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Summary. In longitudinal genetic studies, investigators collect repeated measurements on a
trait that changes with time along with genetic markers. For family-based longitudinal studies,
since repeated measurements are nested within subjects and subjects are nested within fami-
lies, both the subject level and the measurement level correlations must be taken into account in
the statistical analysis to achieve more accurate estimation. In such studies, the primary interests
include testing for a quantitative trait locus effect, and estimating the age-specific quantitative
trait locus effect and residual polygenic heritability function.We propose flexible semiparametric
models and their statistical estimation and hypothesis testing procedures for longitudinal genetic
data. We employ penalized splines to estimate non-parametric functions in the model. We find
that misspecifying the baseline function or the genetic effect function in a parametric analysis
may lead to a substantially inflated or highly conservative type I error rate on testing and large
mean-squared error on estimation.We apply the proposed approaches to examine age-specific
effects of genetic variants reported in a recent genomewide association study of blood pressure
collected in the Framingham Heart Study.
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1. Introduction

For quantitative traits that change with age, such as blood pressure and level of cholesterol,
longitudinal genetic studies offer a valuable opportunity to detect genes that have a time vary-
ing effect and examine how genes affect developmental features of these traits. One example
of a longitudinal genetic study is the Framingham Heart Study (FHS) (Dawber et al., 1951),
which is a large on-going prospective study of risk factors for cardiovascular disease originated
in 1948. In the FHS, repeated measurements are collected on subjects’ clinical characteristics
such as level of cholesterol, blood pressure and level of blood glucose. To understand genetic
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underpinning of risk factors for cardiovascular disease, dense single-nucleotide polymorphism
(SNP) genotyping was performed using approximately 550000 SNPs in nearly 10000 individ-
uals from three-generation families in the FHS. The FHS provides an opportunity to discover
not only the genes that affect the mean value of a risk factor, but also those that affect time
varying features such as the rate of change over time in a trait.

Theories and evidence for genetic factors controlling time varying developmental features of
a phenotype are noted in the plant, animal and human genetics literature. For example, complex
biological organisms such as plants and animals have evolved through mutations in genes that
control the developmental processes that lead to their mature forms (Rice, 2002; Raff, 2000; He
et al., 2010). Rice (2002) described general population genetic models to relate developmental
features of a trait to a quantitative trait locus (QTL). From an evolutionary and developmental
biology perspective, Raff et al. (2000) discussed mechanisms of regulatory genes that control
developmental features of complex organisms. Zhao et al. (2004) attempted to map genes con-
trolling rice plant growth. In human genetics, Province and Rao (1985) observed temporal
trends in heritability of systolic blood pressure (SBP) in a Japanese-American family study,
and Jarvik et al. (1997) demonstrated an age-dependent effect of the apo-E genotype on lipid
levels.

Despite this evidence, however, interactions between gene and age or age-dependent genetic
effects are routinely ignored in genetic analysis (Lasky-Su et al., 2008). One disadvantage of
this practice is that it may make the discovery of individual genes with moderate effects more
difficult owing to a loss of power (Shi and Rao, 2008). Another limitation is that it may con-
tribute to inconsistent replication of genetic association findings (Lasky-Su et al., 2008). For
example, when gene–age interaction exists, subjects in a replication sample may be in a different
age range from the initial study sample, so the replication study may fail to discover a gene that
has an effect in the original study age range.

A naive way of analysing genetic data with longitudinal phenotypes is to perform a set of
genetic analyses at each age separately (Atwood et al., 2002). However, this approach ignores
rich information in the longitudinal structure and may not detect genes affecting the time vary-
ing features of a trait. Strauch et al. (2003) reviewed several two-step methods: the first step
is either to take the average of trait measurements on a subject or to fit a longitudinal model
without consideration of genetic markers or family structures; the second step is to perform
genetic analysis on one or more summary statistics derived from the first step. This method may
be improved by a joint approach that fits longitudinal and genetic parameters simultaneously.
Zhang and Zhong (2006) and Shi and Rao (2008) used a parametric function such as exponen-
tial or Gaussian to accommodate time varying genetic effects in linkage studies. Shi and Rao
(2008) showed that ignoring temporal trends in genetic effects can reduce power substantially.
Although the major advantage of parametric models is parsimony, they may not be sufficiently
flexible to describe the complicated underlying relationship between the gene and the trait over
time. It is therefore desirable to consider more flexible models to analyse data from longitudi-
nal genetic studies. For this, Zhao and Wu (2008) developed a wavelet-based non-parametric
approach.

In this paper, we first present a semiparametric regression model for overall polygenic effect
with longitudinal data collected from family-based genetic studies such as the FHS. Next, we
extend the polygenic model to accommodate genetic markers and model age-dependent asso-
ciations. For family-based designs, subjects are nested in families and repeated measurements
are nested within subjects. Therefore it is critical to account for both the subject level and the
measurement level correlations in the statistical analyses to achieve more accurate estimation.
One of the key features of the family-based longitudinal genetic studies is that subjects in the



Semiparametric Analysis of Longitudinal Genetic Studies 3

same family may not be independent, given any genetic marker. This is because the marker
under consideration may not fully account for familial correlation between family members;
therefore there may be residual familial correlation. The unexplained residual correlation aside
from the marker is termed an unspecified residual polygenic effect and is modelled as a random
effect.

The mixed effects model naturally lends itself to account for residual polygenic effects between
subjects in a family, as well as serial correlation between repeated measurements of the outcome
on the same subject. Meanwhile, it is desirable to model the baseline function and the genetic
effect function non-parametrically, because there is usually limited information about the para-
metric forms of these functions. For this, we propose to use penalized splines (Eilers and Marx,
1996) to estimate non-parametric functions in the model. Penalized-spline-based methods have
become popular in the recent literature (Ruppert et al., 2003). In a penalized splines regression,
an unknown smooth function is estimated by assuming a high dimensional spline basis and
imposing a penalty on the spline coefficients to control overfitting and to achieve a smooth fit.
Empirical and theoretical work has shown that the penalized spline as a reduced rank smoother
can achieve a similar quality of fit to that of full rank estimators such as smoothing splines
(Ruppert, 2002; Li and Ruppert, 2008). Additionally, its mixed model representation makes
it particularly suitable for analysing longitudinal genetics data. Using this representation, it
is easy to handle random polygenic effects and all approaches that are developed here can be
implemented by standard statistical software packages such as procedure MIXED in SAS or LME
in R, allowing researchers to use these methods routinely.

The primary interests in this work are to estimate baseline function, age-specific QTL effects
and residual polygenic heritability, and to test for the QTL effect. The remainder of the paper is
organized as follows. In Section 2, we propose two semiparametric regression models for fam-
ily-based longitudinal genetic studies to estimate the baseline function, to test and estimate time
varying QTL effects and to estimate residual polygenic heritability. In Section 3, we develop
statistical methods for these two classes of models. In Section 4, we perform simulation studies
to investigate properties of the methods proposed. In Section 5, we apply the developed methods
to analyse the FHS blood pressure data. In Section 6, we discuss implications of our findings
on the FHS and possible extensions of the methods proposed.

