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Advances in high-throughput technologies in genomics and imaging yield
unprecedentedly large numbers of prognostic biomarkers. To accommodate
the scale of biomarkers and study their association with disease outcomes,
penalized regression is often used to identify important biomarkers. The ideal
variable selection procedure would search for the best subset of predictors,
which is equivalent to imposing an !0-penalty on the regression coefficients.
Since this optimization is a nondeterministic polynomial-time hard (NP-hard)
problem that does not scale with number of biomarkers, alternative methods
mostly place smooth penalties on the regression parameters, which lead to com-
putationally feasible optimization problems. However, empirical studies and
theoretical analyses show that convex approximation of !0-norm (eg, !1) does
not outperform their !0 counterpart. The progress for !0-norm feature selec-
tion is relatively slower, where the main methods are greedy algorithms such
as stepwise regression or orthogonal matching pursuit. Penalized regression
based on regularizing !0-norm remains much less explored in the literature.
In this work, inspired by the recently popular augmenting and data splitting
algorithms including alternating direction method of multipliers, we propose
a 2-stage procedure for !0-penalty variable selection, referred to as augmented
penalized minimization-L0 (APM-L0). The APM-L0 targets !0-norm as closely
as possible while keeping computation tractable, efficient, and simple, which
is achieved by iterating between a convex regularized regression and a sim-
ple hard-thresholding estimation. The procedure can be viewed as arising from
regularized optimization with truncated !1 norm. Thus, we propose to treat reg-
ularization parameter and thresholding parameter as tuning parameters and
select based on cross-validation. A 1-step coordinate descent algorithm is used
in the first stage to significantly improve computational efficiency. Through
extensive simulation studies and real data application, we demonstrate supe-
rior performance of the proposed method in terms of selection accuracy and
computational speed as compared to existing methods. The proposed APM-L0

procedure is implemented in the R-package APML0.
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1 INTRODUCTION

Recent advances in high-throughput technologies in genomics and imaging yield unprecedentedly large numbers
of prognostic biomarkers to be examined. The curse of dimensionality poses challenges for the traditional regression
analysis when studying association between high-dimensional biomarkers and disease outcomes.1 To cope with the scale
of the number of variables, many regularized methods, which introduce sparsity penalties to the regression models or
likelihood functions, have been developed for simultaneous parameter estimation and variable selection.2-7 The most ideal
penalty for the variable selection purpose is the !0-norm of the regression coefficients for all predictors, which is equiva-
lent to the number of nonzero terms among the coefficients, and also referred to as the best subset selection. Unfortunately,
due to the nonconvexity and discontinuity of the !0-norm, solving such a regularized optimization is computationally
challenging, known as nondeterministic polynomial-time hard (NP-hard).8 Instead, other continuous or smooth penal-
ties have been suggested in different contexts.2-7 Particularly, the convex penalty based on the !1-norm,2,3!2-norm, or their
combination4,5 was introduced as a relaxation of !0-norm, providing a computationally attractive regularization form.

Alternative approaches based on nonconvex penalties such as smoothly clipped absolute deviation9,10 and approximate
!0-penalty 11,12 apply less shrinkage on large coefficients and hence reduce the estimation bias. Moreover, nonconvex
penalties may yield the property of oracle variable selection in the large sample sense. However, one difficulty of using
nonconvex penalties is computational instability and sensitivity to initial values. None of these methods directly use the
!0-penalty and thus likely will still include some variables with small effects in the final model, especially under the
high-dimensional data framework with large p and small n. For example, Lin et al13 showed that !1-regularized methods
never outperform their !0 counterpart and may be much worse in some cases. Advancement for!0-norm feature selection
is low, where the main methods are greedy algorithms such as stepwise regression or orthogonal matching pursuit.14

Penalized regression based on regularizing !0-norm remains much less explored in the literature. The penalty function
proposed in Shen et al15 targets !0-norm but involves heavy computation and nonconvex optimization.

To address gaps in knowledge, we propose an efficient 2-stage method that aims to regularize !0-norm as close as
possible and can be solved by a highly efficient and simple computational algorithm. Our method shares 2 features
with the recently popular alternating direction method of multipliers (ADMM) algorithm16: (1) introducing surrogate
parameters to augment the original model space; and (2) updating original parameters and surrogate parameters with iter-
atively alternating optimization. To describe the difference with the ADMM, note that it solves optimization problems of
the form

min
!,"

f (!) + g("), subject to A! + B" = C,

where all f(!) and g(") are convex functions. However, a fundamental difference is that g(") is the !0-norm of " in our
method, so it is nonconvex. Using!0-norm, our variable selection retains an authentic sparsity penalty. Another difference
is that the ADMM obtains step sizes for parameter updates as solutions to the Lagrange equations. However, we can
regard our soft-thresholding followed by hard-thresholding procedure as arising from a truncated !1-penalty function
and treat step sizes as tuning parameters. Thus, we will use cross-validation instead of Lagrange equations to determine
their values, and our tuning parameters are chosen adaptively to the data at hand.

