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Summary. When a gene variant is discovered to segregate with a disease, it may be of interest to estimate
the risk (or the age-specific risk) of the disease to carriers of the variant. The families that contributed to
the discovery of the variant would typically contain multiple carriers, and so, especially if the variant is
rare, might prove a valuable source of study subjects for estimation of the risk. These families, by virtue of
having brought the gene in question to the attention of researchers, however, may not be representative of
the relationship between carrier status and the risk of the disease in the population. Using these families
for risk estimation could bias the observed association between the variant and the risk. The purpose here
is to present an approach to adjusting for the potential bias while using the families from linkage analysis
to estimate the risk.
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1. Introduction
Studies aimed at discovering genes that influence the risk of
disease usually focus on families containing multiple individu-
als affected with the disease. Linkage analysis is used to search
for regions of the genome where affected relatives share ge-
netic marker alleles with greater frequency than would be
expected by chance. If such regions are found, the nucleotide
sequences of the genes in the regions are examined in affected
and unaffected members of the families in which marker alle-
les in the regions segregate with the disease. Examination of
the sequences may reveal a genetic variant shared by all the
affected members. If the variant is only infrequently found in
the general population, and if the variant seems likely to al-
ter gene function, it is natural to conclude that the variant
increases the risk of disease.

When such a variant is found, there may further be in-
terest in estimating its penetrance, that is, in estimating
the probability that a randomly selected individual who car-
ries the variant will be affected with the disease. If there
is not a single variant of a gene implicated in the disease,
but rather many different rare variants each found in the
affected members of but one or a few families, it will not
be practical to estimate the penetrance of each variant. A
practical alternative is to treat all variants as if they each
conferred the same degree of risk, and to estimate a common
penetrance.

It might be thought that a natural study design for the
estimation of penetrance would be to screen a population

for carriers of a variant, and then to examine the rate of
disease in carriers. For a rare variant, however, it may be
prohibitively expensive to obtain a sufficiently large sample
of carriers. In such situations, the families from the original
linkage analysis that implicated the variant in the etiology of
the disease might appear an attractive source of data, as the
families would typically contain multiple carriers. However,
the frequency of disease in the carriers from those families
may not accurately reflect the risk to carriers in the general
population.

Two aspects of ascertainment schemes that draw from fam-
ilies included in a linkage analysis would cause the inaccuracy.
First, the inclusion criteria in the original linkage study typ-
ically would have called for families with multiple diseased
individuals; families in the population where carriers are not
affected would tend to be underrepresented. Second, among
the families that are sampled, selection for inclusion in the
penetrance analysis would typically require that all, or most,
of the affected members are carriers of the variant (other-
wise the investigators would not have inferred that the variant
caused the disease); families in the population in which the
variant does not lead to disease would tend to be underrep-
resented. Methods that do not take these issues into account
would generally be biased. The purpose here is to present
an approach to estimation from these kinds of families that
avoids the bias.

The approach requires that carrier status in at least some
unaffected members of the families be obtained, and is based
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on an application of Bayes formula to the probability that un-
affected members are carriers. The Bayes calculation rests on
the assumption of a rare dominant variant and a rare disease.
In what follows, the Bayes calculation is described and used
to develop a conditional likelihood that may be used for esti-
mating penetrance. A version of the approach that is appro-
priate for congenital diseases is first described; the discussion
is then extended to diseases with variable age at onset. The
approach is illustrated by applying it to estimating the risk of
autosomal-dominant partial epilepsy with auditory features
(ADPEAF) conferred by mutations in the leucine-rich glioma
inactivated 1 (LGI1) gene.

2. Estimating Penetrance
It is convenient to begin with a simple example. Consider a
sample obtained from nuclear families with two or more sib-
lings affected with a rare disease, and suppose that it is dis-
covered that at some locus, in a portion of the families, all of
the affected siblings carry a particular rare mutation. Finally,
suppose that the mutation is so rare that in any given nuclear
family in which the mutation is carried, almost certainly there
is but one parent carrying but a single copy of the mutation.

Let π denote the risk of disease in carriers, and let r denote
the probability that an unaffected sibling is a carrier. Then,
by a formal application of Bayes theorem—with the marginal
probability of being a carrier taken to be one half (by virtue
of the assumption that there is a single parental copy of the
mutation), and the conditional probability of being unaffected
when not a carrier approximated to be one (by virtue of the
assumption that the disease is rare)—r is approximately equal
to

0.5(1 − π)

0.5(1 − π) + 0.5 × 1
. (1)

The utility of the Bayes calculation for risk estimation may be
observed by, for example, inverting the formula (1) to obtain
the estimate of the penetrance,

π̂ =
2r̂ − 1

r̂ − 1
, (2)

where r̂ is the empirical carrier frequency in the unaffected
siblings of affected carriers.