2. Models for longitudinal genetic studies

2.1. Partially linear mixed effects model for polygenic effect
The first step in a genetic epidemiological study is to assess polygenic heritability of a trait by
examining the similarity of a trait in family members before using any genetic markers. Polygenic
heritability quantifies the overall genetic effect on a trait. If there is no evidence of a polygenic
effect or familial aggregation, it may not be necessary to pursue further study such as linkage
or association analysis that aims at locating the underlying loci affecting the trait. In contrast
if evidence for a genetic contribution to a trait is observed, then, to locate this factor along the
genome, investigators decompose the polygenic effect into a major gene effect at a specific locus
and a residual polygenic effect contributed by other unlinked loci.

A polygenic effect is treated as an unobserved random variable with covariance matrix spec-
ified by relationships between relatives (Lynch and Walsh, 1998; Khoury et al., 1993). To be
specific, let Yijh be the phenotype measurement for subject j in family i at visit h, and let tijh

denote the subject’s age at this visit. Let ni denote the number of subjects in family i, let nij denote
the number of measurements on subject .i, j/ and let Ni =Σj nij. A partially linear mixed effects
model for Yijh is defined to be
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Yijh =μ.tijh/+xT
ijβ +αi + zT

ijhγij + "ijh, αi ∼N.0, σ2
α/, γi ∼N.0, Γi/, "ij ∼GP.0, ϑij/

.1/

where μ.t/ is an unspecified baseline function and xij are time invariant environmental expo-
sures such as sex with effects β, αi are random shared environmental effects such as diet shared
among family members, γi = .γT

i1, . . . , γT
ini

/T are vectors of random polygenic effects, zijh are
design vectors for γij which can be time dependent to capture an age-related polygenic effect, "ij =
."ij1, : : : , "ijnij /

T are random measurement errors with possible serial correlation and GP.0, ϑij/

is a Gaussian process with covariance matrix ϑij. The inclusion of exposures with time varying
effects is deferred to the next section where we introduce the time varying QTL model. We
assume that αi, γij and "ij are independent. The random polygenic effect reflects overall genetic
information in a trait. Their covariance structure depends on the relationship between family
members (Khoury et al. (1993), chapter 7). Specifically,

Γi = cov.γi, γT
i /=2Ki ⊗Ωγ , cov.γi, γT

i′ /=0 for i /= i′, .2/

where Ki is an ni × ni known kinship coefficient matrix whose (j, j′/th element is determined
by the relationship between subjects j and j′ in family i, and Ωγ is an unknown covariance of
the polygenic effect. The kinship coefficient is defined as the probability of randomly draw-
ing an allele in subject j that is identical by descent to an allele at the same locus randomly
drawn from subject j′. For example, twice the kinship coefficient, 2Ki

jj′ , for a full sibling pair
is 1

2 and for a half-sibling pair is 1
4 (Khoury et al. (1993), page 211). Parameters in Ωγ rep-

resent the unknown polygenic variances. We use Σi to denote the covariance of Yi, i.e. Σi =
σ2

α1Ni1
T
Ni

+2ZiΓiZ
T
i + cov."i/.

Heritability is defined as the ratio of the genetic variance to the total variance, i.e.

h2
γ.t/=σ2

γ.t/=σ2
T .t/, .3/

where σ2
T .t/ = σ2

α + σ2
γ.t/ + σ2

" .t/, and σ2
γ.t/ = ω11 + 2ω12t + ω22t2. For a linear design vector,

zijh = .1, tijh/T, ωls is the .l, s/th element of Ωγ . Here σ2
" .t/ is the variance of the residual random

measurement error. Whereas the linear random polygenic effect here serves as a parsimonious
approximation to the underlying truth, we discuss more flexible ways to model the QTL genetic
effect and heritability function in the next section. In addition, a test of h2

γ.t/ based on functional
principal components of heritability was proposed in Fang and Wang (2009).

Although the mixed effects model formulation of penalized splines allows the baseline and the
QTL functions to be fitted by standard statistical software, one practical complication in genetic
studies is to impose the correlation structure of polygenic effects predicted by kinship coeffi-
cients as shown in expression (2). In behavioural genetics, decomposing phenotypic variance
into genetic and environmental components is typically done by structural equation models by
using specialized software such as Mx (Neale et al., 2004). Guo and Wang (2002) ignored the
kinship correlation to use standard software to fit a multilevel model.

Rabe-Hesketh et al. (2008) showed that, for most family designs, we can reparameterize the
polygenic effect into a few family-specific and subject-specific random effects allowing for easy
handling of polygenic effects by standard software. For example, for nuclear families, we replace
the polygenic effect γij in model (1) by two family-specific and a subject-specific random effects
as

γij =ai1

(
Mij + Cij

2

)
+ai2

(
Fij + Cij

2

)
+aij

Cij√
2

,

where Mij is a binary indicator for mother, Fij for father and Cij for children. The family-specific
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random effects ai1 and ai2 induce required correlation between parents and each child and
between the children. However, the induced variance for children from these two random effects
is only half of the desirable variance and the other half is induced by the subject-specific random
effects aij. By this reparameterization, we can fit a semiparametric model with polygenic effect
by standard software.

2.2. Semivarying coefficient partially linear mixed effects model for quantitative trait locus
effect
When genetic markers such as SNPs are available, we add marker genotypes to model (1) to
assess association between a marker and a trait. Owing to dense SNP genotyping, we assume
that the QTL is either at the SNP marker under consideration or tightly linked to it.

Let gij denote the SNP marker genotype for subject j in family i coded as the copies of minor
alleles which take value 0, 1 or 2. Let wij.t/ denote time-dependent exposures with a potentially
time varying effect such as body mass index. A semivarying coefficient partially linear mixed
effects model for Yijh is

Yijh =μ.tijh/+xT
ijβ +αi + zT

ijhγ̃ij +βg.tijh/gij +wT
ij .tijh/θ.tijh/+ "ijh, .4/

where γ̃ij is the residual polygenic effect aside from the QTL effect contributed by other unlinked
loci, and θ.t/ is the coefficient vector for covariates wij.t/. In this model, in addition to the base-
line function μ.t/ and other covariate effects, we are interested in estimating the time varying
genetic function βg.t/.

The age-specific QTL heritability is then defined as (Falconer, 1985)

h2
g.t/=σ2

g.t/=σ2
T .t/, .5/

where σ2
g.t/=var{βg.t/gij}=β2

g .t/ var.gij/ is the QTL genetic component, σ2
A.t/=σ2

α +σ2
γ.t/+

σ2
" .t/ is the sum of remaining components and σ2

T .t/=σ2
g.t/+σ2

A.t/. The QTL heritability can
be interpreted as the proportion of total variation explained by the QTL. The residual polygenic
heritability contributed by other unlinked loci is h2

γ.t/=σ2
γ.t/=σ2

T .t/: The total heritability in a
trait is the sum of the QTL heritability and the residual polygenic heritability.

