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Introduction

High-dimensional classification and sparsity

We are dealing with the binary classification problem, where x|y = j ∼ f (j), j = 0, 1.
and x ∈ Rp. Suppose we have training data {xi, yi}ni=1.
• In the high-dimensional problem, we often have p� n.

• Only a small feature subset S∗ with cardinality p∗� p contributes to the model,

i.e. y|x d
= y|xS∗.

Some examples: sparse linear discriminant analysis (LDA), sparse quadratic discrim-
inant analysis (QDA), . . .

Random subspace method
It was first applied in decision trees [2], then extended to various models including
LDA, QDA, kNN, . . . . Its main idea is

• randomly generates some feature subsets

• train models within each subset

• merge these learners to get an ensemble learner

However, in high-dimensional problem, most random subspaces are useless!

RaSE Framework
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Fig. 1: A two-layer ensemble framework motivated by [1]

Vanilla RaSE algorithm

• For b1 = 1, . . . , B1:

– Independently generate B2 subspaces {Sb1b2}
B2
b2=1, where Sb1b2 is sampled

from hierarchical uniform distribution

∗ Sample d ∼ Unif({1, . . . , D})
∗ Sb1b2 ← randomly choose d features with equal probability

– Choose the best Sb1∗ via some criterion T

– Trained classifier C
Sb1∗−T
n ← training data in Sb1∗

• Ensemble learner CRaSEn (x)← 1

(
B−1

1

∑B1
b1=1C

Sb1∗−T
n (x) > α

)
Criterion to evaluate subspaces

• Multiple choices, e.g. AIC, BIC, eBIC, cross-validation error, . . .

• A new criterion, ratio information criterion (RIC) [4], is defined as

RIC(S) = −2π0KL(f
(0)
S ||f

(1)
S )− 2π1KL(f

(1)
S ||f

(0)
S ) + cn · deg(S).

Iterative RaSE
Assigning sampling weights based on the selected frequency of each feature in the last

round.

• Features in S∗ can be more easily sampled out.

• It allows us to rank importance of features [3, 4].

Theoretical Properties

Notations

• P/P/P: probabilities w.r.t. randomness from samples/subspaces/all sources.

• E/E/E: expectations w.r.t. randomness from samples/subspaces/all sources.

• Var: variance w.r.t. randomness from subspaces.

• Risk of classifier C: R(C) = P(C(x) 6= y).

• S∗D = {S : |S| ≤ D,S ⊇ S∗}, ScD = {S : |S| ≤ D,S 6⊇ S∗}

Impact of B1
The following results hold except for finite values of α:

• |E[R(CRaSEn )]−R(CRaSE∗n )| = O(exp {−CαB1}), where

CRaSE∗n (x) =


1, µn(x) > α,

0, µn(x) < α,

Bernoulli
(

1
2

)
, µn(x) = α,

and µn(x) = P
(
C
S1∗
n (x) = 1

)
.

• Var[R(CRaSEn )] = O(exp {−CαB1})

Consistency of RIC

• (Weak) Under some conditions, P

 sup
S∈S∗D

RICn(S∗) < inf
S∈ScD

RICn(S)

→ 1.

• (Strong) With additional conditions, P

(
RICn(S∗) = inf

|S|≤D
RICn(S)

)
→ 1.

Expected risk upper bound

E{E[R(CRaSEn )−R(CBayes)]} ≤

E sup
S∈S∗D

[R(CSn )−R(CBayes)] + P(S1∗ 6⊇ S∗)

min(α, 1− α)
.

• E sup
S∈S∗D

[R(CSn )−R(CBayes)]: caused by limited samples/noisy features

• P(S1∗ 6⊇ S∗): caused by inaccurate subspace selection

Benefits of iterative RaSE

Fig. 2: Iterative RaSE is “fishing”S∗ step by step.

• When p is large (e.g. p > 100), it’s hard to sample a subspace covering the whole S∗.
(thinking about 1/

(100
5

)
≈ 10−8). ⇒ stringent requirement of B2

• But it’s still possible to cover partial S∗. (
(95

4

)(5
1

)
/
(100

5

)
≈ 0.21)

• Under some stepwise detectable conditions, after several iterations, P(S1∗ ⊇ S∗) → 1
holds with moderate B2 settings.

A Simulated QDA Example

Model set-up

• x|y = r ∼ f (r) = N(µ(r),Σ(r)), r = 0, 1. And p = 200.

• S∗ = {1, 2, 10, 30, 50}, where {1, 2} contributes to the linear part while {10, 30, 50} con-
tributes to the quadratic part.

Test error rates

Selected percentages of each feature
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