To verify the relevance of the assumption, it is useful to
define some further notation. Let I denote the event that a
given family in the population is chosen for the original study,
and let E denote the event that all the affected members of the
family are carriers. Let U denote the subset of family members
who are unaffected, let u denote the observed value of U, let
a denote the complement of u in the family members, and let
k denote the cardinality of a. For any set of siblings s, let Cs

denote the carrier status in the set s, and let C�
s denote the

event that all members of the set s are carriers. Let n denote
the number of observed unaffecteds in the family, and, for any
given value c of the carrier status of the subjects in u, let m(c)
denote the number of carriers. Finally, let π denote the risk
in the population that a carrier is diseased, and let ε denote
the corresponding risk for noncarriers.

It may be helpful to note that the notation U refers to the
subset of unaffected family members, C refers to carrier status
of the subjects, and the subscripts a and u refer to affected

and unaffected. The added asterisk in C�
a refers to the event

that all affected members are carriers.
Two assumptions are applied in the derivation of the like-

lihood. The first one is the assumption that, although disease
status in family members would almost certainly play a role in
the inclusion criteria, family members’ genotype, which cer-
tainly could influence their disease status, would not otherwise
influence whether a family is included in the original study
sample. More precisely, the assumption is that the inclusion
of a family in the original sample is conditionally independent
of the carrier status in the unaffected members of the family,
given the disease status of the family members. The second
assumption is that the disease status of the unaffected fam-
ily members are conditionally independent, given their car-
rier status and the fact that all the affected members carry a
mutation. This is the important assumption that there is no
familial aggregation of additional risk factors. More precisely,
the assumption is

P
{
U = u

∣∣Cu = c, C�
a

}
=

∏
i

P
{
Ui = ui

∣∣Cui = ci, C
�
a

}
. (3)

Here Ui is the ith unaffected member of the family, Cui is
the carrier status of that member, and ui and ci are observed
values of Ui and Cui .

Note that each conditional probability in the right-hand
side of (3) is equal to 1 − π when ci denotes a carrier, and is
equal to 1 − ε when ci denotes a noncarrier. Then, the prob-
ability that the carrier status in the unaffected members of
the family is an observed value c, conditionally given that the
family is included in the sample, given that all of the affected
siblings in the family are carriers, and given the affection sta-
tus in all of the family members, may be expressed as

P{Cu = c | I, U = u,E}

= P
{
Cu = c

∣∣U = u,C�
a

}
=

P
{
C�

a

}
P

{
Cu = c

∣∣C�
a

}
P

{
U = u

∣∣Cu = c, C�
a

}∑
c̃

P
{
C�

a

}
P

{
Cu = c̃

∣∣C�
a

}
P

{
U = u

∣∣Cu = c̃, C�
a

}

=

P
{
Cu = c

∣∣C�
a

}∏
i

P
{
Ui = ui

∣∣Cui = ci, C
�
a

}
∑
c̃

P
{
Cu = c̃

∣∣C�
a

}∏
i

P
{
Ui = ui

∣∣Cui = c̃i, C
�
a

}
=

P
{
Cu = c

∣∣C�
a

}
(1 − π)m(c)(1 − ε)n−m(c)∑

c̃

P
{
Cu = c̃

∣∣C�
a

}
(1 − π)m(c̃)(1 − ε)n−m(c̃)

.

Here the assumption of conditional independence between in-
clusion of the family and carrier status of unaffected subjects
given affection status is used in the first equality. The assump-
tion of no familial aggregation of additional risk factors is used
in the third equality. Specializing to the case of a single un-
affected offspring in a nuclear family (so that the conditional
probability that any unaffected subject is a carrier, given C�

a,
is one half) and approximating ε, the risk of disease in non-
carriers, by zero, provides the Bayes calculation in (1).

These considerations suggest the construction of an approx-
imate conditional likelihood for π as the product of family-
specific terms of the form
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P
{
Cu = c

∣∣C�
a

}
(1 − π)m(c)∑

c̃

P
{
Cu = c̃

∣∣C�
a

}
(1 − π)m(c̃)

.