To test for association between a genetic marker and a trait, we consider the null hypothesis
H0 : βg.t/ = 0. To test for a constant genetic effect (i.e. the genetic effect does not change over
time), we consider the null hypothesis H0 :βg.t/=βg.

3. Statistical methods for longitudinal genetic studies

3.1. Estimation procedure for the partially linear mixed effects model
For simplicity, we use a truncated polynomial basis in our estimation procedure. Extension to
other bases such as B-splines is discussed in Section 6. We approximate the mean function by a
linear combination of spline basis functions

μ.t/≈η0 +η1t + . . . +ηqtq +
M∑

m=1
ηq+m.t − τm/

q
+,

where τm, m=1, . . . , M, is a given sequence of knots and q is the order of the splines. For given
variance components, we estimate η and β as minimizers of a penalized weighted least square
(Wu and Zhang (2006), chapter 7.3),

1
2.Y −Xβ −Wη/TΣ−1.Y −Xβ −Wη/+ 1

2ληTJη, .6/
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where Y is a vector of outcomes, Σ is the covariance of Y , J = diag.0q+1, 1M/ is a penalty
matrix for truncated polynomial basis, X and W are design matrices specified in the support-
ing information that is associated with this paper and available on line and λ is a smoothing
parameter. When λ goes to ∞, the spline coefficients are shrunk towards 0 and the fit converges
to a polynomial function. When λ goes to 0, the fit converges to a weighted least square. The
estimating equations for η and β are constructed in the supporting information. The solution
for η takes the form of a ridge regression estimate. The variance components in Σ are estimated
by maximizing a restricted likelihood as in a mixed effects model analysis.

It is well known that there is a mixed effects model representation of penalized splines (Ruppert
et al., 2003; Wand, 2003). We explore this connection to facilitate computation using standard
software. For penalized splines, Wand (2003) showed that with a proper choice of smoothing
parameter which we describe in the supporting information the solution to expression (6) is
identical to the best linear unbiased predictor from a linear mixed effects model. The key is to
specify the spline coefficients ηq+1, . . . , ηq+M as random effects with the same variance and to
construct appropriate design matrices for the fixed and random effects.

The tuning parameters for penalized splines include number and placement of knots and
smoothing parameter λ. Once the number of knots has been chosen, we place them at equal
sample quantiles of the observed tijhs. The smoothness of the fit is controlled by both M and λ.
Ruppert (2002) showed that, when M is adequately large, further increasing M does not improve
the fit and can sometimes deteriorate the fit. For smooth functions that are either monotonic
or unimodal, a moderate number of knots is usually sufficient (Ruppert, 2002). The smoothing
parameter λ controls overfitting for a moderate to large number of knots and plays a more
critical role than M.

For a given number of knots, λ can be chosen by generalized cross-validation, minimizing Ak-
aike’s information criterion AIC or estimating by restricted maximum likelihood. Krivobokova
and Kauermann (2007) investigated the behaviour of several data-driven smoothing param-
eter selectors including restricted maximum likelihood and AIC with correlated data. They
found through theoretical derivation and simulations that, when the correlation structure is
misspecified, the AIC-based choice failed to estimate a function properly and the choice based
on restricted maximum likelihood provides a much more satisfactory fit and exhibits less var-
iability (Krivobokova and Kauermann, 2007). Here we use restricted maximum likelihood to
estimate the smoothing parameters as shown in the on-line appendix.

3.2. Estimation procedure for the semivarying-coefficient linear mixed effects model
For model (4), we also approximate βg.t/ by a linear combination of basis functions, i.e.

βg.t/≈ ξ0 + ξ1t + . . . + ξqtq +
M∑

m=1
ξq+m.t − τm/

q
+: .7/

Varying coefficients θ.t/ can be handled in a similar fashion by the approximation

θ.t/≈θ0 +θ1t + . . . +θqtq +
M∑

m=1
θq+m.t − τm/

q
+:

For given variance components, the penalized weighted least square of β, η and ξ is

− 1
2 r′Σ−1r − 1

2λ1η
′Jη − 1

2λ2ξ
′Jξ − 1

2λ3θ
′Jθ,

where r = .Y − Xβ − Wη − S1ξ − S2θ/, the design matrices S1 and S2 are defined in the sup-
porting information, and λ1, λ2 and λ3 are smoothing parameters for the baseline, the genetic
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effect function and the varying coefficient for other covariates respectively. In the supporting
information, we expand the mixed effects model that is used to fit expression (1) to obtain the
coefficients for time varying genetic effects. As described there, we select λ1, λ2 and λ3 by treating
them as extra variance components and estimating by restricted maximum likelihood.

3.3. Estimating the total variance
Since the total phenotypic variance function σ2

T .t/ is involved in heritability function (3), non-
parametric estimation is desirable. Fan et al. (2007) proposed a semiparametric estimator of
the covariance function ϑ.s, t/. They assumed that the correlation function has a parametric
form, i.e. ϑ.s, t/ = cov{"ij.s/, "ij.t/} = ρ".s, t;ν/, where ρ is a known function and ν is a vec-
tor of parameters. They estimated the variance function ϑ.t, t/=var{"ij.t/} non-parametrically
through local kernel smoothing. Here although the total variance is the summation of all var-
iance components, we take a semiparametric approach by estimating it directly from observed
data to protect further against potential model misspecification of some of the components. We
propose a penalized-spline-based approach.

Recall that the total variance function equals the sum of the major QTL genetic component
and remaining variance components (σ2

T .t/=σ2
g.t/+σ2

A.t/=β2
g .t/var.gij/+σ2

A.t//. We estimate
the non-QTL components, i.e. σ2

A.t/=σ2
α +σ2

γ.t/+σ2
" .t/, through penalized splines regression

based on the residuals after subtracting the fitted mean curves and fixed effects from Yijh, but not
any of the random-variance components. Therefore they retain the variability in the random-
variance components in σ2

A.t/. Let

"̂ijh =Yijh − μ̂.tijh/−xijhβ̂ − β̂g.tijh/gij − θ̂.tijh/ wij.tijh/,

where μ̂.·/, β̂g.·/ and θ̂ are the fitted values of the mean, the QTL genetic function and varying
coefficient. Similarly to the estimation of η and βg, we express log{σ2

A.t/} as a linear combination
of basis functions,

log{σ2
A.t/}≈ρ0 +ρ1t + . . . +ρqtq +

M∑
m=1

ρq+m.t − τm/
q
+:

We then estimate ρ by fitting a penalized splines regression to log."̂2
ijh/. Using the estimated

fixed coefficients and the best linear unbiased predictor of the random effects, the fitted value
of the sum of σ2

A.t/ will be

σ̂2
A.tijh/= exp

{
ρ̂0 + . . . + ρ̂qt

q
ijh +

M∑
m=1

ρ̂q+m.tijh − τm/
q
+
}

: .8/

The estimated total variance is σ̂2
T .t/= σ̂2

A.t/+ σ̂2
g.t/= σ̂2

A.t/+ β̂
2
.t/var.gij/. Since the estimated

total variance is used to calculate heritability in equations (3) and (5), we evaluate the perfor-
mance of this procedure through examining mean average squared errors (MASEs), the mean
bias and the variance of heritability estimates in Section 4.

