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SUMMARY

We present a nonparametric estimator of genotype-specific age-at-onset distributions
from kin-cohort data. Standard error calculations are derived and the methodology is
illustrated through an analysis of the influence of mutations of the Parkin gene on
Parkinson’s disease. Semiparametric efficiency considerations are briefly discussed.

Some key words: Family data; Genotype; Parkinson’s disease; Parkin mutation; Proband; Relative; Survival
analysis.

1. INTRODUCTION

When an association between a disease and a genotype at a particular genetic locus is
found, it may be of interest to estimate the genotype-specific age-at-onset distributions and
to compare the distributions between genotypes.

However, it may be that the genotypes of greatest interest are rare mutations. When a
particular genotype is rare, population-based cohort studies may result in too few carriers to
allow for accurate estimation of the age-at-onset distribution associated with that genotype.
Prevalence case-control studies can enrich the sample with carriers, but with such designs
the genotype-specific distributions are generally not completely identifiable.
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An alternative study design, the kin-cohort design, has been proposed for estimating
genotype-specific distributions in the presence of rare genotypes. In this design, a sample of
so-called probands, composed mostly of subjects who have experienced onset, is recruited.
Genotype information is obtained from the probands, and disease status information,
such as age-at-onset, is obtained from the relatives of the probands. However, genotype
information is usually not obtained in the relatives; see for example Struewing et al. (1997),
Wacholder et al. (1998), Gail et al. (1999a), Gail et al. (1999b), Chatterjee & Wacholder
(2001), Chatterjee et al. (2001), Moore et al. (2001) and Saunders & Begg (2003).

Recruitment of probands may be dependent on the probands’ age-at-onset. In this
situation, the probands’ age-at-onset information may not accurately represent the
genotype-specific distributions of age-at-onset in the population. However, for some
sampling schemes it may be appropriate to assume that the age-at-onset in the relatives is
conditionally independent of recruitment of the probands, given the probands’ genotype.
In this situation, the experience of the relatives can be representative of the relationship
between age-at-onset and genotype in the general population.

The difficulty with using the relatives’ age-at-onset data is that the genotype information
in the relatives is generally not observed. However, relatives’ genotypes can be inferred
from the probands’ genotypes. The central issue in the estimation of genotype-specific
distributions from kin-cohort data is combining probands’ genotype information with
age-at-onset in the relatives.

Several approaches have been developed for estimating genotype-specific age-at-onset
distributions from kin-cohort designs. Struewing et al. (1997) & Wacholder et al. (1998)
proposed nonparametric estimation when there were two genotype-specific distributions
to be estimated. Chatterjee & Wacholder (2001) proposed a more general nonparametric
maximum likelihood estimator that allows for estimation of age-at-onset for more than two
genotypes. However, the large sample properties of nonparametric maximum likelihood
estimators are unknown, and consistency of the likelihood-based variance estimators for
the nonparametric maximum likelihood estimators has not been established.

An alternative approach to efficient estimation from kin-cohort data was proposed in
Y. Wang’s 2005 Ph.D. dissertation at Columbia University. However the approach there
is only applicable to uncensored outcomes. Here, we present an estimator similar in spirit
to that proposed in Wang’s dissertation, but which is applicable to censored age-at-onset
data, and an approach to computing standard errors.

2. ESTIMATION

Let I denote the event that the probands are ascertained and their relatives are included
in a kin-cohort study sample. Let n denote the number of relatives in the sample, and let i

index these relatives. Let p denote the number of possible genotypes, and let j index the
genotypes. Let G denote the genotype information available in the sample of probands,
and let πij denote the conditional probability, given G, that the ith study subject is carrying
the j th genotype. Let πi denote the p-vector whose j th component is πij . The πi are
calculated using the laws of Mendelian inheritance and, when necessary, estimates of
population genotype frequencies. The calculation of πi is discussed in some detail in the
illustrative data analysis in §3, and an example of πi is listed in Table 1.