This likelihood has the form of a conditional logistic regression
with an offset in which each family corresponds to a stratum.
The subjects in the families do not correspond to the stratum
members, however; rather, the values of c̃, the possible value
of Cu , play the role of stratum members. The analog of the
regression parameter in the canonical parameterization is the
natural logarithm of (1 − π), the corresponding predictor is
m(c̃), and the analog of the offset is the natural logarithm
of P{Cu = c̃ |C�

a}. The analog of the response variable is an
indicator, that is, 1 for the observed value of Cu , and 0 other-
wise; each stratum has exactly one response variable equal to
1. Once the offset terms have been obtained, the maximum
likelihood estimate of π may be computed using standard sta-
tistical software.

It may be of interest to examine the calculation of the off-
set terms and the likelihood for some simple cases. Figure 1
shows four example pedigrees. In each, a filled symbol indi-
cates a diseased subject, and an open symbol indicates that
the subject is not diseased. The notation M/+ indicates a mu-
tation carrier, the notation +/+ indicates a noncarrier, and
the absence of both indicates that genotype information is not
available.

The first of the four pedigrees corresponds to the simple
case used to introduce the approach: the presence of carriers
among siblings iii provides that one of the parents is a het-
erozygous carrier; the probability that the offspring iv is a car-
rier is therefore 0.5, and the contribution to the likelihood is

Figure 1. Example pedigrees.

0.5(1 − π)

0.5(1 − π) + 0.5 × 1
.

In the second example pedigree, disease in subject i pro-
vides that subject i is a carrier. So, conditionally, there are
three possible outcomes: the variant is not transmitted to sub-
ject ii (and so also not to subject iii); the variant is trans-
mitted to subject ii, but not to subject iii; or the variant is
transmitted to subject ii and then to subject iii. The condi-
tional probabilities for these outcomes are 0.5, 0.25, and 0.25.
It is the second of the three outcomes that is depicted as hav-
ing occurred, so the contribution to the likelihood is given
by

0.25(1 − π)

0.5(1 − π)0 + 0.25(1 − π) + 0.25(1 − π)2

=
1 − π

2 + (1 − π) + (1 − π)2 .

In the third example pedigree, the affection status in sub-
ject i provides that either parent ii or iii is a carrier. It is
convenient to introduce for the conditional probability that ii
is a carrier of notation η. (It might be natural to take η to
be 0.5, reflecting that each parent is equally likely to be the
carrier. It may be, however, for example through population
admixture, that one or another parent is more likely to be
the carrier. In any case, whether η is taken to be 0.5 or not,
the treatment of the family is the same.) The approximate
conditional likelihood takes the form

η(1 − π)

η(1 − π) + (1 − η)(1 − π)
= η.

The information provided by the parental pair, therefore, is
ancillary, and the parental pair does not contribute to the
estimate.

In the fourth example pedigree, the presence of disease in
subject i ensures that the carrier status in siblings ii and iii
and in offsprings iv and v are conditionally independent, given
the disease status in the family members. Each of the unaf-
fected subjects has probability 0.5 of being a carrier. The
probability of carrying the variant for these subjects, given
that they are not diseased, therefore, is given by (1). The
contribution to the conditional likelihood is that of four in-
dependent Bernoulli variables with expectation equal to the
probability.

A sampling protocol sometimes taken when collecting fam-
ilies begins with obtaining affected probands with multiple
affected first-degree relatives, and then proceeds sequentially
by examining first-degree relatives of previously included af-
fected family members. With this strategy, the typical con-
tributions to the conditional likelihood will have the form, as
in the fourth example pedigree, corresponding to independent
Bernoulli variables each with expectation as given in (1). The
maximization of the likelihood in these cases has the simple
form in which the maximum likelihood estimate of π is the
transformation (2) of the overall carrier rate in the unaffected
subjects contributing to the analysis.

The approach as proposed so far is appropriate for con-
genital diseases or for diseases that manifest before the ages
at which subjects are recruited into the study. For diseases
with variable age at onset, however, the methods are not
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appropriate: an infant free of a disease that generally man-
ifests itself in adolescence, for example, contributes entirely
different information than does a disease-free adult subject,
and the ages of the subjects should be reflected in the anal-
ysis. Furthermore, with a disease with variable age at onset,
it may be of particular interest to estimate age-specific risk.
This section concludes with a generalization to the problem
of estimating age-specific risk.