3.4. Testing for association between a marker and a trait
When the QTL genetic effect is time invariant, the hypothesis of no association between a marker
and a trait is specified by H0 : βg = 0 versus Ha : βg �= 0, which can be examined by a standard
Wald test. When fitting a time varying QTL model, the hypothesis of no association is

H0 : ξ0 = ξ1 = . . . ξq =0, and σ2
ξ =0, .9/
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where ξ1, . . . , ξq are coefficients for polynomial terms defined in approximation (7) and σ2
ξ

is the variance of the random-spline coefficients ξq+1, . . . , ξq+M as described in the support-
ing information. This hypothesis can be examined by a likelihood ratio test. Crainiceanu and
Ruppert (2004) showed that the distribution of the likelihood ratio test of hypothesis (9) for
a penalized splines mixed model involving a variance component is non-standard owing to
lack of independence, and using a conventional 50:50 mixture of χ2-distributions may be
conservative.

Here we propose to compute the p-value by a permutation- and simulation-based procedure.
Since under the null hypothesis the marker genotypes are not associated with the trait, we can
permute genotypes among subjects. However, it is not straightforward to randomize genotypes
in a family sample. Even though there is no major QTL effect under the null hypothesis, there
may be a residual polygenic effect causing family members to be correlated. Therefore family
members are not exchangeable under the null hypothesis and simple permutation would not
maintain phenotype correlation between related individuals.

Yang et al. (2010) proposed permuting genotypes among founders and then simulating off-
spring genotypes conditionally on permuted founders’ genotypes based on a Mendelian law
while keeping the phenotypes as observed. Specifically, we first permute the genotypes of
founders (subjects who do not have parents) in all families. Given a set of permuted founders’
genotypes, we generate an offspring’s genotype by randomly selecting an allele from each par-
ent of the offspring following the Mendelian law. Genotypes of siblings in the same family are
assigned independently given their permuted parental genotypes. For each copy of permuted
genotype data, the same model fitting procedure is carried out. In a genomewide association
study, it is computationally challenging to conduct permutations for every SNP. Since the null
distribution of the test statistic is the same for SNPs with the same founder genotype frequency
for a given family data, we can group SNPs into strata that have the same or similar founder
genotype frequency, and only one permutation null distribution is needed for each group (Yang
et al., 2010).

If the data consist of only one pedigree with all founders carrying the same homozygote
genotypes, then all descendants will carry the same genotype and the design matrix of genetic
effect will be singular with rank 1. Thus no association test can be performed and no permuta-
tion–simulation procedure can be applied. When data consist of multiple homozygous pedigrees
as well as other pedigrees containing different founder genotypes, assuming random mating in
founder generation we permuted founders from all pedigrees before simulating transmissions and
therefore the size of the type I error will be maintained. The key assumptions for this procedure to
be valid include random mating of founders and Mendelian transmission of descendants’ alleles.

4. Simulations

In this section, we investigate the performance of our proposed estimation and testing proce-
dures through Monte Carlo simulations. We simulated 100 nuclear families among which 50
had two children, 30 had three and 20 had four. The number of observations of each parent
ranged from 4 to 8, the number of observations for children ranged from 2 to 4 and each sub-
ject was examined every 2 or 4 years. The total number of observations was 1749. Subjects’
ages ranged from 10 to 75 years with a mean of 39.5 years. These settings were close to the
assessment schedule in the FHS. For the analysis involving genetic markers, we simulated a
fully linked genetic polymorphism with a dominant effect and a minor allele frequency of 0.25.
We assumed that the transmission of allele from parental generation to offspring generation
follows a Mendelian law.
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4.1. Time invariant genetic effect
In the first few simulations, the baseline function μ.t/ was a logarithm function, −34:2 +
81:7 log{0:25.t +21:7/}, where the parameters were estimated from fitting a logarithm function
to the FHS cholesterol data. This function was used to simulate the baseline and the genetic
effect function on several traits at Genetic Analysis Workshop 13 (Daw et al., 2003), where the
simulations were designed to mock the actual FHS data that were provided at the workshop.
The random shared familial environmental factor αi had a variance of 16, and the polygenic
effect γij had a variance of 4. These parameters were chosen so that the polygenic heritability
is in the range of that estimated by the FHS investigators (Levy et al., 2000). The variance
function of residuals was an exponential function, var{"ij.t/}= exp.0:02t/. The correlation of
the residuals was auto-regressive AR(1) with auto-correlation parameter 0.6. We also examine
other functional forms of μ.t/ such as the Gaussian function and the sine function. The baseline
function was estimated by cubic truncated polynomials with 15 knots.

In simulation setting 1, we assumed βg.t/=βg in model (4), where the true values of βg are
shown in Table 1. We computed the MASE of μ̂.t/ as the mean across the 500 simulations of
the average squared error,

ASE.μ/= 1
K

∑
tk∈Tκ

{μ̂.tk/−μ.tk/}2,

where Tκ is a set of grid points over time and K is the cardinality of Tκ. Define the MASE of
ĥ

2
γ.t/ and ĥ

2
g.t/ similarly. We summarize the maximal absolute relative bias, the mean bias and

the mean variance averaged over grid points Tκ, and the MASE in the second to fifth columns
of Table 1 (setting 1), which showed a small relative bias. The estimated time invariant genetic
effect was 9.99 (true value 10), with a mean estimated standard error of 0.26 (empirical standard
error 0.27).

We compare proposed semiparametric analyses where μ.t/ was estimated through penalized
splines with a correctly specified non-linear mixed effects model analysis and a misspecified
parametric analysis where μ.t/ was assumed to be a quadratic polynomial function. The results
are recorded in the last six columns of Table 1 (setting 1). As expected, it is evident that when
μ.t/ is misspecified its estimation had large bias. It may be of interest to note that misspecifica-
tion of the baseline function also affects estimation of the heritabilities. The mean bias in the
marker-specific and the total heritabilities (ĥ

2
g.t/ and ĥ

2
T .t/) increased by 43% and 54% respec-

tively, when μ.t/ was misspecified. In terms of estimating the baseline function, the average
variance of μ̂.t/ and β̂g.t/ is larger for the semiparametric analysis than for the parametric anal-
ysis under a correctly specified model. For the heritability estimators, the loss of efficiency of
the semiparametric estimators is less notable.

For the variance components, the estimated polygenic variance was 4.06 (true value 4), and
the family-specific variance component was 15.88 (true value 16). The asymptotic distribution
of the heritability estimates is not straightforward to derive because the definition of the her-
itability is the ratio of two non-independent variance estimators. To compute the confidence
interval (CI), we use non-parametric bootstrap resampling: we first resample family and then
resample subjects within a family. As seen from Table 1, the maximal relative bias and MASE
of the QTL heritability and the total heritability were small. We present the estimated marker-
specific heritability, the total heritability and their CIs in Figs 1(a) and 1(b). The empirical and
bootstrap standard errors were compared in Figs 1(c) and 1(d). The bootstrap standard error
tracked the empirical standard error closely.