We refer to our method as the augmented penalized minimization-L0 (APM-L0). Specifically, APM-L0 iterates between a
commonly used regularized regression step and a hard-thresholding estimation step, which can avoid the computational
challenges encountered in the !0-regularization problems. To implement APM-L0, we develop a 1-step coordinate descent
algorithm taking into account the sparsity structure, which results in both significant reduction in memory usage and high
efficiency in computation. Furthermore, we propose to simultaneously tune the regularization parameters in both steps
based on cross-validation. The method is flexible enough to handle a variety of models (eg, linear model, logistic model,
or Cox proportional hazards model17) and structure among variables by imposing a Laplacian penalty.6,18 We demonstrate
better estimation accuracy, much improved model sparsity, and reduced computational burden over the commonly used
!1-type penalties via extensive simulation studies. We provide real data analyses to demonstrate the practical applicability
of APM-L0. Lastly, a publicly available R-package APML0 is provided and shown via simulations to speed up computation
faster than the commonly used R-package glmnet.19

The rest of this article is organized as follows. In Section 2, we describe the !0-penalized problems and present the
details of APM-L0 approach. We also describe an efficient 1-step coordinate descent algorithm for the implementation.
In Section 3, we first evaluate the estimation and selection performance of our method and show large efficiency gain in
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simulation studies. In Section 4, we apply APM-L0 to a real-world example: a recently completed comprehensive study
on Huntington's disease (HD), PREDICT-HD,20 where the whole brain structural magnetic resonance imaging (MRI)
measures are used to estimate a network regularized biomarker signature for the age-at-onset of HD. Lastly, we conclude
with a few remarks in Section 5.

2 METHODS AND COMPUTATIONAL ALGORITHM

2.1 Regression model with !0-penalty
Let ! denote a vector of coefficients in a regression model and let l(!) denote a log-likelihood function chosen appropri-
ately depending on the outcome. For example, for continuous outcomes, l(!) is based on linear regression model; and for
censored outcomes, l(!) is based on the partial likelihood under the Cox proportional hazards model17 (details in Section
2.5). With a large number of biomarkers including genomic and imaging features, directly maximizing l(!) may not be
feasible and it is necessary to impose regularization and perform variable selection. The ideal but computationally infea-
sible feature selection is the best subset selection, that is, performing a regularized regression imposing penalty on the
!0-norm of coefficients:

min
!

−n−1l(!) + !||!||0, (1)

where ||!||0 = ∑p
j=1 I("j ≠ 0) and " j is the jth component of !.

However, due to the nonconvexity of the !0-norm, it is difficult to solve (1) with the penalty function p(!) = !||!||0,
computationally known as NP-hard: To select the best subset of nonzero coefficients, we need to evaluate all the possi-
ble combinatorial subsets, which grows exponentially with the number of covariates. Existing approaches based on more
continuous penalty functions (eg, !1-, !q-norm instead of !0-norm) may often select many nonzero ! 's with small magni-
tude, which leads to a nonparsimonious model and inferior prediction on independent data due to overfitting, a common
challenge for high-dimensional data analysis with large p and small n.

Remark 1. In some applications, components of biomarker variables X exhibit correlation structure (eg, correlated
gene expressions or brain imaging region of interest (ROI) measures). Such correlation can be naturally described by
a network structure through a Laplacian matrix L associated with the network graph. For example, Li and Li6 and
Huang et al18 discussed incorporating such a Laplacian quadratic penalty !TL! into the log-likelihood to perform
network-regularized variable selection. This penalty encourages smoothness of the coefficients of predictors that are
linked on the network. To accommodate network-informed penalty function, the first term in (1) can be expanded to
−n−1l(!)+!2!TL! by taking into account such a network structure, where !2 is a tuning parameter for the Laplacian
prior and is selected by cross-validation.

2.2 APM-L0 for the !0-penalized variable selection
Our proposed computational method to solve the NP-hard problem (1), APM-L0, is motivated by a class of proximal meth-
ods performing augmentation and splitting, including the ADMM. In a nutshell, APM-L0 is a 2-stage iterative procedure
where the first stage solves a regularized regression with computationally tractable penalty function, and the second stage
performs hard-thresholding. The procedure is simple and highly computationally efficient. To illustrate the method, we
reformulate the objective function (1) by augmenting the !0-norm of ! with a surrogate parameter " and bound the
difference by a smooth convex function which guarantees convergence in the proximal of !:

−n−1l(!) + !||"||0 subject to
p∑

j=1
#j(|"j − $j|) ≤ c, (2)

where #j(x) is a convex function satisfying #j(0) = 0 and #j(|x|) ≥ 0 for x ≠ 0, and c ≥ 0 is a tuning parameter. A common
choice for #j(| ·|) is the !2-norm, where #j(|x|) = x2, j = 1, · · · , p. Denote by % a penalty parameter (% > 0). The Lagrangian
form for (2) becomes

L%(!,") = −n−1l(!) + !||"||0 + %
p∑

j=1
#j(|"j − $j|). (3)
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To minimize (3) for a given %, APM-L0 iteratively update all parameters using the following algorithm: At the kth iteration,

!k+1 = arg min
!

