36.77 _{2.42}	33.67 _{1.79}	32.70 _{1.49}
RaSE ₂ -QDA	27.12 _{3.04}	24.78 _{1.95}	24.09 _{1.38}
$RaSE_2-kNN$	30.34 _{3.48}	26.95 _{2.46}	24.76 _{1.59}
RP-LDA	44.80 _{1.84}	43.03 _{1.89}	$40.20_{1.78}$
RP-QDA	43.15 _{2.03}	40.26 _{2.03}	36.35 _{1.77}
RP-kNN	44.13 _{1.79}	$42.74_{1.71}$	40.79 _{2.10}
LDA	49.07 _{2.22}	$43.13_{1.88}$	38.55 _{1.82}
QDA	†	—†	$45.19_{1.75}$
kNN	45.35 _{1.81}	44.45 _{1.91}	$43.23_{1.70}$
sLDA	36.77 _{3.34}	34.05 _{2.13}	$33.13_{1.55}$
RAMP	37.53 _{6.25}	33.03 _{2.04}	32.47 _{1.80}
NSC	41.76 _{4.29}	37.93 _{3.68}	$35.41_{2.32}$
RF	37.40 _{3.15}	31.74 _{2.36}	27.46 _{1.57}
Sig-QDA	23.461 52	22.751 41	22.381 20

- [1] Timothy I Cannings, Richard J Samworth, et al. "Random-projection ensemble classification". In: Journal of the Royal Statistical Society Series B 79.4 (2017), pp. 959–1035.
- [2] Tin Kam Ho. "The random subspace method for constructing decision forests". In: *IEEE transactions on* pattern analysis and machine intelligence 20.8 (1998), pp. 832-844.
- [3] Ye Tian and Yang Feng. "RaSE: A variable screening framework via random subspace ensembles". In: arXiv preprint arXiv:2102.03892 (2021).
- [4] Ye Tian and Yang Feng. "RaSE: Random subspace ensemble classification". In: Journal of Machine Learning *Research* 22.45 (2021), pp. 1–93.