Let Ti denote the the ith subject’s age-at-onset, and let Ni(s) denote the indicator that Ti

is less than or equal to s. Let Ci denote the observed age of the ith subject at the time of
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Table 1. The calculation of πi for first-degree relatives of probands. Here p = 1 − q

is the population frequency of mutation

Parent or child of a proband Sibling of a proband
Parent or child Parent or child Sibling Sibling

Proband AA or Aa aa Proband AA or Aa aa

AA 1 0 AA − 1
4 p2 + 1

2 p + 3
4

1
4 (1 − p)2

Aa 1
2 (1 + p) 1

2 (1 − p) Aa − 1
4 p2 + 3

4 p + 1
2

1
4 p2 − 3

4 p + 1
2

aa p q aa − 1
4 p2 + p 1

4 p2 − p + 1

ascertainment, and let C denote the entire collection of censoring times. Let Ri(s) denote the
indicator that Ci is greater than s. It is assumed that the Ti are conditionally independent
of I and C, given G; three sufficient conditions for this assumption and sampling schemes
that satisfy these conditions are discussed in §4. Let Fj denote the distribution function of
age-at-onset among carriers of the j th genotype, and let F denote the corresponding vector
of conditional distribution functions. Finally, let Gi denote the conditional distribution of
Ti given the available genotype information in the probands: Gi = πT

i F .
The subject-specific distributions Gi are linear combinations of components of F .

If the number of distinct πi , and thus the number of distinct Gi , is the same as
the number of genotypes, and the distinct πi are linearly independent, then the
components of F may be written as unique linear combinations of the distinct Gi .
In this case, the genotype-specific distributions can be unbiasedly estimated as linear
combinations of the subject-specific empirical distribution functions computed separately
in each of the subsets of relatives corresponding to the distinct πi ; see Table 1.
When there is not a unique linear transformation, then any generalized inverse of the
mapping that takes the Gi to F may be applied to the degenerate subject-specific
empirical distribution functions to obtain unbiased estimators of F . However, with
censored age-at-onset data, these subject-specific empirical distribution functions are not
available.

In order to motivate the approach taken with censored data, it is useful to view linear
combinations of estimators of the Gi as integrals of linear combinations of the empirical
estimators of dGi . Although censored subjects cannot contribute to empirical estimators
of dGi(s) for s exceeding Ci , as long as there is sufficient variability in the πi among those
subjects with censoring times exceeding s that the map dGi(s) = πT

i dF (s), when restricted
to those subjects, is invertible, then dF(s) may be estimated by linear combinations of
estimators of dGi restricted to the subjects with censoring times exceeding s; natural
estimators of dGi(s) for relatives with Ci > s are given by dNi(s). The estimators of dGi

may then be integrated to obtain estimators of F .
Although there is generally an infinite set of linear combinations of the degenerate

estimators of dGi(s) among subjects with Ci > s that provide unbiased estimators for
dF(s), each corresponding to a generalized inverse, there is a linear combination that is
particularly convenient:

dF̂ (s) = ∑
i:Ri(s)=1

M(s)πidĜi(s)

= ∑
i:Ri(s)=1

M(s)πidNi(s), (1)
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where

M(s) = (∑
i

π iRi(s)π
T
i )−1

.

A computational formula for the resulting estimator is

F̂ (t) = ∑
i: Ti�t

M(Ti)πiRi(Ti).

The condition for the existence of the estimator is that the matrix ∑i π iRi(s)π
T
i be

invertible for s ∈ (0, t). This invertibility is equivalent to the invertibility of the mapping
Gi(s) = πT

i F (s), for Ci > s. When there is not sufficient variability in πi for subjects with
Ri(s) = 1, dF(s) is not identifiable.

To show that the estimator is unbiased, note that

E{dF̂ (s)} = E[E{dF̂ (s)| I, C, G}]
= E[E{ ∑

i:Ri(s)=1
M(s)πidNi(s)| I, C, G}]

= E[E{∑
i

M(s)πiRi(s)dNi(s)| I, C, G}]
= E[∑

i

M(s)πiRi(s)E{dNi(s)| I, C, G}]
= E ∑

i

M(s)πiRi(s)dGi(s) (2)

= E ∑
i

M(s)πiRi(s)π
T
i dF (s)

= EM(s){∑
i

πRi(s)π
T
i }dF(s)

= dF(s).

Here the second equality follows from the definition of dF̂ (s), and the third follows
from the definition of Ri(s). The fourth equality follows because πi and Ri(s) are
in the σ -algebra generated by C and G, and the fifth because of the assumption that
the relatives’ age-at-onset, Ti , are conditionally independent of the ascertainment of
the probands and the inclusion of their relatives, I, and the ascertainment times,
C, given the available genotype information in the probands, G. The sixth equality
follows from the relationship dGi(s) = πT

i dF (s), and the last from the definition of
M(s).