Our next simulation experiments examined effects of different baseline function estimators
on testing a genetic effect. We simulated data under the same model (4) with βg.t/=βg, various



10 Y. Wang, C. Huang, X. Fang, Q.Yang and R. Li

Ta
b

le
1.

B
ia

s
an

d
M

A
S

E
of

th
e

es
tim

at
ed

fu
nc

tio
ns

in
th

e
tim

e
in

va
ria

nt
(s

et
tin

g
1)

an
d

tim
e

va
ry

in
g

(s
et

tin
g

2)
an

al
ys

es

F
un

ct
io

n
R

es
ul

ts
fo

r
no

n-
pa

ra
m

et
ri

c
m

od
el

†
R

es
ul

ts
fo

r
m

is
sp

ec
ifi

ed
m

od
el

‡
R

es
ul

ts
fo

r
co

rr
ec

tl
y

sp
ec

ifi
ed

m
od

el
§

M
ax

im
um

M
ea

n
M

ea
n

M
A

S
E

(f̂
)

M
ax

im
um

M
ea

n
M

ea
n

M
ax

im
um

M
ea

n
M

ea
n

re
la

ti
ve

bi
as

§§
bi

as
Å

va
ri

an
ce

Å
Å

re
la

ti
ve

bi
as

bi
as

va
ri

an
ce

re
la

ti
ve

bi
as

bi
as

va
ri

an
ce

S
et

ti
ng

1
μ̂

.t
/

0.
00

1
0.

05
7

0.
45

0.
46

0.
04

4
1.

00
1

0.
25

6
0.

00
3

0.
01

1
0.

25

ĥ
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effect sizes of the genetic marker and various functional forms of μ.t/ (see Table 2 for these
specifications). The random measurement errors were simulated from a normal distribution
with mean 0 and variance 10. We tested the significance of β̂g by a standard Wald test. We
compared the performance of the proposed semiparametric analysis where μ.t/ is estimated
through penalized splines with three other analyses:

(a) misspecifying μ.t/ as a linear function;
(b) misspecifying μ.t/ as a quadratic function;
(c) correctly specifying μ.t/ as a non-linear function and estimating by fitting a non-linear

mixed effects model.
First, we examine the type I error of all four analyses. From the second, sixth and 10th rows of
Table 2, we see that the semiparametric analysis and the correctly specified non-linear analysis
maintain the nominal level of type I errors. However, the two misspecified analyses reported
either substantially inflated or highly conservative type I error rates depending on the true form
of μ.t/ and how it is specified. For example, when the true baseline function is a sine function
but is misspecified as a linear or a quadratic polynomial, the type I error rate for a test for βg

at 5% level can be as high as 0.99. The erroneous type I error may happen for two reasons:
first, incorrect estimation of the baseline function under a misspecified model may lead to an
incorrect standard error estimate of β̂g; second, the mean of μ.T/ across observed time points
is not constant across different genotype groups, i.e. E[μ.T/|G=g] differs across levels of G in
a partially linear model which may lead to an inconsistent estimate of β̂g.

Next we compared the power of the test when μ.t/ is estimated non-parametrically with the
correctly specified non-linear analysis. From Table 2, we see that the power for testing genetic

Table 2. Power for testing βg D 0 assuming μ.t/ to be a non-parametric function, misspecified parametric
functions and a correctly specified non-linear function (α-level 0.05)

μ(t) Analysis βg Results for the following functions:

Non-parametric† Misspecified: Misspecified: Correctly
linear‡ quadratic§ specified§

LogarithmÅ Type I error 0 0.048 0.012 0.024 0.048
Logarithm Power 0.5 0.51 0.06 0.46 0.54
Logarithm Power 0.75 0.79 0.2 0.76 0.79
Logarithm Power 1 0.94 0.53 0.93 0.96
GaussianÅÅ Type I error 0 0.046 0.85 0.004 0.058
Gaussian Power 0.5 0.49 — 0 0.53
Gaussian Power 0.75 0.93 — 0 0.93
Gaussian Power 1 0.94 — 0 0.99
Sine†† Type I error 0 0.045 0.99 0.99 0.048
Sine Power 0.5 0.46 — — 0.49
Sine Power 0.75 0.84 — — 0.86
Sine Power 1 0.95 — — 0.96

†μ.t/ estimated non-parametrically by penalized splines.
‡μ.t/ misspecified as μ.t/=α0 +α1t.
§μ.t/ misspecified as μ.t/=α0 +α1t +α2t2.
§§μ.t/ estimated in a non-linear mixed effects model with a correctly specified functional form.
ÅTrue μ.t/=−34:2+81:7 log{0:3.t +21:7/}.
ÅÅTrue μ.t/=200 exp{−0:002.t −39/2}.
††True μ.t/=150+50 sin.0:2t/.
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effects is slightly larger with a correctly specified non-linear baseline function as compared with
the semiparametric analysis, with a difference up to 5%. For the scenarios in Table 2 where
the two misspecified analyses had conservative type I errors, we also examined their power. As
expected, the power was greatly reduced with a power loss up to 95% compared with the semi-
parametric analysis. For example, when the true μ.t/ is a Gaussian function but misspecified as
a linear or a quadratic function, the power for detecting a genetic effect was 0. In addition to a
highly conservative type I error rate, this may also be due to a substantial increase in variability
of the estimator β̂g when the baseline function was misspecified in these cases.

To summarize, the first set of simulations suggest that misspecification of the baseline func-
tion has a non-ignorable effect on the type I error of testing the genetic effect even when the
genetic effect does not change with time. Furthermore, the power of testing βg when treating
μ.t/ as a non-parametric function is comparable with correctly specifying μ.t/ as a non-linear
function.

4.2. Time varying genetic effect
The second simulation setting examines properties of our methods when βg.t/ changes with
time. The performance of the baseline function estimator was comparable with the time invari-
ant case (Table 1, setting 2). From Table 1 (setting 2), we see that the time varying genetic
effect β̂g.t/ was estimated well with small MASE. We show the true and the estimated genetic
effect and its confidence interval in Fig. 2(a). The bootstrap standard error and the empirical
standard error shown in Fig. 2(b) were very close. The age-specific QTL heritability and total
heritability were estimated well with maximal relative biases 0.02 and 0.01 respectively (Table 1,
setting 2). The bootstrap and empirical standard error were close, which suggests satisfactory
performance of the bootstrap procedure on assessing variabilities of heritability estimates (the
results are similar to Fig. 1 and so are not shown).

