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SUMMARY

In a genetic epidemiology study of a trait, prior to collecting genotype data the foremost task is to
test for familial aggregation and examine heritability. Recently, functional traits have drawn attentions
from investigators. Here, to test for familial aggregation of a functional trait in the family studies, a
test constructed based on the leading functional principal component of heritability, which is a summary
measure of temporal genetic variation in a functional trait, is proposed. The p-value of the test can be
approximated by a permutation procedure given the family structure. The asymptotic distribution of the
test statistic is derived. Simulations are carried out to examine the size and the power of the test. The
proposed methods are applied to the total cholesterol data in the Framingham Heart Study. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Disease etiology for complex traits is often complicated, involving genetic and environmental
contributions, interaction of the two, and other unobserved factors [1, 2]. Genetic architectures
are more complicated for complex functional traits, such as cholesterol level, blood pressure, and
HIV load, which change with time [3]. Although cross-sectional designs are widely implemented
to map genes influencing quantitative traits, for functional traits, longitudinal designs can provide
more information and offer novel insights on how genes affect developmental features of these
traits [3].
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For any trait of interest, prior to collecting genotype data for further genetic studies, the fore-
most task is to test for familial aggregation and examine heritability. If no strong evidence of
familial aggregation is found, there is little need to conduct further genetic linkage or association
studies. Despite a rich literature on familial aggregation in scalar traits (e.g. [4]), there has been
conspicuously few research on the same topic for functional traits.

A naive method to examine the familial aggregation in a functional trait would be to perform
the existing tests derived for scalar traits at each measurement time point. This strategy has several
disadvantages. For example, it is subject to the problem of multiple comparisons, it ignores temporal
trend in functional traits, and in practice subjects may not be measured at the same time points.

To overcome these problems, we consider tools developed in the field of functional data analysis.
When the subjects in the sample are independent, functional principal components analysis (FPCA)
can be used to explore sources of temporal variation of functional traits [5]. For family studies,
however, without taking the familial structure into account, the standard FPCA describes the total
temporal variation of a trait instead of the genetic temporal variation, in which we are primarily
interested.

For multivariate traits, a principal components approach based on heritability (PCH) was devel-
oped in [6]. Instead of maximizing the total variation of the traits, this approach computes a linear
combination of traits that maximize the heritability. Recently, an association test based on PCH
for multivariate traits was proposed in [7].

In this manuscript, to test for familial aggregation and examine the temporal heritability of
functional traits, a functional principal components approach based on heritability (FPCH) is
developed. The test statistic is the leading functional principal component of heritability. The p-
value of the test can be approximated by a permutation procedure given the family structure. The
asymptotic distribution of the test statistic is also derived. Using asymptotic critical value to assess
significance can reduce computational burden significantly, especially for genome-wide association
studies. In addition, performance of the test can be improved by incorporating a mixed-effects
model.

The manuscript is organized as follows. In Section 2, methods are proposed. In Section 3,
simulations are carried out to examine size and power of the test. In Section 4, the proposed methods
are applied to the total cholesterol data collected in the Framingham Heart Study. In Section 5,
application to genome-wide association study and some possible extensions are discussed.

2. METHODS

2.1. Functional heritability and a direct method

Let yi j (t) denote the observed functional trait of subject j in family i at time t . Let s be the number
of families in the sample, ni be the number of subjects in family i , and n be the total number
of subjects. In the absence of genotype information, the total variance of the trait is decomposed
into polygenic genetic variance and residual variance. Heritability is then defined as the ratio of
genetic variance and total variance. Here, for the sake of illustration, we assume that each family
consists of only siblings. The genetic variance and residual variance can be estimated based on the
between- and the within-family sum of squares [8]. Specifically, for sibship data the heritability
at time t can be estimated by

h2(t)=�2G(t)/�2T (t) (1)
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where �2G(t)=2(MSb(t)−MSw(t))/n0 and �2T (t)=[(s−1)MSb(t)+(n−s)MSw(t)]/(n−1). Here,
MSb(t) is the between-family mean square,

∑
i ni (ȳi.(t)− ȳ..(t))2/(s−1), MSw(t) is the within-

family mean square,
∑

i j (ȳi j (t)− ȳi.(t))2/(n−s), and n0 equals to (n−∑
i n

2
i /n)/(s−1).