The asymptotic normality of
√

n{F̂ (t) − F(t)} is discussed in Appendix 1.
We now consider estimation of the covariance matrix. Since

dF(s) = ∑
i

M(s)πiRi(s)dGi(s),

it follows that F̂ (t) − F(t) may be expressed as a sum of zero-mean subject-specific terms,

∑
i

∫
M(s)πiRi(s)d{Ni(s) − Gi(s)}.
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The covariance matrix of F̂ (t) − F(t) is therefore

∑
i

E( ∫t

0
M(s)πiRi(s){dNi(s) − dGi(s)})⊗2

, (3)

which suggests estimating the covariance matrix by

�̂(t) = ∑
i

( ∫t

0
M(s)πiRi(s){dNi(s) − dĜi(s)})⊗2

, (4)

where dĜi(s) = πT
i dF̂ (s). The corresponding estimator for cov{F̂ (t1), F̂ (t2)} is

∑
i

( ∫t1

0
M(u)πiRi(u){dNi(u) − dĜi(u)})( ∫t2

0
M(v)πiRi(v){dNi(v) − dĜi(v)})T

. (5)

The estimator (4) is appropriate when there is only one relative from each family. When
there are multiple members from each family, the corresponding estimator would be

∑
k

(∑
�

∫t

0
M(s)πk�Rk�(s){dNk�(s) − dĜk�(s)})⊗2

.

Here k indexes family and � indexes subjects within a family.

3. DATA ANALYSIS

Parkinson’s disease is a neurodegenerative disorder affecting approximately one to two
percent of the population aged 65 or older. Mutations in several genes have been identified
in Parkinson’s patients; see Polymeropoulos et al. (1997), Kitada et al. (1998), Leroy et al.
(1998), Valente et al. (2004) and Paisan-Ruiz et al. (2004). Among these genes, the Parkin
gene is emerging as relatively important. The frequency of mutations in the Parkin gene
is estimated to be 50% in familial early-onset Parkinson’s patients and 18% in sporadic
Parkinson’s patients (Lucking et al., 2000). In late-onset Parkinson’s patients the frequency
of mutations in the Parkin gene is estimated at 2% (Oliveira et al., 2003). Although Parkin
mutations appear to be associated with both early- and late-onset Parkinson’s, the effect
of the Parkin gene on age-at-onset of Parkinson’s is unknown.

A kin-cohort design to study the association between Parkin mutations and Parkinson’s
disease symptoms was conducted at Columbia University Medical Center (Marder et al.,
2003a). Altogether 487 probands with Parkinson’s disease (cases) and 409 probands without
disease (controls) were recruited. Recruitment of the probands was carried out without
knowledge of the family history of the disease; this independence of the recruitment of
the probands and the family history of Parkinson’s in the relatives corresponds to the
assumption that Ti is conditionally independent of I and C, given G, used in (2).

The probands were then interviewed either face-to-face or over the telephone for
ascertainment of Parkinson’s and other neurological disease in their first-degree relatives.
To ensure the validity of the interview, the family history interviews were also administered
to a second person, preferably the first-degree relative himself or herself when possible. An
algorithm was created to generate a final diagnosis for each first-degree relative based on
all possible interview information; see Marder et al. (2003b).

There were 224 early-onset, i.e. age-at-onset less than or equal to 50, case probands
and 105 control probands analysed for Parkin mutations by sequence analysis and
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semiquantitative multiplex polymerase chain reaction. An analysis of a subset of 101 cases
and 105 controls was previously reported (Clark et al., 2006). Twenty-seven Parkinson’s
probands were found to carry mutations, among whom nine carried homozygous or
compound heterozygous mutations. None of the control probands carried a mutation.
There were 1976 first-degree relatives of the probands included in the analysis, including
634 parents, 734 siblings and 608 children. None of the relatives was genotyped.

The population prevalence of Parkin mutations is unknown, but may be estimated to be
0·004% as described in Appendix 2. In the calculation the rate of mutations in disease-free
subjects was taken to be zero. If the upper bound of 0·028 as estimated in Clark et al.
(2006) is used instead, the estimate of the population frequency becomes 0·03. Both values
were used in the analyses to examine the sensitivity of the method to the misspecification
of mutation frequency.