− n−1l(!) + %
p∑

j=1
#j

(
|"j − $k

j |
)
, (4)

"k+1 = arg min
"

!||"||0 + %
p∑

j=1
#j

(
|"k+1

j − $j|
)
, (5)

where the superscript is the iteration counter. The algorithm is iterated until convergence.
Note that the above update Equation (4) is similar to updating a regularized regression. For (5), it is clear that minimiza-

tion is performed component-wise. Hence, if "k+1
j = 0, then $k+1

j = 0; otherwise, the optimal solution is either $k+1
j = "k+1

j
or $k+1

j = 0 depending on whether #j(|"k+1
j |) is larger than !∕%. That is, for j = 1, · · · , p,

$k+1
j = "k+1

j I
(
#j

(
|"k+1

j |
)
> !∕%

)
. (6)

It can be seen from (6) that the !0-penalty works as hard-thresholding the estimates obtained from the regularized
regression in the first step in (4). Many convex penalties proposed in the literature are good choices of #j(·), including
!1-penalty,2,3 elastic net (a combination of !1- and !2-penalty), 4,21 group Lasso22 and sparse group Lasso.23

In summary, the APM-L0 approximates solutions to (1) via an ADMM-inspired iterative 2-stage method. The first stage
replaces !0 penalty with another penalty function that provides computationally tractable optimization, and the second
stage corresponds to hard-thresholding. From another view, the APM-L0 performs best subset selection based on the
magnitude of ! estimated from a regularized regression. By making use of the order and magnitude of !, one can greatly
reduce the computing time to evaluate !0-norm.

2.3 Efficient computation in the first stage
When there is no closed form solution for the score function of a penalized regression (eg, in a Cox proportional hazards
regression), we can apply a quadratic approximation5 at some point of the current estimate of ! (details in Section 2.5).
Previous algorithms such as Shen et al19 cyclically updated "̂j, j = 1, · · · , p, until some convergence criterion was met at
the local point !̃. Here, instead of Shen et al,19 we take a 1-step coordinate descent approach to update "̂j only. Our 1-step
algorithm substantially improves computational efficiency. For the jth component of !̂, we solve

−n−1 (l
(
!|!̂−j

)

"j
+ %

(#j("j)
("j

= 0, (7)

where l(!|!̂−j) is the log-likelihood function with all the components fixed except the jth component, " j. Furthermore,
we construct an active set  = {j ∶ "̂j ≠ 0} at the outset and update those "̂j for j ∈  only, which is efficient for handling
sparse ! by reducing the number of updates. Let # = ()1, · · · , )n)T = (!TX1, · · · , !TXn)T = X!. The APM-L0 algorithm is

1. (Initialization) Set !̂ = #̂ = 0 and  = ∅.
2. (Active set) Update  at !̂.
3. (Loop) Iterate until convergence of !̂: cyclically update "̂j by (7) for j ∈ .
4. Converge if no update of ; otherwise, go to step 3 with the updated .

When evaluating for a path of %, we use the previous estimate !̂ and active set  as a warm start for the next % and
follow steps 2 to 4.

Remark 2. For a network graph-constrained log-likelihood, the Laplacian matrix L is often sparse. Hence, in
the implementation, we use a sparse matrix to represent L, which greatly reduces memory usage and enhances
computational efficiency.

2.4 Simultaneous selection of tuning parameters
An intuitive understanding of APM-L0 is to iteratively perform (a) regularized regression as laid out in the previ-
ous section, and (b) perform hard-thresholding. The tuning parameter % controls the degree of regularization for the
estimators, and the ratio between ! and % determines the number of nonnull coefficients (sparsity of the model).
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In some cases, the ADMM algorithm can be slow to converge. The original ADMM iteratively updates the Lagrangian
multiplier % as, at the kth iteration,

%k+1 = %k + ak
p∑

j=1
#j(|"k+1

j − $k+1
j |),

where ak > 0 is a step size. The ak needs to be appropriately chosen to ensure the dual function, defined as g(%) =
inf!,"L%(!,"), is increasing. Based on the dual optimal %∗ obtained by maximizing g(%), we can recover the primal optimal
estimates !∗ and "∗.

Instead of iteratively updating !, ", and %, we propose to treat % as a tuning parameter and search over a set of grid points
of %. At each fixed value of %, we update !̂ and "̂ based on the optimization problems (4) and (5). To save computational
time, we advocate one iteration update for ! and ", and declare "̂ as our final estimate. Hence, it is feasible that the
algorithm to solve the !0-penalty runs as fast as other regularized regressions (eg, !1-penalized regression). Thus, given
% and !, our method is implemented in a 2-stage fashion:

!̂ = arg min
!

− n−1l(!) + %
p∑

j=1
#j(|"j|),

"̂ = arg min
"

!||"||0 + %
p∑

j=1
#j(|!̂ − $j|).

The path of % can be set as in Friedman et al.19 In the second stage, we arrange |!̂| in decreasing order and directly choose
the number of nonnull coefficients in !̂ by keeping the * largest coefficients of |!̂|. We set the path of * from zero to the
total number of nonnull coefficients of !̂. We propose to use cross-validation to simultaneously select both parameters *
and %. For example, we suggest to use least squared error for linear regression and partial-likelihood for Cox model24 as
cross-validation criteria.