In practice, a functional trait is only observed at discrete time points and in most cases
these time points are different among subjects. Let �(·) denote the K vector of B-spline basis,
(�1(·), . . . ,�K (·))T, and assume that the trait can be expressed as

yi j (t)=cTi j�(t)+�i j (t) (2)

where ci j are basis coefficients and �i j (·) are stationary white-noise processes. Here, we use
B-spline basis system because it is flexible and fast to compute even with very large number of
basis functions [9].

The basis coefficients ci j are unknown. A direct method to estimate ci j for subject j in
family i based on measurements (yi j (ti j,1), yi j (ti j,2), . . . , yi j (ti j,Ti j )) is to use least squares or
other smoothing techniques [5]. Using the estimated basis coefficients ĉi j , the between- and the
within-family mean squares are, respectively,

MSb(t)= �T(t)B�(t)

s−1
and MSw(t)= �T(t)W�(t)

n−s

where

B=∑
i
ni ( ¯̂ci.− ¯̂c..)( ¯̂ci.− ¯̂c..)

T and W =∑
i j

(ĉi j − ¯̂ci.)(ĉi j − ¯̂ci.)T (3)

Then the functional heritability (1) can be computed based on these expressions.
As pointed out in [5], the choice of the number of basis functions used depends on many

considerations such as the number of sampling points and the efficiency of the basis functions in
reproducing the behavior of the original function. Here, we use a direct method to develop tests
for familial aggregation in Sections 2.2–2.4, and then discuss methods of regularizing smoothness
in Section 2.5. Although the test based on the direct method in Section 2.3 is robust to model
mispecification or model selection, it is inappropriate when the measurement points are sparse. To
overcome this, we propose a method based on a mixed-effects model in Section 2.5.

2.2. FPCA based on heritability

The FPCA approach maximizes the total variation in a functional trait collected in independent
subjects and therefore does not reflect familial information. As discussed in [6], taking into account
the family structure can explore genetic variation instead of total variation in a trait. For a functional
trait collected from family studies, we propose FPCH approach to incorporate familial information.

For any weight function �(·), the weighted trait of yi j (·), or FPCH score, is defined as
fi j=

∫
�(t)yi j (t)dt . The FPCH approach attempts to find a weight function �1(·) that maximizes

heritability in fi j , which is a measure of the overall heritability of yi j (·) corresponding to �(·). It
can be shown that the weight function �1(·) also maximizes the ratio of between- and within-family
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variation of fi j , ∑s
i=1 ni ( f̄i ·− f̄··)2∑s

i=1
∑ni

j=1( fi j − f̄i ·)2
(4)

Similar to yi j (·), �(·) is projected onto a K -dimensional B-spline basis system, that is, �(t)=
bT�(t). It follows that:

fi j =
∫

bT�(t)�T(t)ĉi j dt

where the coefficients b and ĉi j are K vectors, and ĉi j are discussed in the previous section. Then,
the maximization problem (4) becomes solving

max
‖b‖=1

bT�B�b

bT�W�b
(5)

where �=∫
�(t)�T(t)dt , and B and W are defined in (3). Also note that (5) is equivalent to

max‖b‖=1 bTBb/bTWb. It is well known that the solution, say b1, to this optimization problem is
the largest eigenvector of W−1B, and then the weight function is �1(·)=bT1�(·).

2.3. Testing for familial aggregation of functional traits

To test for the null hypothesis that there is no familial aggregation in a functional trait, we develop
a test statistic defined as the maxima in (5), which is equivalent to

T = max
‖b‖=1

bTBb

bTWb
(6)

The bigger value of T indicates the stronger evidence of familial aggregation. This test has larger
power compared with the one taking average of observations within each subject, because T is
based on the optimal combination of observations within each subject. As a special case, authors
in [6] examined power of T compared with other methods for multivariate trait including averaging
observations on a subject, and it is found that T has the largest power in the most of cases.