Next, we compared the estimation bias and MASE of β̂g.t/ in a semiparametric analysis
with a misspecified parametric analysis where we assumed βg.t/ to be a quadratic polynomial
and with a correctly specified non-linear mixed effects model analysis. In all analyses, we kept
the estimation of μ.t/ non-parametric because the analyses in the previous section showed a
profound effect of misspecifying μ.t/ on testing βg. From Table 1 (setting 2), we see that the
mean bias of β̂g.t/ over time increased from 0.036 in a non-parametric method to 0.23 for
a misspecified quadratic model. The mean bias of the estimated marker-specific heritability,
ĥ

2
m.t/, increased from 0.004 to 0.34, which is substantial. The mean bias of the estimated total

heritability increased from 0.006 to 0.37.
The rest of the simulations concern testing of βg.t/. The random measurement errors were

simulated from a normal distribution with mean 0 and variance 6. The hypothesis βg.t/ =
0 was tested by the permutation procedure that was described in Section 3.5 in the semi-
parametric analysis. In all analyses, the baseline function was again estimated non-paramet-
rically. We examine several functional forms for βg.t/ including logarithmic, Gaussian and
sine. The Gaussian function was used to model genetic effects on blood pressure in Shi and
Rao (2008).

We first examine the type I error of the semiparametric analysis and two parametric analyses
under a misspecified model. From Table 3, we see that all three analyses maintain the correct
nominal level of type I error. We then examine the power of testing βg.t/=0. Again as expected,
we see from Table 4 that the power is greatest for the non-linear mixed effects model analysis
with a correctly specified model. However, in real applications such a true function is unknown
and the computational algorithm in a non-linear analysis may not converge, especially when
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starting values are poor or the sample size is small or moderate. Comparing the semiparametric
approach with the misspecified parametric approaches, the power loss for the latter ranges from
0% to 55%. The power loss was more substantial for the Gaussian and sine functions, compared
with the logarithm function. This suggests that power depends on the unknown functional form
of the true genetic effect and the assumed parametric model. For the genetic effect that changes
with time but has an average effect of zero across all time points, i.e.
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Table 3. Type I error of the permutation test and the mis-
specified parametric analyses for testing βg.t/ D 0 in model
(4)

α-level Results for the following functions:

Non-parametric† Misspecified: Misspecified:
linear‡ quadratic§

0.005 0.0054 0.0045 0.0055
0.01 0.0128 0.01 0.008
0.05 0.0488 0.0515 0.0505
0.1 0.0914 0.1 0.1015

†μ.t/ estimated non-parametrically by penalized splines.
‡μ.t/ misspecified as μ.t/=α0 +α1t.
§μ.t/ misspecified as μ.t/=α0 +α1t +α2t2.

Table 4. Power for testing βg.t/D0 assuming βg.t/ to be a non-parametric function, misspecified parametric
functions and a correctly specified non-linear function† (α-level 0.05)

βg(t) Mean βg(t) over t Results for the following functions:

Non-parametric‡ Misspecified: Misspecified: Correctly
linear§ quadratic§§ specifiedÅ

log.0:2t/=10−0:2 −0.004 0.19 0.19 0.08 0.19
log.0:5t/=10+0:2 0.49 0.39 0.39 0.34 0.39
0:8+0:1log.0:5t/ 1.09 0.98 0.98 0.98 0.98
3 exp{−0:075.t −39/2}−0:5 −0.001 0.73 0.04 0.42 0.99
0:9 exp{−0:025.t −39/2}+0:2 0.45 0.35 0.34 0.37 0.77
1:5 exp{−0:075.t −39/2}+0:6 0.85 0.86 0.85 0.85 0.99
0:85 sin.0:2t/+0:02 0.01 0.60 0.06 0.05 0.94
0:85 sin.0:2t/+0:5 0.49 0.51 0.36 0.3 0.86
0:85 sin.0:2t/+0:85 0.84 0.87 0.81 0.78 0.96

†In all analyses μ.t/ was estimated non-parametrically by penalized splines.
‡βg.t/ estimated non-parametrically.
§βg.t/ misspecified as βg.t/=α0 +α1t.
§§βg.t/ misspecified as βg.t/=α0 +α1t +α2t2.
Åβg.t/ estimated in a non-linear mixed effects model with a correctly specified functional form.

1∑
ij

Tij

∑
ijh

βg.tijh/≈0,

the linear or quadratic analysis has very low power (close to zero) to detect the genetic effect.
To summarize, these simulations suggest that misspecifying βg.t/ while estimating μ.t/ non-

parametrically does not affect the type I error rate of testing βg.t/ = 0 but may reduce power
substantially.

5. Application to the Framingham Heart Study

In this section, we apply the proposed methods to analyse the FHS longitudinal blood pressure
data and SNP genotype data. High blood pressure is considered a major risk factor for stroke
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and heart disease and it affects about a third of the US adult population (Levy et al., 2009).
SBP and diastolic blood pressure (DBP) are complex traits that may be influenced by both envi-
ronmental and genetic factors. The heritability of SBP is estimated to be high (30–60%; Levy
et al. (2000)), which suggests a substantial genetic contribution. Recently, large-scale genome-
wide association studies have emerged as powerful tools to identify genes that are associated
with complex traits such as blood pressure. Levy et al. (2009) performed a prospective meta-
analysis on six genomewide association studies including the FHS and identified multiple SNPs
significantly associated with SBP and DBP at the genomewide significance level. However, non-
parametric estimation of the time varying polygenic effect or the age-specific QTL effect of
blood pressure has not been examined in the literature. We analyse a subset of the FHS subjects
(about 6000 subjects) and a subset of SNPs in four candidate regions.

In the FHS, the phenotype and the genotype data are collected from three cohorts. The
original Framingham cohort (cohort 1) was first examined in 1948 and has been examined
every 2 years thereafter. The offspring cohort (cohort 2), composed primarily of offspring of
the original cohort and the spouses of these offspring, was examined first in 1971 and has been
examined approximately every 4 years by using protocols that are similar to those used for study
of the original cohort. Between 2002 and 2005 the study enrolled the third generation of the
FHS. At each examination, the physician measured SBP and DBP twice and the average of the
two measurements was used as the phenotype in the analysis.

Although the FHS started in an era when no antihypertensive treatment was available, as the
study progressed, antihypertensive treatment became available and was prescribed to some of
the subjects with hypertension. It is known that the treatment effect is a confounder for genetic
effect which may lead to an underestimated genetic effect without any adjustment (Levy et al.,
2000; Tobin et al., 2005). Tobin et al. (2005) examined the bias and variance of 10 methods of
adjusting for treatment effect and found that one of the best methods is to add a reasonable
number to observed SBP for subjects on antihypertensive treatment. Following Tobin et al.
(2005) and Levy et al. (2009), we added 10 mmHg to observed SBP values and 5 mmHg to
observed DBP values for participants who were in treatment.