2.5 Examples of regression models and penalty functions
We can use any log-concave function/model to replace l(!) in the proposed APM-L0. Let Xi = (Xi1, · · · ,Xip)T denote a
vector of covariates and yi be the response variable. For linear regression with continuous outcome, we use

l(!) = −
n∑

i=1
(yi − !TX i)2.

For time-to-event outcomes (eg, age-at-onset of a disease) subject to independent censoring, we consider Cox model. Let
Ti be the time-to-event of interest and Ci be the censoring time. Denote by T̃i = min(Ti,Ci) the observed event time or
censoring time and denote by +i = I(Ti ≤ Ci) the event indicator, where I(·) is an indicator function. We use the following
log-likelihood function:

l(!) =
n∑

i=1
+i

{
!TX i − log

(∑
k∈Ri

exp
(
!TXk

)
)}

,

where Ri =
{

k ∶ T̃k ≥ T̃i
}

denotes the risk set at time T̃i. Because there is no closed form when solving (7), we use the
method proposed by Simon et al.5 We approximate l(!) based on its second-order Taylor series expansion centered at !̃
(estimated ! from the previous iteration) and further approximate the Hessian matrix of l(#) by it's diagonal matrix to
obtain the following function

l(!) = −1
2

n∑
i=1

,i(#̃)
(
)̃i + ui(#̃)∕,i(#̃) − !TX i

)2,

where
uj(#̃) = +j −

∑
i∈Cj

+i exp()̃j)∑
k∈Ri

exp()̃k)
,

,j(#̃) =
∑
i∈Cj

+i
{

exp()̃j)
∑

k∈Ri
exp()̃k) −

(
exp()̃j)

)2}

(∑
k∈Ri

exp()̃k)
)2 ,
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where Cj =
{

i ∶ T̃i ≤ T̃j
}

. With little effort, we can extend APM-L0 to other models, such as general linear models. In the
subsequent numeric studies, we focus on linear and Cox models.

To reduce the risk of overfitting and incorporate prior biological information, Laplacian penalty is often considered6 to
regularize estimation.

3 SIMULATION STUDIES

3.1 Simulation design and results
We conducted extensive simulations to evaluate the performance of APM-L0. We chose #j(|x|) to be the !1-type penalty
function, which provides a computationally attractive form to reduce dimensionality. We compared the proposed method
with the commonly used !1-type penalized regressions including Lasso,2,3 Enet,4,5 Net and its adaptive version, adaptive
network penalty (ANet6,7) for both linear regression, and Cox model. For simplicity, we refer to these methods as “!1-type,”
to be distinguished from our proposed APM-L0.

To mimic potential correlation between covariates in real-world applications, we constructed X in independent blocks
and the nodes within each block were correlated with a correlation of 0.5. Each block consisted of 5 nodes and 15
nodes/covariates from 3 blocks had nonzero effects on the outcome. We fixed the number of covariates in each node at 5
but varied the total number of covariates, denoted by p. We considered 2 types of outcome in the simulation, continuous
and censored data. For linear regression, we generated Yi = ∑15

j=1 "jXij + -i, where "j = (−1)j × 2 exp(−(j − 1)∕15) and
-i ∼ N(0, 1). For Cox model, the underlying hazard function was given by !(t|X i) = !0(t) exp

(∑15
j=1 "jXij

)
, where !0(t) was

specified by a Weibull distribution with shape parameter 5 and scale parameter 2 and "j = (−1)j × 2 exp(−(j− 1)∕15). The
censoring status was generated from a uniform distribution and randomly assigned to 30% subjects.

In the simulations, we considered sample size n = 200 with various numbers of covariates. For each simulated dataset,
the searching path for % has a length of 20. Ten-fold cross-validation was applied to choose the optimal tuning parameters.
Simulations were repeated 100 times. To evaluate estimation performance, we computed the sum of squared errors (SSE)
of the estimated parameters. We also calculated the number of true positive covariates (TP; number of nonnull variables
correctly selected in the final model) and the number of false positive covariates (FP; number of null variables incorrectly
selected in the final model) as measures of the variable selection performance. For the Cox model, we computed the
out-sample concordance index (C-index) using 100 random partitions of data into a training set and testing set.

Table 1 summarizes these simulation results. It can be seen from Table 1 that APM-L0 significantly outperforms the
commonly used !1-type methods based on cross validation of the partial likelihood (L-CVpl) in terms of both estimation
accuracy and selection performance for all cases. The improvement is substantial with smaller SSE, comparable TP, and
much less FP for both linear regression and Cox regression. As the number of covariates increases, it becomes more
difficult to pick true positive covariates and remove noise covariates. For the setting with small number of covariates where
p = 50, both methods are able to select all the true positive covariates but APM-L0 selects 20 times fewer FP than the
!1-type methods. As p increases to 10 000, less TP are selected, yielding larger SSE. When p = 10000, the !1-type methods
select slightly more TP than APM-L0, but still many more FP, and hence a worse SSE. Comparing different choices of
the penalty functions in the first stage #j(·) in APM-L0, we find that ANet performs the best since it takes into account of
the correlation structure among covariates and adjusts the signs of highly linked covariates. APM-L0 with Anet penalty
gives a higher C-index than CVpl for Cox model when p = 1000 or p = 10000. The remaining 3 penalties have similar
performance.