Under the null hypothesis of no familial aggregation, functional traits yi j (·) are independent
across all subjects. The p-value of the test statistic T can be obtained through a permutation proce-
dure given the family structure. To describe the permutation procedure, re-denote the functional
traits as zh(·),h=1, . . . ,n and their basis coefficients as ĉh such that zh(·)= ĉTh�(·). Since the func-
tional traits are independent under the null hypothesis, we can randomly partition zh(·),h=1, . . . ,n,
into s families with the observed family sizes. Denote the curve of the subject j in the family i
in a random partition as y∗

i j (·) with the corresponding basis coefficient ĉ∗
i j . Then the test statistic

calculated from this partition is

T ∗ = max
‖b‖=1

bTB∗b
bTW ∗b

(7)
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where B∗ and W ∗ are the between- and within-family sum of squares of the basis coefficients
ĉ∗
i j , as defined in (3). Repeat the random partition D times and record the test statistic (7) in each
partition as T ∗

d . Then the one-sided p-value can be approximated by∑{d :T ∗
d >T }/D (8)

An attractiveness of the permutation test is its robustness to model mispecification of the trait,
and to the choice of basis system and the number of bases. The type-I error of the test is always
correct regardless of specified model. However, an appropriate model specification can improve
power of the test. We will discuss this in Section 2.5.

The algorithm for computing permutation p-value is straightforward to implement. However, the
computation may be intensive especially when the sample size is large. We derive the asymptotic
distribution of the test statistic in the next section.

2.4. Asymptotic distribution of the test statistic

For any given b, the distribution of the ratio in (6) can be approximated by an F distribution with
(s−1,n−s) degrees of freedom. Because of the maximization, however, the distribution of T is
more complicated than an F distribution. In recent years, there is a wealth of literature on the
asymptotic distribution of the largest eigenvalue of random matrix; see for example [10]. Among
these, the following theorem from [11] can be applied to obtain the asymptotic distribution of T .

Theorem 1
Suppose that there are two independent p× p random matrices W1 and W2 following Wishart
distributions Wp(k1, Ip) and Wp(k2, Ip), respectively. Here, Ip is an p× p identity matrix. Recall
that if p-vectors z1, . . . , zm are i.i.d. as Np(0,�), then

∑m
i=1 zi z

T
i ∼Wp(m,�). Let k=k1+k2. Let

U1 be the largest root of equation det[U (W1+W2)−W1]. Then, with p, k1(p), and k2(p)→∞,

P(U1�s)= P(�++�+TW1�s)+o(1) (9)

where

�p
2

=sin−1
√

p

k
,

�p

2
=sin−1

√
k1
k

, �+ =cos2
(

�

2
− �p+�p

2

)
, �3+ = sin4(�p+�p)

4k2 sin�p sin�p

and TW1 follows the Tracy–Widom F1 distribution.
See [12] for details about Tracy–Widom F1 distribution. If p and k1 are small, use corrections

�p
2

=sin−1

√
p−0.5

k−1
,

�p

2
=sin−1

√
k1−0.5

k−1
, �+ =cos2

(
�

2
− �p+�p

2

)

and

�3+ = sin4(�p+�p)

4(k−1)2 sin�p sin�p

Corollary 1
Assume that the functional traits of all subjects are observed at the same time points t1, . . . , tq , q>K ,
where K is the number of B-spline bases in the model (2). Also assume that in (2), the residuals
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�i j (t) are stationary Gaussian processes. Then under the null hypothesis of no familial aggregation,
the distribution of T/(1+T ) can be approximated by that of U1 in Theorem 1 with p=K , k1=
s−1, and k2=n−s.