It would be desirable to estimate the distribution of age-at-onset separately in
homozygous carriers and heterozygous carriers. However, because of the low population
frequency of Parkin mutations, only very few of the relatives are expected to be homozygous
carriers. The homozygous and the heterozygous carriers were combined into a single group
in the analysis described here.

The conditional probabilities that the relative of a proband carries one or more copies
of a mutation, given the proband’s genotype status, can be calculated using the Mendelian
law and estimated Parkin mutation frequency. These results are summarized in Table 1.

The estimated conditional distributions of age-at-onset for Parkinson’s disease, given a
subject carrying one or more copies of mutation, versus the corresponding distribution,
given a subject carrying no mutation, and standard errors of the estimates are recorded in
Table 2.

Note that F̂ (t), the integral of the estimator (1), is not monotone. This reflects the small
number of failures times available in the dataset. We applied the pooled-adjacent-violators
algorithm (Barlow et al., 1972, Ch.2 ) to provide a monotone version; see Table 3 and Fig. 1.

The sample contained 27 relatives who developed Parkinson’s disease, among whom
four were relatives of Parkin-carrier probands. The cumulative incidence of Parkinson’s
disease by age 70 increased to 6·1%, with 95% confidence interval (1·0%, 18·6%) for carriers
and to 1·0%, with 95% confidence interval (0·5%, 2·3%) for noncarriers. The distribution

Table 2. Parkinson’s disease study. Estimated values and
standard errors of the estimator of the genotype-specific

conditional distributions
Carriers Noncarriers

Age Estimate Std. Err. Estimate Std. Err.

25 0·013 0·013 0·000 0·000
30 0·027 0·019 0·000 0·000
35 0·027 0·019 0·000 0·000
40 0·027 0·019 0·001 0·001
45 0·013 0·014 0·002 0·001
50 0·013 0·014 0·002 0·001
55 0·000 0·001 0·004 0·002
60 0·000 0·001 0·008 0·003
65 0·023 0·026 0·009 0·003
70 0·061 0·045 0·010 0·004

Std. Err., Estimated standard error
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Table 3. Parkinson’s disease study. Monotone
version of the estimated genotype-specific

conditional distributions
Carriers Noncarriers

Age Estimate Estimate

25 0·011 0·000
30 0·011 0·000
35 0·011 0·000
40 0·011 0·001
45 0·011 0·002
50 0·011 0·002
55 0·011 0·004
60 0·011 0·008
65 0·023 0·009
70 0·061 0·011
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Fig. 1. Parkinson’s disease study. Distribution of age-at-onset for Parkin
carriers and noncarriers.

of age-at-onset up to age 70 in noncarriers is very similar to the distribution in the general
population (Marder et al., 2003a). However, it should be noted that the shape of the
distribution of the carriers is largely determined by the four subjects who were relatives of
Parkin carrier probands and developed disease at the ages of 25, 29, 63 and 70.

To test for a difference between the distributions of age-at-onset in Parkin carriers and
noncarriers, at a specific value t , one can refer

F̂1(t) − F̂2(t)√{(1,−1)�̂(t)(1,−1)T}
to critical values of the standard normal distribution.

For t = 25, 50 and 70, the estimates (standard errors) of F̂1(t) − F̂2(t) are 0·013(0·013),
0·011(0·014) and 0·051(0·045), giving p-values for the normalized test statistic of 0·32, 0·43
and 0·26. The analysis was carried out again with the Parkin mutation frequency replaced
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by 0·03: the results were almost identical, suggesting that the method can be robust against
the misspecification of population mutation frequencies.

To examine the relationship between familial aggregation of early-onset Parkinson’s
disease and Parkin gene mutations, we restricted the analyses to the 1330 relatives of 224
early-onset Parkinson’s probands and compared the distribution of the noncarriers esti-
mated from these relatives to that in the population. The Kaplan–Meier method was used to
estimate the population distribution of age-at-onset of Parkinson’s using the 646 relatives of
the 105 control probands and compared it to the distribution of the noncarriers estimated by
the proposed method: the cumulative incidence of Parkinson’s up to age 70 in the population
was estimated to be 1·1% (SE: 0·6%), compared with 1·3% (SE: 0·6%) (p = 0·77) in the non-
carrier relatives of early-onset case probands. Various familial aggregation studies reported
(Marder et al., 2003a) that relatives of early-onset cases are at increased risk of being affected
with Parkinson’s. The current study suggests that increased risk of Parkinson’s disease up to
age 70 in the relatives of early-onset Parkinson patients could be due to carrying Parkin gene
mutations: the relatives of early-onset case probands who do not carry Parkin mutations are
not at increased risk of Parkinson’s disease compared to the general population up to age 70.