We also performed additional simulations with APM-L0 under a fixed % and number of nonnull variables, *. We fixed
% at 0.01, 0.05, and 0.1 and * at 10, 20, and 30 and used a Lasso penalty as an example. When comparing APM−L0 with
the best scenario of fixing % and *, the former yields a higher C-index, a lower number of false positives when p = 50; and
gives a slightly lower C-index but less number of false positives when p = 1000 or p = 10000.

3.2 Running time
We compared the running time of our R-package APML0 implementing APM-L0 with glmnet19 under the same param-
eter settings for various sample sizes and numbers of covariates. As glmnet can only handle Enet and Lasso, the
comparison was only performed for these 2 penalties. To make the algorithms comparable, we generated the path of tun-
ing parameter % from glmnet and used the same path in the first stage of our method. All calculations were performed
on an Intel Xeon 2.13 GHz processor.
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TABLE 1 Comparison of estimation and selection performance for linear regression and Cox model
based on the proposed APM-L0 and existing !1 -type methods for penalties ANet, Net, Enet, and Lasso
with various numbers of covariates

SSEa TPb FPc C-indexd

CVpl APM-L0 CVpl APM-L0 CVpl APM-L0 CVpl APM-L0

Linear regression
n = 200, p = 50

ANet 0.26 0.18 15.0 15.0 25.4 1.5
Net 0.38 0.25 15.0 15.0 19.4 1.4
Enet 0.37 0.25 15.0 15.0 18.8 1.4
Lasso 0.37 0.25 15.0 15.0 18.9 1.4

n = 200, p = 1000
ANet 1.86 1.39 14.8 14.7 213.4 1.1
Net 2.49 1.90 15.0 14.7 125.3 1.3
Enet 2.41 1.86 15.0 14.6 125.5 0.9
Lasso 2.13 1.51 15.0 14.9 116.7 1.3

n = 200, p = 10000
ANet 14.57 13.60 11.6 10.3 438.2 4.2
Net 16.85 15.92 9.6 7.5 95.5 6.2
Enet 16.29 15.80 9.8 7.5 102.3 7.3
Lasso 15.67 15.28 9.9 7.7 99.8 7.3

Cox model
n = 200, p = 50

ANet 1.36 0.55 15.0 15.0 27.5 1.6 0.912 0.915
Net 2.35 0.89 15.0 15.0 19.3 0.5 0.901 0.906
Enet 2.35 0.89 15.0 15.0 19.3 0.5 0.901 0.907
Lasso 2.29 0.88 15.0 15.0 18.6 0.6 0.902 0.907

n = 200, p = 1000
ANet 13.28 6.90 14.0 13.5 158.9 0.8 0.800 0.844
Net 19.59 14.39 11.5 10.3 39.2 2.0 0.704 0.710
Enet 19.28 13.89 11.6 10.5 38.8 1.7 0.703 0.712
Lasso 19.01 13.11 11.7 10.8 37.5 1.5 0.700 0.709

n = 200, p = 10000
ANet 23.48 17.15 8.8 9.3 124.8 1.8 0.669 0.725
Net 25.74 23.74 6.0 5.6 25.8 2.9 0.655 0.663
Enet 25.72 24.12 5.5 4.9 19.9 3.7 0.646 0.644
Lasso 25.68 24.25 5.4 4.4 17.3 2.9 0.641 0.641

aSSE: Sum of squared error;
bTP: Number of true positive covariates;
cFP: Number of false positive covariates;
dC-index: Concordance index.

Table 2 shows the running time comparison between APML0 and glmnet. Our implementation was called from R,
and most intensive computation codes were written in C++ and integrated with R using R-package Rcpp.25 In Table 2,
we observe that APML0 and glmnet have similar running time for linear regression but APML0 runs faster than glm-
net for Cox regression. Similar algorithm was used by both packages for linear regression. For Cox model, a quadratic
approximation is needed at a local point. APML0 takes 1-step coordinate descent at the local point rather than full opti-
mization as done by glmnet. Obtaining high precision of estimates for the intermediate steps is not necessary. Similar
idea was adopted in Mittal et al.26 Additional simulations with different distribution of covariates, correlations among
covariates, and comparison with ADMM are presented in the Appendix.

4 ANALYSIS OF REAL DATA

There is increasing evidence that brain imaging markers are important biomarkers for predicting diagnosis and pro-
gression of neurodegenerative disorders.20,27,28 Current work in the clinical literature mostly perform univariate analyses
to assess association between individual variables and disease outcome. However, theoretical investigation2 and vari-
ous empirical studies29 suggest that simultaneous approaches based on penalized regressions may avoid overfitting and
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TABLE 2 Running time in seconds for R-packages APML0 and glmnet for various sample sizes and
number of covariates

Linear Regression Cox Model
Enet Lasso Enet Lasso
APML0 glmnet APML0 glmnet APML0 glmnet APML0 glmnet

n = 200, p = 1000 0.11 0.27 0.06 0.09 1.06 4.34 1.35 7.69
n = 200, p = 10000 0.70 0.85 0.75 0.67 5.25 17.19 2.51 26.54
n = 5000, p = 1000 2.79 3.00 2.82 2.95 44.55 60.25 41.16 53.39
n = 5000, p = 10000 10.95 10.35 10.78 10.33 226.70 370.35 147.40 788.59

Abbreviation: APM-L0, augmented penalized minimization-L0.