The extension of the approach to estimate the age-specific
risk requires an additional assumption. The assumption is
that the subjects’ age at ascertainment is conditionally in-
dependent of the subjects’ age at onset, given their carrier
status. Under this additional assumption, the essential step in
moving to the estimation of age-specific risk is to modify the
terms used in the construction of the conditional likelihood
to reflect the age at which the disease status is ascertained.
The modification is to replace the probability of having ex-
perienced onset of the disease, π, by age-specific terms, πt ,
where t is the age of the subject at the time the disease status
is ascertained. For any value of c of Cu , the carrier status in
the unaffected family members, let Xj (c) denote the indicator
that the jth family member is a carrier. Let tj denote the age
of the jth subject at the time of ascertainment (if subjects are
not alive or have been lost to follow-up at the time of ascer-
tainment, tj should be taken to be the age at death or at loss
to follow-up). Then, the modified conditional likelihood with
age-specific terms is given by the product of family-specific
terms of the form

P
{
Cu = c

∣∣C�
a

}∏
j

(1 − πtj )
Xj (c)

∑
c̃

P
{
Cu = c̃

∣∣C�
a

}∏
j

(1 − πtj )
Xj (c̃)

.

The modified conditional likelihood should be maximized
under the obvious monotonicity constraint that πu should not
exceed πv for u less than or equal to v. Analogous to the
likelihood for a congenital disease, the modified conditional
likelihood may also be expressed in the form of a conditional
logistic regression in which the vector of parameters has nat-
ural logarithms of (1 − πt) as its components. It is evident
from the conditional logistic regression interpretation that
the likelihood is convex as a function of the vector whose
components are the natural logarithm of (1 − πt). It fol-
lows, therefore, from the results of Barlow et al. (1972), that
the maximum likelihood estimates may be obtained from a
pooled-adjacent-violators algorithm. A convex minorant al-
gorithm may also be applied, as discussed in Groeneboom
and Wellner (1992). In the special case where the conditional
likelihood corresponds to independent Bernoulli variables, the
pool-adjacent-violators and convex minorant algorithms have
a relatively simple form corresponding to the estimation of a
distribution function from current status data.

In some situations there might be interest in estimating the
influence of factors other than age on the penetrance. To do
so, one might augment the likelihood by expressing the prob-
ability of disease as a function of age and additional factors. A
parameterization of the probability of remaining disease free
at time t given Z = z in the form 1 − πt,z = (1 − πt)e

zα, where
Z is an encoding of the additional factors and α is a vector of

regression coefficients, is particularly convenient, as the likeli-
hood may still be represented as that of a conditional logistic
regression. In the special case where the contribution to the
likelihood corresponds to that of independent Bernoulli ob-
servations each with expectation (1 − πt,z )/(2 − πt,z ), it may
be more convenient to choose a parameterization in which
the logit of the expectation has the form g(β, t) + zα. Here
g(β, t) might, for example, take the form of a polynomial in
t whose coefficients are the components of β. To obtain πt,z

from the estimated regression coefficients, the relationship,
log(1 − πt,z ) = g(β, t) + zα, may be used. Standard logistic
regression programs may be used to estimate the coefficients
in this parameterization.

3. Illustrative Data Analysis
This section reports the results of an application of the meth-
ods proposed here to data on ADPEAF, a form of idiopathic
lateral temporal lobe epilepsy with auditory symptoms as a
major seizure manifestation (see, e.g., Ottman et al., 1995;
Poza et al., 1999; Winawer et al., 2000, 2002). Mutations
in the LGI1 gene have been found to cause this syndrome
in 21 families reported so far, and this number is rapidly
increasing (see, e.g., Berkovic et al., 2004; Hedera et al.,
2004; Ottman et al., 2004; Pisano et al., 2005). The families
with mutations have all contained multiple individuals with
epilepsy, in patterns that appear consistent with autosomal-
dominant inheritance with reduced and age-dependent pene-
trance. With one exception, each reported mutation has been
found in only a single family (see, e.g., Gu, Brodtkorb, and
Steinlein, 2003; Pizzuti and Giallonardo, 2003; Pizzuti et al.,
2003).