The majority of the observations in the FHS were measured between age 30 and 75 years
and this age range is of most scientific interest. To obtain stable estimates, we restricted the
analysis sample to between age 30 and 75 years. The total sample size in our analysis was 6082
from 930 pedigrees (including 2934 nuclear families) and the mean number of subjects was 6.54
per extended family. There were 14505 observations and each subject had an average of 2.38
measurements of SBP and DBP. The age of the participants at the first visit ranged from 25 to 72
years. The mean age for all subjects at all visits was 45.7 years. The mean observed SBP was 121.2
mmHg and the mean observed DBP was 76.1 mmHg. 11% of subjects were on antihypertensive
treatment in at least one examination and 12% of observations were taken when subjects were
on treatment. The mean body mass index was 23.54.

In all our analyses, we included gender as a covariate with time invariant effect and body mass
index as a time varying covariate with varying coefficient and used a linear design matrix for the
random polygenic effect. We estimated the baseline function by a cubic truncated polynomial
with 10 knots. We split pedigrees into nuclear families for easy handling of familial correlations.
We first computed the baseline function and the polygenic heritability without using SNP mark-
ers as in model (1). The estimated age-specific baseline function and its 95% CI are superimposed
on SBP measurements of 150 randomly selected subjects in Fig. 3. There is an increasing trend
of mean SBP over time. The mean SBP was 123.5 mmHg (CI 122.9, 124.2) at age 30 years and
increased to 138.6 mmHg (CI 134.8, 142.4) at age 75 years. The corresponding plot for DBP
is shown in Fig. 4. The polygenic heritability of SBP has a decreasing trend. Heritability was
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Fig. 4. (a) Estimated population mean function of DBP ( , estimates; – – –, 95% CI) and (b) scatter
plot for 150 randomly selected subjects in the FHS

highest at age 35 years and it then decreased to 0.44 (CI 0.40, 0.50) at age 50 years and 0.23 at
age 65 years (CI 0.18, 0.27). The long-term average heritability was reported to be between 0.3
and 0.6 (Levy et al., 2000, 2009), which is in the range of our age-specific estimates. The total
variance function increases over time. For DBP, the polygenic heritability also decreases with
age. It was 0.44 (CI 0.37, 0.54) at age 35.4 years and then decreased to 0.29 (CI 0.17, 0.47) at age
75 years. Overall, DBP exhibits lower heritability than SBP. The gender effect was estimated as
1.57 (CI 0.80, 2.34) with men having higher SBP, on average.

Levy et al. (2009) conducted a meta-analysis of six genomewide association studies of blood
pressure and reported several promising regions which may harbour genes predisposing blood
pressure. We selected four promising candidate regions containing significant SNPs reported in
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Levy et al. (2009) to analyse. There were 265 SNPs in the four regions. Among these, 109 SNPs
were from two regions on chromosome 12 (86 from region 88300 kilobases to 88800 kilobases
and 23 from region 110200 kilobases to 110600 kilobases), 104 were from a region on chrom-
osome 11 (16600 kilobases to 17100 kilobases) and 52 were from a region on chromosome 3
(41700 kilobases to 42100 kilobases). Each of these regions spans about 500 kilobases on a
chromosome. We first fit a time invariant model with a non-parametric baseline function but a
constant genetic effect (i.e. βg.t/ =βg) in model (4). Since adjusting for multiple comparisons
by Bonferroni correction is conservative for dense SNPs in linkage disequilibrium, we used
methods that were proposed in Gao et al. (2008). Specifically, we used principal components
analysis to compute the effective number of SNPs needed to explain 99.5% of variability of all
234 SNPs and then divided the overall significance level (0.05) by this number. The resulting
effective number of SNPs needed is 104, and the adjusted significance level is 4.81×10−4. There
was one SNP on chromosome 12 significant for SBP at this level and none for DBP (Table 5).

In addition to the time invariant analysis, we also fitted a time varying genetic effect model
and tested hypothesis (9) on all SNPs. We found four significant SNPs for DBP and five for
SBP after adjusting for multiple comparisons. None of these SNPs were identified through the
time invariant analyses. For some SNPs, p-values in the time invariant model suggested associ-
ation (for example, the p-value for rs1052501 in a time invariant analysis was 0.002). However,
they did not reach the significance level. Other SNPs would not have been identified from a
time invariant analysis (for example, the p-value for rs10858911 in a time invariant analysis was
0.32). As an example, we show the age-specific effects and confidence intervals of two SNPs in
Fig. 5. The SNP rs1052501 is in linkage disequilibrium with three other SNPs in the same region
identified for DBP through the time varying analysis. Two SNPs identified for SBP, rs4757448
and rs17700056, are in linkage disequilibrium. The time varying analysis suggests that there may
be genes that not only affect the long-term average SBP but also affect a change of SBP with
time. We discuss implications of these findings and compare with the time invariant analysis in
the next section.

Table 5. Top ranking SNPs in the time invariant and time varying analyses with FHS data†

Trait SNP Analysis Chromo- Location Gene Minor LRT‡ p-value‡ LRT-lin§ p-value§
some allele

frequency

SBP rs11065951 Invariant§§ 12 110479861 ATXN2 0.052 12.36 4:4×10−4 — —
DBP rs1052501 VaryingÅ 3 41900402 ULK4 0.192 16.50 1:0×10−4 8.87 0.01
DBP rs7648578 Varying 3 41833735 ULK4 0.187 16.81 9:8×10−5 9.38 0.01
DBP rs2128834 Varying 3 41837649 ULK4 0.187 16.30 1:2×10−4 8.57 0.01
DBP rs3774372 Varying 3 41852418 ULK4 0.183 16.29 1:2×10−4 7.73 0.02
SBP rs10858911 Varying 12 88487272 — 0.396 24.56 1:0×10−5 2.87 0.24
SBP rs4757448 Varying 11 16954369 PLEKHA7 0.340 40.12 1:0×10−6 1.23 0.54
SBP rs17700056 Varying 11 16975383 PLEKHA7 0.341 38.39 1.0×10−6 1.39 0.50
SBP rs7943587 Varying 11 16812381 PLEKHA7 0.373 32.41 5.0×10−6 0.49 0.78
SBP rs7121911 Varying 11 16977903 PLEKHA7 0.208 24.75 1.8×10−5 24.75 4.2×10−6

†Significance level 4.81×10−4 adjusting for multiple comparisons of 265 SNPs by Gao et al. (2008).
‡Likelihood ratio statistic LRT and p-value in a time varying analysis treating genetic effects as a non-parametric
function and estimated by linear splines.
§Likelihood ratio statistic LRT-lin and p-value in a time varying analysis treating genetic effects as a parametric
linear function.
§§Treating genetic effects as time invariant.
ÅTreating genetic effects as time varying.
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Fig. 5. Age-specific effects of two significant SNPs identified from the time varying analysis: (a) SBP, SNP
rs10858911; (b) DBP, SNP rs1052501

6. Discussion

In this work, we propose semiparametric regression analysis of genetic studies with longitudinal
phenotypes by penalized splines. A mixed effects model representation of penalized splines pro-
vides a convenient way to handle polygenic effects and shared environmental effects in genetic
studies. Our simulations show that misspecifying the baseline function in a parametric analysis
has a substantial effect on the type I error rate and power of testing genetic association regard-
less of whether the QTL effect changes with time. Furthermore, when the true genetic effect is a
constant, the semiparametric analysis has power that is comparable with a non-linear analysis
under a correctly specified model of the baseline function. It is therefore beneficial to model
the baseline function non-parametrically. Misspecifying the genetic effect when the true effect
varies with time in a parametric analysis can reduce the power significantly, especially when
the average genetic effect over time is small. The semiparametric procedure proposed provides
an alternative to existing time invariant analysis and parametric linear models for longitudinal
genetic studies.