Proof of Corollary 1
Let � be the matrix (�(t1), . . . ,�(tq)) and let �2 be the constant variance of �i j (t). Let �=(�T�)−1

�2. Following the arguments in the analysis of variance, it is easy to show that B and W are
independent, and under the null hypothesis that of no familial aggregation, B∼WK (s−1,�) and
W ∼WK (n−s,�) [5]. Then by the transformation c̃i j =�−1/2ci j , the corollary is proved. �

The condition of all subjects being measured at the same time points in the corollary may not be
satisfied. However, if the measurements are not largely different, Corollary 1 can still be applied
to obtain approximated critical values for test statistic T . The similar results were obtained in [13]
for multivariate traits.

By Corollary 1, we can obtain the approximated critical values for the test statistic T . For
example, with 5 per cent significance level, the corresponding percentile of Tracy–Widom F1 is
0.98 [11]. The approximated critical value of T/(1+T ) is u∗ =�++0.98�+, where �+ and �+
are defined in (9) and depend on s,n, and K . Then the approximated critical value of T at 5 per
cent level is t∗ =1/(1−u∗)−1.

2.5. Improving power of the proposed test

Although the test proposed in Section 2.3 based on the direct method has correct type-I error
no mater what model is specified, more sophisticated methods will improve the power of the
test. Beyond the direct method, many other methods are proposed in the field of functional data
analysis, such as mixed-effects approach (e.g. [14, 15]), reduced-rank method [16], and FPCA
through conditional expectation [17]. Incorporating these methods to the test (6) can improve the
power of the test. In this subsection, we use mixed-effects model approach as an example.

Again, under the null hypothesis subjects are independent, so that we can re-denote the traits
as zh(t),h=1, . . . ,n. The mixed-effects model has the form

zh(t)=aT�(t)+cTh�(t)+�h(t), h=1, . . . ,n (10)

where �(t) is the K -dimensional B-splines, a is the fixed effect, ch is the subject-specific random
effect with covariance matrix �c, and �h(t) is the random error with mean zero and variance
�2. Let Zh be the vector consisting of the Th observed values on the hth subject, let �h be
the corresponding Th by K spline matrix evaluated at the observed time points, and �h be the
corresponding random error vector with covariance matrix �2 I . The mixed-effects model then
becomes

Zh =�ha+�hch+�h, h=1, . . . ,n (11)

A general approach to fitting mixed-effects models of this form uses the EM algorithm to estimate
a and �c [18]. Given the estimates, predictions are obtained for basis coefficients ch using the
best linear unbiased prediction (BLUP, [19]). The BLUP for ch in (11) is

ĉh =(�̂
−1
c /�̂2+�h�

T
h )

−1�h(Zh−�hâ) (12)
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For a random partition of zh(·) into s families with the observed family sizes, denote the curve of
the subject j in the family i as y∗

i j (·) with the corresponding basis coefficient ĉ∗
i j obtained from (12)

and calculate the test statistic (7). Repeating this process many times to get an approximated
p-value.

3. SIMULATIONS

Here, we present a simulation study to investigate properties of the proposed methods. The simu-
lation models are partially based on the observed total cholesterol data in the Framingham Heart
Study. In each model there is a single disease susceptibility locus with two alleles and the effect
of the disease allele is dominant. The functional traits are simulated from

yi j (t)=	(t)+g(t)Xi j +εi j (t)

where Xi j takes value 1
2 for carriers of disease allele and value − 1

2 for non-carriers, 	(t) is the
population mean trait value, g(t) is the genetic effect, and εi j (t) are the residual effects that are
stationary white noises with variance �2. The age-specific heritability of traits in this model is [20]

2cov(Xi j , Xi j ′)g2(t)

var(Xi j )g2(t)+�2
(13)

In each of the simulation studies, 100 families each with three children are generated. For each
subject, a fully informative marker perfectly linked to the underlying locus is simulated, and 20
observations equally spaced between age 31 and 69 are simulated. The grand mean 	(t) is based
on the observed cholesterol levels in the Framingham study. The genetic effect g(t) is based on
a logarithm function. The logarithm function was also used to simulate the genetic effects in the
Genetic Analysis Workshop 13, where the simulations were intended to mimic the Framingham
data [21]. The residual effects follow a stationary Gaussian distribution with variance 25.