4. DISCUSSION

The assumption used in (2) to ensure that the approach is unbiased is that the age-
at-onset of the relatives are conditionally independent of the inclusion of the probands
and ascertainment times in relatives, given probands’ genotypes. Three conditions are
sufficient for this assumption to hold. The first one is that the age-at-onset in relatives are
conditionally independent of the sampling of probands and the inclusion of relatives, given
ages at ascertainment of the relatives, probands’ genotypes and probands’ age-at-onset.
The second one is that the age-at-onset in relatives are conditionally independent of age-at-
onset in probands, given probands’ genotypes. The third condition is the usual assumption
of conditional independence between failure times and censoring times given covariates, in
this case probands’ genotypes, in survival regression analyses.

The first condition is satisfied for designs in which the sampling of probands and the inclu-
sion of the relatives in the study dataset are based on the probands’ ages-at-onset and possi-
bly genotypes and the ages at ascertainment of their relatives, but not on the relatives’ ages-
at-onset. The method presented here can therefore be used for designs in which probands
with certain susceptible genotypes and phenotypes are over-sampled, and relatives with
late age at ascertainment to allow for possible manifestation of disease are over-sampled.

The second condition corresponds to the association between age-at-onset in relatives
and age-at-onset in probands being explained completely by association between probands’
and relatives’ genotypes: there is no additional familial risk factor that affects age-at-onset.
If there are unmeasured risk factors clustering in the family, relatives of affected probands
may exhibit a stronger association between the mutation and disease than individuals in the
general population; see Gail et al. (2001) and Begg (2002). Methods based on random effect
models and copula models have been proposed that take into account the residual familial
aggregation of additional risk factors; see for example Hsu et al. (2004) and Chatterjee
et al. (2006).

If a family member dies prior to the study, the censoring time may be taken to be the
subject’s age at death. In this case, the approach developed here would require the death to
be independent of the subject’s course of the disease.
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The approach developed here is not fully efficient. To consider efficiency, it is more
convenient to consider estimators of the cumulative hazard rather than the cumulative
distribution function. It may be conjectured that an estimator of the form

d�̂j (s) = ∑
i

Mij (s)dNi(s)

achieves the semiparametric efficiency bound. The optimal weights Mij for estimating the
j th genotype-specific cumulative hazard are defined implicitly by the orthogonality score
integral equations for ϕ�. The score equations in this situation are

< Sθ −
∫

Sxϕ�(x)dx, Sx >= 0,

for every x, and

Sθ = ∑
i

∫
∂

∂θ
log λ̃

θ

i (s){dNi(s) − λ̃i(s)
θYi(s)ds},

Sx = ∑
i

∫
∂

∂θ
log λ̃

x

i (s){dNi(s) − λ̃
x

i (s)Yi(s)ds}.

Here the inner product is defined by the expectation,

λθ
j (s) = λj (s) + θ

1(s�t)

t
, λx

j (s) = λj (s) + θδx(s) − θ1(x�t)

1(s�t)

t
,

λ̃
y

i (s) = ∑k πikSk(s)λ
y
k (s)∑k πikSk(s)

,

and δx(s) is the Dirac delta function at x.
The optimal estimator may be expressed as

�̂j (t) = ∑
i

∫t

0
MijdNi(s),

where

Mij(s) = (∑
i

∫
πijSj (s)∑j πijSj (s)λj (s)

ξ(s)Yi(s)ds)−1 πijSj (s)∑j πijSj (s)λj (s)
ξ(s),

ξ(s) = (1 +
∫t

0
ϕ�(u)du)1(s�t)

t
− ϕ�(s)

−{λj (s) − λ̃i(s)} {(1 +
∫t

0
ϕ�(u)du)s ∧ t

t
−

∫s

0
ϕ�(u)du}.

Solving the integral equation corresponds to computing a kind of least squares solution.
Unfortunately there is no explicit solution.

For testing the difference of the age-at-onset between genotypes, a weighted version of
T , ∫t

0
w(s)d{F̂1(s) − F̂2(s)},

can also be used. Computation of standard errors for such a test statistic would rely on the
covariance matrix estimator in (5).