Although here the statistical procedures are developed for longitudinal data, they are also
applicable to cross-sectional data when subjects’ ages are recorded. In addition, for population-
based case–control studies, the outcome is a binary variable. The penalized splines regression
that is introduced here can be extended to generalized outcomes through a connection with
generalized mixed effects models as discussed in Ruppert et al. (2003).

Population stratification is a potential confounder in genetic association studies. However,
for the FHS all the study subjects are recruited from Framingham, Massachusetts, where the
majority of the population is Caucasian and population stratification is found to be negligible
(Wilk et al., 2005). Nevertheless, one approach to adjust for population admixture is to estimate
it by a principal components analysis and to include the first few principal components as cova-
riates in the model (Price et al., 2006), which can be readily incorporated in the framework of our
proposed methods. The principal component weights are computed from founders in families
and projected onto offspring to create principal component scores which are then included in a
regression analysis. Another method is to incorporate the permutation procedure implemented
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in the family-based association test (Rabinowitz and Laird, 2000) to our permutation test of
the genetic effect. To be specific, one permutes offspring’s genotypes given minimal sufficient
statistics of the genetic model under the null hypothesis. A third strategy to adjust for population
admixture in a regression-based analysis with family data is to include expected values of the
genotype-related covariates given the minimal sufficient statistic for the genetic model under
the null hypothesis as additional covariates (Yang et al., 2000). This approach is the estimation
analogy of the family-based association test. Wang et al. (2011) discussed an improvement to
the procedure described in Yang et al. (2000) that computes the optimal covariate to minimize
the estimation variance and to include these covariates in a regression analysis.

We implemented our methods with a truncated polynomial basis. Other bases such as B-
splines can also be used. Models based on B-splines are equivalent to truncated polynomials
through a reparameterization. The penalty matrix in expression (6) for B-splines, however, does
not have the simple ridge penalty form and needs to be adapted. Eilers and Marx (1996) pro-
posed a difference-based penalty. Wand and Ormerod (2008) considered a penalty matrix that
is a direct generalization of smoothing splines (O’Sullivan penalized splines) and provided a
mixed model representation. These works allow our methods to be extended to B-splines.

Although the methods proposed are illustrated through a candidate region analysis of the
FHS data, the semiparametric analysis based on the mixed effect model can be implemented for
analyses on a much larger scale, such as a genomewide association study. In our application of
the FHS data with 6082 subjects and 14505 observations, on average for each SNP the proce-
dure proposed took 1.5 min to run on a Dell desktop computer with 2.00 GHz central processor
unit and 3.25 Gbytes memory using R package NLME (Pinheiro and Bates, 2000). To complete
a genomewide association study with 500000 SNPs with parallel computing, this amounts to
2.6 days on a computing cluster with 200 nodes each with a 2.00 GHz central processor unit
(about 10 days for a cluster of 50 nodes or about 500 days for a single node). In addition, in our
experience, using SAS PROC MIXED (SAS Institute, 2004) improves computational efficiency.

Our analyses identified six SNPs for SBP and four SNPs for DBP residing in three genes. SNP
rs11065951 locates within the gene ATXN2, which is a cytoplasmic protein. Lastres-Becker
(2008) found that ATXN2 knock-out mice exhibited reduced fertility, locomotor hyperactivity
and abdominal obesity and hepatosteatosis at the age of 6 months. ATXN2 was also reported
to associate with neurological disorders (Huynh et al., 1999), renal functions (Kottgen et al.,
2010) and obesity (Figueroa et al., 2009) which may share some pathways with blood pressure.
Four SNPs (rs4757448, rs17700056, rs7943587 and rs7121911) located in a protein coding gene,
PLEKHA7, were reported to be linked to blood pressure at a genomewide level in another joint
meta-analysis of genomewide association studies for blood pressure (Cohorts for Heart and
Aging Research in Genetic Epidemiology consortium and Global BPgen; Newton-Cheh et al.
(2009)). Four linked SNPs (rs1052501, rs7648578, rs2128834 and rs3774372) were located in the
gene ULK4, which is an Unc-51-like kinase. This gene was also identified in the Cohorts for
Heart and Aging Research in Genetic Epidemiology consortium study (Newton-Cheh et al.,
2009) as a candidate locus for blood pressure. However, little has been reported on the rela-
tionship between the function of this gene and blood pressure. Gene expression analysis has
confirmed that SNPs in ULK4 alter gene expression levels in liver and lymphoblastoid cell lines
(Levy et al., 2009). Our analysis showed a potential time varying effect at this locus. This may
deserve further functional research.

Aging is a complex process during which many biological and physiological changes take
place which in turn may change a range of phenotypes, including blood pressure, and may
change the interplay between environmental and genetic factors. Therefore, age may represent a
surrogate of constellations of unmeasured factors. Taking into account the gene–age interaction
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in a genetic association study may help to overcome some of the inconsistencies in replicating
a genetic finding and may boost power (Lasky-Su et al., 2008). Our time invariant analysis
identifies two SNPs for SBP and the time varying analysis identifies a distinct SNP for SBP and
four SNPs for DBP. None of the SNPs were identified by both analyses. Some of the SNPs may
be missed if only the time invariant analysis was carried out. These results illustrate the com-
plementary feature of the two analyses. When the true genetic effect does not vary with time,
a time-invariant model may identify more SNPs owing to parsimony of the model. However,
when the genetic effect does change with time or when age acts as a surrogate of unmeasured
factors causing varying genetic effects, failure to acknowledge the time trend may reduce the
power or lead to irreproducible results (Shi and Rao, 2008; Lasky-Su et al., 2008).

Despite large efforts on gene mapping through genomewide association studies, until recently
few genetic variants were known to be reproducibly associated with common disease. Part of
the inconsistency may be explained by the dominant time invariant analyses strategy (Lasky-Su
et al., 2008). The general semiparametric approaches that we develop here may be applied to
model age-dependent genetic effects, leading to more powerful genetic data analysis and poten-
tially more consistent results. Our results also suggest a new hypothesis of possible time varying
genetic effect on blood pressure at several loci. This needs to be confirmed by a future larger
study. In addition, estimating age-specific heritability and genetic effects has implications for
designing subsequent studies and developing treatment of a disease: sampling subjects at the
age where heritability is at its peak would enhance the power of an association study, which is
very important for detecting genes with moderate effects; effectively designing a future genome-
wide association study requires accurate estimation of the potential time varying effect size of a
gene; and interventions may target different environmental or genetic factors at different ages,
depending on which factor is dominant.
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