The first set of simulations is designed to examine type-I error of the permutation test, and
to compare the asymptotic critical values with the permutation critical values. In this setting, the
genetic effect g(t) is set to zero. To compute permutation p-value, the simulated subjects are
randomly partitioned into 100 families with observed family sizes. The random partition is repeated
500 times. The asymptotic critical value is computed by Corollary 1. We also record the type-I
error and the critical value from the mixed-effects model-based method. For this method, since
the asymptotic distribution may not hold, we only consider the permutation procedure.

Three other simulation settings with varying genetic effects are designed to examine power
of the test (7). In setting 1, the genetic effect function, g(t), was 2[1+0.2log(0.4(t−27))], and
the maximum heritability over time calculated from (13) is 11 per cent. In setting 2, the genetic
effect is 2.2[1+0.25log(0.4(t−27))], and the maximum heritability is 15 per cent. In setting 3,
the genetic effect is 2.5[1+0.25log(0.4(t−27))], and the maximum heritability is 19 per cent,
see Figure 1 for the three heritability curves computed from these specifications of genetic effect.
We generate 500 repetitions for each simulation setting. The number of B-spline basis functions
is seven.

Table I summarizes the results for examining type-I errors of the proposed tests. For the direct
method, the type-I error of the permutation test is close to the pre-specified size at all levels. The
type-I error of the test based on the asymptotic critical value is slightly lower than the pre-specified
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Figure 1. Heritability of traits in the three simulation settings examining power.

Table I. Type-I error and critical values of the tests.

Type-I error Critical value∗

	 level Method 1† Method 2‡ Method 3§ Method 1 Method 2 Method 3

0.01 0.014 0.01 0.006 1.12 1.22 0.77
0.05 0.052 0.03 0.044 1.02 1.12 0.71
0.1 0.09 0.06 0.107 0.98 1.07 0.68

∗Averaged over 500 repetitions.
†Method 1: Direct method-based permutation test.
‡Method 2: Direct method-based asymptotic test.
§Method 3: Mixed effects model-based permutation test.

size. Correspondingly, the asymptotic critical values are slightly higher than the empirical critical
values of the permutation distribution. This suggests that using the asymptotic critical value in the
direct method is conservative. For the mixed-effect model-based method, the permutation test has
correct size at all levels.

Table II summarizes the results for examining power of the proposed tests. The tests have
good power even when the maximum heritability over time is as small as 11 per cent (setting 1).
The test using asymptotic critical value is conservative, and therefore slightly less powerful. The
simulations show that the power of both the permutation test and the asymptotic test increases
with increasing heritability, and the difference in power between the two decreases with increasing
heritability. The mixed-effects model-based method increases power of the test in all settings. For
example, the direct method in setting 1 has 87 per cent power for the permutation procedure and
99 per cent power for the mixed-effects model-based approach.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3611–3625
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Table II. Power of the tests.

Method 1† Method 2‡ Method 3§

Setting Heritability∗ (per cent) (per cent) (per cent)

1 0.11 87 71 99
2 0.15 98 93 99
3 0.19 99 98 100

∗Maximum of the functional heritability as in (3).
†Method 1: Direct method-based permutation test.
‡Method 2: Direct method-based asymptotic test.
§Method 3: Mixed effects model-based permutation test.

Table III. Mean and standard error of the observed FPCH test statistic (6) under the null and the alternative.