TABLE 3 Average number of variables selected, C-index, Integrated Brier Score and Partial Likelihood by the
proposed APM-L0, L-CVpl with ANet, Net, Enet and Lasso penalty (100 repetitions of 10-fold cross validation)

Number of Variables C-index Integrated Brier Score Partial Likelihood
ANet Lasso ANet Lasso ANet Lasso ANet Lasso

L-CVpl 27.32 14.44 0.800 0.791 0.067 0.068 −5.661 −5.688
APM-L0 19.15 10.30 0.792 0.785 0.068 0.069 −5.682 −5.709

Abbreviations: APM-L0, augmented penalized minimization-L0; CVpl; cross validation of the partial likelihood.

provide more power than massive univariate approaches or greedy-search based stepwise regressions. Here, we take
a whole-brain approach to evaluate all regional imaging measures simultaneously in predicting age-at-onset (AAO) of
Huntington's disease (HD). Regional brain atrophy measures obtained from structural magnetic resonance imaging (MRI)
have been suggested as one of the most robust imaging biomarkers for HD.30 We analyzed the data from the newly com-
pleted PREDICT-HD study20 to predict AAO of HD using whole brain subcortical volumetric measures obtained from
structural MRI. The regional summary volumetric measures were created by a fully automated procedure and prepro-
cessed using Freesurfer 5.2 (http://surfer.nmr.mgh.harvard.edu). Details on the imaging marker preprocessing have been
reported previously.20 Our analysis consists of 840 subjects who were at genetic risk of HD (CAG repeats length ≥36 at
the huntingtin gene31). The median follow up time was 3 years and 128 subjects developed HD during the study. In our
analysis, there were 8 clinical variables (gender, education, baseline total motor score from the UHDRS, and cognitive
and functioning measures) and 28 subcortical MRI imaging ROI biomarkers measured at the baseline visit. To account
for correlation among imaging measures, elastic net (Enet) penalty and Laplacian penalty was used for the function #j(·)
in the APM-L0. We used control subjects (no HD mutation, CAG repeats length < 36) in PREDICT-HD to estimate the
correlation matrix used in the Laplacian penalty. All variables were standardized before fitting the model.

We compare APM-L0 with the usual penalized regression implemented in glmnet using cross-validation to select tun-
ing parameter (referred to as L-CVpl). To obtain an out-of-sample measure of performance, we randomly partitioned the
data into a training set and testing set, where we used the training set to fit the data and testing set to estimate the perfor-
mance. We used 10-fold cross-validation to select tuning parameter on the training set. Table 3 shows that given a penalty
function, the proposed APM-L0 procedure selected less number of biomarkers than L-CVpl (on average 8.17 variables less
under ANet penalty and 4.14 variables less under Lasso penalty), without sacrificing the prediction performance (compa-
rable cross-validated C-index,32 brier score,33 and partial likelihood). Moreover, APM-L0 under sign-adjusted ANet penalty
has higher C-index, lower Brier score and higher partial likelihood than under Lasso penalty. We further show the esti-
mated standardized regression coefficients (effect sizes) in Figure 1 for all 4 procedures. Comparing APM-L0 with L-CVpl,
we see that the former removed several biomarkers with small effects (eg, Left Lateral Ventricle) which were clearly noise
variables from a biological point of view, while strengthening effects from ROIs such as Putamen, Thalamus, and Palla-
dium. Comparing Lasso penalty with sign-adjusted ANet, we see that the former does not select ROIs shown to be highly
predictive in prior literature20 such as left or right side of Putamen. In addition, ANet can select the linked biomarkers
with opposite effects, such as left and right sides of hippocampus, which indicates the necessity of controlling for the
direction of association of biomarkers.

Some of the variables selected by APM-L0 are consistent with previously identified in the literature20 from the
PREDICT-HD study. However, previous literature did not take a multivariate approach so that the relative ranking of
biomarkers' ability to predict HD onset in a multivariate model is unknown. Based on their effect sizes as shown in
Figure 1, the top ranking clinical variables include total motor score, Stroop inference score, Stroop word score, and the
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top ranking imaging biomarkers include Thalamus, Putamen, Caudate, Hippocampus ROIs, and cerebellum white mat-
ter and cerebellum cortex. The symbol digital modality (SDMT) drops out of the model when Stroop scores are selected
into the model. Noisy markers such as left and right lateral ventricle are not selected into the model.

Due to better interpretability and prediction performance, we present further results of APM-L0 under ANet penalty. We
estimated the structural covariation network34 from control subjects (no HD mutation) in PREDICT-HD. The estimated
network was then used to construct Laplacian penalty in the estimation of the effects of ROIs. Thus, the highly correlated
ROIs were encouraged to express similar effects as in Li and Li.6 We show in Figure 2 the imaging network signature and
their effect sizes. For graphical presentation purpose, Figure 2 only displays estimated nonnull ROIs and their strongly
associated edges. Each edge represents 2 ROIs with the absolute value of correlation greater than a threshold (0.8) in the
covariation network and the size and color of nodes represents the effect and direction of an ROI on the age at onset of
HD, respectively. More ROIs were chosen by L-CVpl compared with APM-L0. The networks identified by L-CVpl with
small effects were removed by APM-L0 (ie, Choroid Left-Choroid Right). Furthermore, the effects of important ROIs
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were strengthened by APM-L0, indicated by larger radius of nodes in Figure 2. These results show that APM-L0 has the
desirable properties of amplifying effect sizes of important ROIs and eliminating noisy ROIs.