Finally, the estimator for the distribution of age-at-onset developed here is not monotone.
In some situations, for example in the graphical presentation of the estimator, it may be
convenient to obtain a monotone version of the estimator. A pooled-adjacent-violators
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algorithm or a convex minorant algorithm may be applied (Groeneboom & Wellner,
1992).
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APPENDIX 1

Large sample property of the proposed estimator

Here we derive regularity conditions sufficient for application of the multivariate Lindeberg
central limit theorem to establish the pointwise joint normality of

√
n{F̂ (t) − F(t)}.

First note that
√

n{F̂ (t) − F(t)} may be expressed as ∑i Yni , where

Yni = √
n

∫t

0
M(s)πiRi(s){dNi(s) − dGi(s)}.

The assumptions of the multivariate central limit theorem applied to the estimator are that there be
a positive definite matrix � such that

n∑
i=1

cov(Yni) → �, (A1)

and, for any ε > 0,
n∑

i=1
E‖Yni‖21{‖Yni‖>ε} → 0, (A2)

where ‖ ‖ denotes the Euclidean norm.
To show (A1), note that the covariance matrix in (A1) is

n∑
i=1

cov(Yni) = 1
n

n∑
i=1

E (∫t

0
nM(s)πiRi(s){dNi(s) − dGi(s)})⊗2

.

A law of large numbers argument applied to the convergence of nM(s) to its expectation, for s such
that pr(Ci > s) > 0, together with a law of large numbers argument applied to the terms

(∫t

0
nEM(s)πiRi(s){dNi(s) − dGi(s)})⊗2

,

provide the result (A1) for independent and identically distributed Ci and πi .
To show (A2), first note that

n∑
i=1

E‖Yni‖2 =
n∑

i=1
E{(Y 1

ni)
2 + · · · + (Y

p
ni)

2},

so that ∑n
i=1 E‖Yni‖2 converges to the summation of the diagonal elements of �. Then note that,

since

E
n∑

i=1
‖Yni‖21{‖Yni‖>ε} � E ( n∑

i=1
‖Yni‖2) sup

i

1{‖Yni‖>ε},

it suffices to show that

sup
i

‖Yni‖ → 0. (A3)
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For (A3) to hold, note that, by

sup
i

‖Yni‖ = sup
i

‖ 1√
n

∫t

0
nM(s)πiRi(s){dNi(s) − dGi(s)}‖,

and the convergence of nM(s) to nEM(s), it suffices that the assumption nEM(s) < ∞ hold and
maxi π iRi(s) < ∞. The former condition is satisfied if pr(Ci > s) > 0 for s ∈ (0, t). The latter
condition is satisfied by the definition of πi and Ri(s).

It follows directly that sufficient conditions for
√

n{F̂ (t) − F(t)} to be asymptotically normal are
that Ci and πi be independent and identically distributed, and, for all s ∈ (0, t), pr(Ci > s) > 0.

APPENDIX 2

Estimate of the population frequency of Parkin mutations

Let A denote the event that a subject carries a Parkin mutation, let B1 denote the event that
the subject has early-onset Parkinson’s, let B2 denote the event that the subject has late-onset
Parkinson’s, and let B3 denote the event that the subject does not have Parkinson’s. Here pr(A|B1)

may be taken as 18% (Lucking et al., 2000), and pr(A|B2) may be taken as 2% (Oliveira et al.,
2003). Clark et al. (2006) showed that in a sample of 105 disease-free subjects the frequency of
Parkin mutation, pr(A|B3), was zero, with the upper 95% confidence bound 0·028. The prevalence
rate for Parkinson’s is estimated to be 0·1% (Mayeux et al., 1995), and 10% of Parkinson’s cases
are estimated to be early onsets, i.e. they develop Parkinson’s before the age of 50. Therefore, the
prevalence rate of the early-onset Parkinson disease, pr(B1), is about 0·01%, and the population
frequency of Parkin mutation can then be estimated as

pr(A) = pr(A|B1)pr(B1) + pr(A|B2)pr(B2) + pr(A|B3)pr(B3)

= (0·18)(0·01%) + (0·02)(0·09%) + (0)(99·5%)

= 0·004%.

If the upper confidence bound of 0·028 for mutation frequency in disease free subjects is used, the
estimate of the population frequency becomes 0·03.
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