Direct method-based permutation Mixed-effects model-based permutation

Setting Mean(T ) (SE)† Mean(T 0) (SE)‡ Mean(T ) (SE)† Mean(T 0) (SE)‡

Null 0.845 (0.105) 0.844 (0.099) 0.556 (0.091) 0.556 (0.082)
1 1.191 (0.163) 0.819 (0.097) 1.088 (0.159) 0.520 (0.084)
2 1.320 (0.165) 0.803 (0.097) 1.236 (0.156) 0.514 (0.085)
3 1.411 (0.169) 0.788 (0.097) 1.344 (0.165) 0.511 (0.086)

†Mean and standard error of T under the alternative.‡Mean and standard error of T under the null.

Table III summarizes the mean and the standard error of the permutation test statistics under the
null and the alternative. It can be seen that the observed mean test statistic under the alternative
increases when the heritability increases. The mean and the standard error of the permutated test
statistic under the null hypothesis are similar across all settings.

4. DATA ANALYSIS

Originating in 1948, the Framingham Heart Study [22] is an ongoing prospective study of risk
factors for cardiovascular disease (CVD). There were 5209 subjects recruited (2336 men and 2873
women) from the town of Framingham, Massachusetts. Its objective is to identify common risk
factors or characteristics that contribute to CVD by following its development over a long period
of time in a large group of subjects who had not yet developed overt symptoms of CVD or suffered
a heart attack or stroke when they entered the study. The clinical data from Framingham Heart
Study includes systolic blood pressure, total cholesterol, fasting HDL cholesterol, triglycerides,
blood glucose, and so on. These longitudinal observations are collected from two cohorts. The
original Framingham cohort (Cohort 1) was first examined in 1948 and has been examined every 2
years thereafter. Cohort 2, composed primarily of offspring of the original cohort and the spouses
of these offspring (5124 subjects, 2483 men, and 2641 women), was examined first in 1971 and
has been examined approximately every 4 years [23].
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Figure 2. Raw data of cholesterol versus age. Thick solid line: Mean total cholesterol level.

4.1. Functional heritability

We apply the proposed methods to the total cholesterol levels collected in the Framingham Heart
Study. We divide large pedigrees into nuclear families and select subjects with more than 10
observations from age 31 to age 69. There are 114 nuclear families and each family has an average
of 2.3 offsprings. Only offsprings are included in the analysis. There are 258 subjects and each
subject has an average of 12.8 observations. The total cholesterol levels on these subjects are
presented in Figure 2.

To provide a description of the polygenic heritability as in (3), we consider two approaches:
(1) a discrete heritability by dividing age into 5-year intervals and averaging observations in each
interval to estimate a single heritability for that age range and (2) a functional heritability using
seven B-spline basis functions with evenly spaced knots.

The long-term average heritability for total cholesterol estimated by Framingham Study inves-
tigators was 0.46 (http://www.nhlbi.nih.gov/about/framingham/policies/pageeleven.htm). Figure 3
presents the comparison of the estimated discrete heritability and the estimated functional heri-
tability. The discrete heritability ranges from 0.51 to 0.78, while the functional heritability ranges
from 0.41 to 0.77. As expected, the functional heritability serves as a smoothed version of the
discrete heritability. The functional heritability provides much more information than the long-
term average heritability. It shows the temporal features of the heritability curve over time: the
heritability increases from 0.6 at age 30 to 0.77 at age 50, reaches its peak around age 50, and
then enters a period of declination after age 50 and reaches the minimum value of 0.41 at age 65.
This analysis suggests that for cross-sectional genetic studies of total cholesterol levels, collecting
subjects around age 50 would be most beneficial because these subjects exhibit greatest heritability.
To account for possible gender difference, we also analyze males and females separately. We find
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Figure 3. Discrete (solid line) and functional heritability (heavy line) and 95 per cent bootstrap CI for
functional heritability (dashed line).

their heritability curves to be similar (results not shown here); therefore, we use the combined
sample in the analysis.

4.2. Testing for familial aggregation of total cholesterol

We conduct the test proposed in Section 2.3 for the cholesterol data. The observed value of the test
statistic T is 1.7. We then randomly permute the data given the family structure 500 times to assess
the p-value. The permutation p-value is zero. The asymptotic critical value for these data is 1.65
at 5 per cent level, which is less than the observed test statistic. The mixed-effects model-based
approach gives a higher value of the test statistic (T =1.89), and the p-value approximated by the
permutation procedure is also zero. Therefore, all methods provided strong evidence that there is
familial aggregation of total cholesterol.