To assess the ability of biomarkers in discriminating individuals who will have an onset of HD by certain age t from
those who will not, we split subjects into high-risk and low-risk groups based on their biomarker risk scores (ie, !TX).
Receiver operating characteristic curve (ROC) analysis is applied to select the optimal cutoff values of risk scores for
predicting risk by age t =40, 50, 60, or 70, respectively. The cutoff values are determined by minimizing the difference
between the points on the ROC curve and the point (0,1) on the upper left hand corner of ROC space.35 Subjects are
divided into high-risk group and low-risk group based on the optimal cutoff values. Figure 3 shows the cumulative risk of
developing HD in high-risk group and low-risk group estimated from Kaplan-Meier curves. It indicates a large difference
between the high-risk group and low-risk group. We computed time-dependent AUCs using the method in Chiang and
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FIGURE 3 Estimated cumulative risk of Huntington disease diagnosis using augmented penalized minimization-L0 Anet. From left to
right, results are obtained at age 40, 50,60, and 70. Blue: high-risk group. Red: low-risk group

FIGURE 4 Two-biomarker split plots using augmented penalized minimization-L0 Anet. The top row shows Pallidum-Left versus
Thalamus-Left. The bottom row shows Pallidum-Left versus Thalamus-Right. From left to right, the cutoff values are optimized for
distinguishing onset by age 40, 50, 60, and 70. Blue: high-risk group. Red: low-risk group. Black line: separation boundary. Large filled circles:
subjects with a diagnosis by certain age. Dots: subjects without a diagnosis by certain age
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Hung36 that can account for censoring implemented in the R package “timeROC.” The AUCs of risk scores obtained from
APM-L0 is high: at age 40, 50, 60, or 70, the AUCs are 0.84, 0.87, 0.91, and 0.89, respectively. To visualize the ability of
biomarkers with largest effect sizes in discriminating high- and low-risk individuals, we present 2-biomarker split plots
in Figure 4. The decision boundary in each figure is obtained by fixing other biomarkers at the sample averages. They
show some discriminant power for separating high-risk group and low-risk group by Pallidum-Left and Thalamus-Left,
or Pallidum-Left and Thalamus-Right, especially at t = 50 or t = 60. For lower or higher age, the discriminant power
of the two top ranking biomarkers is limited and borrowing information from other biomarkers is necessary to achieve
higher predictive performance.

5 DISCUSSION

In this work, we propose a 2-stage procedure under the ADMM framework to approximate solutions to the !0-penalty
variable selection. We develop an efficient 1-step coordinate descent algorithm for implementation. Our APM-L0 approach
improves both estimation and selection performance substantially over the commonly used regularized methods. The
1-step coordinate descent algorithm runs faster than existing algorithms which fully optimizes the estimates at each step.
Taking into account the sparsity structure allows for further improvement on the computation efficiency.

Here, we focus on linear regression and Cox model, and demonstrate the procedure mainly using !1-type penalties in
the first stage for#j. However, the proposed approach can easily be extended to other types of outcomes and penalty forms.
One would replace the log-likelihood function with any other log-concave function to obtain a similar procedure. It would
be interesting to explore other shrinkage methods, such as smoothly clipped absolute deviation10 or MCP.37 We expect
similar results such that APM-!0 would achieve better sparsity and accuracy than alternative methods. Furthermore, our
algorithm can be improved and easily adjusted for massive sample-size data by accounting for the sparsity in the covariates
matrix. Lastly, in this work, baseline biomarkers are used to predict disease onset. Another extension worth considering is
the inclusion of longitudinal measures of biomarkers over time in a time-dependent model to update predictive function
for disease onset.
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APPENDIX A: R-PACKAGE

R-package APML0 contains R codes to perform all the methods considered in the simulation, including penalties of
Lasso, Enet, Net, and ANet for both linear regression and Cox model. Most intensive computation codes were written
in C++ and integrated to R codes using R-package Rcpp.25 R-package APML0 is available upon request, and will be
uploaded to CRAN.
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TABLE B1 Comparison of the estimation and selection performance for Cox model
based on APM-L0 and existing !1 -type methods for penalties ANet, Net, Enet and Lasso
when covariates have different distributions

SSEa C-indexb TPc FPd

CVpl APM-L0 CVpl APM-L0 CVpl APM-L0 CVpl APM-L0

n = 200, p = 50
ANet 2.01 0.90 0.915 0.918 15.0 15.0 24.4 0.5
Net 2.74 0.91 0.904 0.909 15.0 15.0 22.9 0.3
Enet 2.75 0.93 0.904 0.909 15.0 15.0 23.0 0.3
Lasso 2.89 1.22 0.905 0.909 15.0 15.0 19.2 0.4

n = 200, p = 1000
ANet 10.56 3.42 0.826 0.859 14.8 14.5 163.3 0.7
Net 20.73 13.64 0.710 0.727 12.0 12.0 47.5 2.6
Enet 20.46 12.37 0.710 0.730 12.1 12.3 46.3 1.9
Lasso 19.49 11.50 0.709 0.730 11.8 12.1 42.1 1.3

n = 200, p = 10000
ANet 24.46 15.09 0.657 0.733 7.3 11.3 88.0 0.8
Net 26.48 24.95 0.645 0.659 5.2 4.5 27.1 2.7
Enet 26.50 25.34 0.639 0.642 4.9 3.8 22.6 3.1
Lasso 26.54 25.81 0.634 0.631 4.1 2.9 14.0 2.7

aSSE: Sum of squared error;
bC-index: Concordance index;
c TP: Number of true positive covariates;
d FP: Number of false positive covariates.

APPENDIX B: ADDITIONAL SIMULATION STUDIES TO COMPARE WITH ADMM

In additional simulation studies, we varied the distributions of covariates. We constructed X in independent blocks, where
each block consisted of 5 covariates and 15 covariates from 3 blocks had nonzero effects on the outcome. Covariates from
the first nonzero effect block followed standard normal distribution and the covariates within the block were correlated
with a correlation of 0.5. In the second block, covariates followed normal distribution with mean 0 and variance 1.5, and
the variables within the block were correlated with a correlation of 0.5. In the third block, covariates followed noncentral
t - distribution with noncentral parameter 2 and degrees of freedom 4, and the variables within the block were independent
with each other. We considered sample size n = 200 with various numbers of covariates.

Table B1 summarizes these simulation results. It can be seen that APM-L0 much outperforms the commonly used
!1-type methods based on cross validation of the partial likelihood (L-CVpl) in terms of both estimation accuracy and
selection performance for all cases when covariates have different distributions. The improvement is substantial with a
smaller SSE, comparable TP, much less FP and a higher C-index (especially when p = 10000 with Anet penalty). ANet
still performs the best similar to the scenario when the distribution of covariates is the same.

The APM-L0 uses surrogate parameters similar to the proximal splitting based algorithms38(ADMM algorithm is a spe-
cial case). To see the difference with ADMM, first note that ADMM implemented in Boyd et al16 optimizes the following

−n−1l(!) + !||"||1, subject to
p∑

j=1
("j − $j)2 ≤ c. (B1)

However, APM-L0 replaces the !1-norm of " in the above objective function by an !0-penalty and uses a general sparsity
inducing penalty function #j(·) to bound the difference between " and ! instead of restricting to a quadratic function (see
also (2). There is no existing literature on using ADMM to handle !0-norm. For implementation, APM-L0 transforms the
constrained form (2) to its Lagrange form (3) as

(!,") = arg min
!,"

− n−1l(!) + !||"||0 + %
p∑

j=1
#j(|"j − $j|), (B2)

and simultaneously selects tuning parameters (%, !) based on cross-validation. In contrast, ADMM determines the step
sizes of update functions (the equivalence of tuning parameters) by directly solving Lagrange equations instead of
choosing them in a data-adaptive fashion from cross-validation.
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TABLE B2 Estimation and selection performance of ADMM with fixed % for
linear regression

n = 200,p = 50 n = 200,p = 1000 n = 200,p = 10000
SSEa TPb FPc SSEa TPb FPc SSEa TPb FPc

0.01 0.54 15.00 34.26 4.27 14.98 223.70 21.55 10.98 388.95
0.05 0.55 15.00 32.75 3.13 14.99 197.00 16.57 11.38 224.83
0.10 0.55 15.00 31.07 2.68 14.99 179.15 14.55 11.32 179.15
0.50 0.51 15.00 26.67 2.57 15.00 140.85 14.36 11.32 130.25
1.00 0.43 15.00 24.94 2.71 14.99 132.88 14.77 11.04 119.07
5.00 0.33 15.00 16.14 2.41 14.98 111.08 14.41 10.57 85.41
10.00 0.40 15.00 8.58 2.35 15.00 90.15 14.59 9.11 30.97
20.00 0.97 15.00 2.79 2.52 14.98 43.34 19.04 4.73 0.46

aSSE: Sum of squared error;
b TP: Number of true positive covariates;
cFP: Number of false positive covariates.

Since ADMM uses !1-penalty for ", we compared it to APM-L0 with Lasso penalty. The simulation settings are as the
same as in Section 4. We evaluated different values of the tuning parameter given at 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, and
20.0. Table B2 summarizes the results of ADMM under a linear regression model. Comparing to results of APM-L0 in
Table 1, we can see that APM-L0 has a smaller SSE, comparable TP and much smaller FP. For p = 50, both ADMM and
APM-L0 can correctly choose all true covariates, but APM-L0 selected more than 20 times fewer FP than ADMM. When
p = 10000, ADMM selected more TP variables, but at the price of many more FPs. The number of iterations required
for ADMM to converge can be more than 1000 and thus the computational speed is much slower than APM-L0 in some
scenarios.
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