4.3. Smoothed FPCA

To explore sources of variation in the data, we carry out the standard FPCA [5]. Since the FPCA
requires observations to be independent, we randomly select one person from each family in the
Framingham study. We project each subject’s observations onto a common basis system considered
in the previous sections. To provide smoothed principal component, its roughness is penalized.
The objective function of the penalized FPCA is [5]

var
(∫

�(s)yi (s)ds
)

‖�‖2+

∫

�
′′
(s)ds

(14)

where 
 is the tuning parameter to be determined. The tuning parameter to regularize the smoothness
of the leading principal component is selected based on generalized cross-validation (GCV). For
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the Framingham data, the GCV suggests the tuning parameter to be 150. The leading principal
component reveals a major cholesterol variation that decreases over time up to age 52, and then
slightly increases after that age. The total cholesterol level fluctuates the least around age 50.

The FPCA approach maximizes the total variation in phenotype yi j (t). The pattern of the total
variation revealed by the principal component may not be directly related to genetic variation as
will be shown in this example. We compare this result to the one based on the FPCH approach in
the next section.

4.4. Smoothed functional principal components of heritability

When the test (6) is significant, it may be of interest to describe the temporal variation of the
genetic effect by showing the leading functional principal component of heritability. To smooth
the weight function �1(·), we penalize its roughness. Similar to the penalized FPCA, the leading
FPCH can be smoothed by (see the Appendix)

arg max
‖b‖=1

bT�B�b

bT�W�b+
bTQb
(15)

where Q is the roughness penalty matrix of the basis functions,
∫

�′′
j (s)�

′′
k (s)ds, and 
 is the

tuning parameter to be determined. The algorithm to solve the above optimization problem and a
generalized cross-validation formula to choose 
 are discussed in Appendix.

The result of GCV suggests the smoothing parameter to be 1000. The major temporal variation
in heritability increases with age, culminates at around age 50 and starts to decrease. This variation
echoes the functional heritability estimated in Figure 3, which also increases up to age 50 and then
decreases. This trend could correspond to a major gene effect or a synthesis of several gene effects.
Note that the pattern revealed by FPCH is completely different from the pattern of FPCA. This
example illustrates the advantage of the FPCH approach; the pattern reported by FPCH explores
the temporal variation of the genetic effect instead of the temporal trend of the total trait variation.

5. DISCUSSION

The main focus of this work is to develop a test for familial aggregation of a functional trait
of interest. The p-value can be approximated by a permutation procedure given family structure
or by asymptotic distribution under the null hypothesis. We discuss a mixed-effects model-based
approach to improve the power. We also propose to use smoothed functional principal component
of heritability to summarize the temporal trend of major genetic variation of the functional trait
when the testing result is significant. We choose the smoothing parameter by a GCV method.

If we only conduct a single test, the advantage of the asymptotic approximation over permutation
procedure may be moderate. But, when we conduct many tests simultaneously as in a genome-wide
association study, the computational advantage of the above approximation is much more beneficial.
For example, in a population-based genome-wide association study of multivariate traits, the role
of family in the test (6) is replaced by any single SNP along the genome [7, 24]. Testing for genetic
effect at each SNP can be done by computing a linear combination of all traits that maximize
heritability attributable to the SNP [7]. The p-value of the test statistic can be computed by a
similar permutation procedure as discussed in Section 2.3. In [7], a sample splitting procedure was
suggested to assess significance. Although the computational burden of the proposed permutation
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procedure is lighter than the methods in [7], in a typical genome-wide association study, the number
of SNPs is on the scale of hundreds of thousands and performing such a number of permutation
tests are still daunting. Since the test statistic is in a similar form as (6), the asymptotic distribution
derived here can be used to assess significance, and the asymptotic approximation is far more
computational efficient.

In some cases, it may be of interest to test whether heritability changes with time. We can test
this hypothesis by examining the derivative of heritability with respect to time. That is,

H0 : d
dt
h2(t)=0

where h2(t) is defined in (1). The test statistic is (d/dt)ĥ2(t). The p-value can be assessed by
permuting observations within each subject.

For the sake of illustration, here we describe methods for nuclear-family data where the heri-
tability can be estimated based on the between- and within-family sum of squares. These methods
can be extended to arbitrary pedigree using kinship coefficients [8]. For general pedigrees, instead
of decomposing the total variation of the traits into between- and within-family sum of squares,
covariance structure of the trait will be constructed based on the kinship coefficients. The FPCH
is implemented by maximizing the genetic component variation relative to the residual component
estimated from this covariance structure. In [25], random regression and splines are used to analyze
the longitudinal animal genetics data for extended pedigrees.

The proposed direct method project each subject’s observations onto a common basis system.
Since the direct method uses only a subjects’ own measurements to estimate its basis coefficients,
we develop the mixed-effects model-based approach to provide an empirical Bayes-type estimate
to pool information from all subjects to estimate individual basis parameters (see also [15]). Our
future work is to imbed kinship coefficients into the framework of mixed-effects models to account
for general pedigree.

Finally, we should point out that the proposed methods do not account for covariates. One
challenge is to remove the effects of important covariates. An approach would be fitting an
appropriate regression including covariates and using the residuals as inputs to the principal
components of heritability analysis.
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APPENDIX

In this Appendix, we provide an algorithm to solve (15) and a generalized cross-validation formula
to determine the tuning parameter. The algorithm is:

1. Expand observed data yi j with respect to the basis functions � to get coefficients ci j and
matrix B and W in (3).

2. Perform a Choleski factorization to compute L , where LTL=�W�+
Q, and define S= L−1.
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3. Solve Ldi =�c̄i. to get di = S�c̄i..
4. Carry out a standard PCA on di and record eigenvectors u.
5. Solve LTb=u to find eigenvector b and renormalize the resulting vectors to get bT�b=1.
6. Transform back to get principal components weight functions �(s)=bT�(s).

To choose the tuning parameter 
, we present a generalized cross-validation formula. In a linear
regression analysis with response Y and design matrix X , the GCV formula is

GCV(
)=
1

n
SSE[

1

n
trace(I −P
)

]2

where SSE=∑‖Yi − Ŷi‖2, P
 = X (XTX+
I )−1XT, and Ŷi are the fitted values. In the FPCA,
the residual sum-of-squares SSE takes the form

PCASSE=∑
i

∫ [
yi (t)−∑

k
f (k)
i �k(t)

]2
dt

where f (k)
i are the principal component scores corresponding to the kth principal component. Note

that in the step 4 of the above algorithm, we carry out FPCA on the di . Therefore, the GCV
formula for the penalized FPCH can be developed base on di . Let ui (s) denote dTi �(s) and let

ûi (s)=∑
k f̄ (k)

i. �k(s)=
∑

k f̄ (k)
i. bTk �(s). The residual sum-of-squares is then

PCHSSE= ∑
i

∫
[ui (t)− ûi (s)]2 dt

= ∑
i

(di −�T f̄i.)
T�(di −�T f̄i.)

where � is the basis coefficients matrix (b1, . . . ,bk)T, f̄i. is the vector ( f̄ (1)
i. , . . . , f̄ (m)

i. )T, and m is
the number of PCH. The projection matrix mapping ui to ûi is, in this case, P
 =F(FTF)−1FT.
Here, F is the matrix of principal components scores ( f̄1., . . . , f̄s.)T computed with a particular 
.
The GCV formula for the functional principal components of heritability is therefore

PCHGCV(
)=
1

s
PCHSSE[

1

s
trace(I −P
)

]2
Then find the 
 that minimizes the above criterion.
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