The original evidence for a causal effect of LGI1 mutations
on ADPEAF was obtained through a two-stage process. In the
first stage, linkage analysis was carried out in a large family
with apparently autosomal-dominant inheritance of epilepsy
(Ottman et al., 1995). This led to the detection of a chro-
mosome segment (on chromosome 10q24) shared more often
by family members with epilepsy than would be expected
by chance. In the second stage, the DNA sequences of genes
known to reside within the chromosome segment were studied
in affected and unaffected individuals to determine whether or
not any contained a disease-associated variant from the origi-
nal linkage family and from additional families with ADPEAF
(Kalachikov et al., 2002). Initially one affected individual from
the family was tested. After a variant in LGI1 was discovered,
its association with the disease was confirmed by showing that
all of the affected individuals in the family carried the variant
whereas only a small proportion of unaffected individuals did.
The observation that a small number of unaffected individu-
als carried the mutations was viewed as evidence for reduced
penetrance.

Mutation testing has subsequently been carried out in ad-
ditional families, selected because they contained two or more
individuals with the same type of epilepsy as in the original
family (Ottman et al., 2004). In each such family, the DNA
from one affected subject was tested to detect a variant in
LGI1. When a variant was discovered, the remaining affected
subjects were tested to confirm that they also carried it. Fi-
nally, the variant’s association with disease was confirmed by
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testing unaffected individuals, both within the family and in
a set of unrelated controls.

Six families contributed to the penetrance estimation anal-
ysis (four of the five families originally used to demonstrate a
causal effect of mutations on ADPEAF, and two others; two
additional families with mutations were uninformative). The
numbers of unaffected subjects contributing to the analysis
in the six families were 7, 4, 8, 3, 1, and 16. The numbers of
unaffected carriers in these families were 2, 2, 2, 1, 0, and 4,
respectively. The observed carrier rate in the unaffected mem-
bers was therefore r̂ = 11/39 (28%), so applying (2) provides
that the estimate of the penetrance, unadjusted for age, was
π̂ = 17/28 (61%). Recall that in this example the likelihood
in all of the families corresponded to independent Bernoulli
random variables under the assumption of no familial aggre-
gation of additional risk factors. With the same assumption,
the exact confidence interval for r̂ can be computed based
on binomial distribution. To be specific, the lower bound
is found by solving the equation

∑Xobs−1
k=0 rkL(1 − rL)N−k =

1 − α/2, and the upper bound is found by solving the equa-

tion
∑Xobs

k=0 rkU (1 − rU )N−k = α/2. The asymptotic confidence
interval can be computed by first computing the standard
error of r̂ as (r̂(1 − r̂)/n)

1
2 and then using the normal approx-

imation. The resulting exact 95% confidence interval for r̂ is
(15%, 45%) and the asymptotic confidence interval is (14%,
42%). Because π̂ is estimated using (2), the confidence inter-
val for π̂ can be computed by applying (2) to the endpoints of
the confidence interval for r̂. The resulting exact confidence
interval for π̂ is (18%, 82%) and the asymptotic confidence
interval is (28%, 84%).

It should be noted that several subjects included in the
analysis are younger than age 20. These younger subjects who
had not yet developed the disease at the time of ascertainment
may experience onset in the future. It is particularly interest-
ing to apply an age adjustment in this case.

The contribution to the likelihood in all of the families
corresponded to independent Bernoulli variables, so that the
computation of the nonparametric maximum likelihood es-
timate of age-specific penetrance may be carried out by es-
timating the age-specific carrier risk, and then applying the
transformation (2).

The ages of the unaffected subjects together with their mu-
tation status are recorded in the table in the Appendix, which
can be found at www.tibs.org/biometrics. The nonparamet-
ric maximum likelihood estimate of the age-specific probabil-
ity of a positive carrier status for a decreasing function is
constant on the intervals from 20 to 31, from 36 to 65, and
from 69 to 70. The age-specific estimates of the carrier rate
on the intervals are 1/4, 4/19, and 0, respectively. By rela-
tion (2), the corresponding values of the penetrance are 2/3,
11/15, and 1. The age-specific penetrance is 0 on the interval
from 1 to 17. These rates are depicted in Figure 2.

Introducing age into the model, while providing only a
fairly coarse representation of the age-specific penetrance in
this example, provides perspective on the estimate derived
from the raw carrier rate: the lifetime risk of disease due to
the gene is estimated to eventually reach 1, and, for the most
part, onset appears to occur between 20 and 31. It should be
noted that in this sparse data set, this shape of the estimated
curve is driven primarily by the two unaffected carriers aged

Figure 2. Nonparametric maximum likelihood estimate of
the age-specific penetrance.

30 and 31 and by the two unaffected noncarriers aged 69 and
70. The two subjects with age 69 and 70 cause the estimate
of penetrance to approach 1. An application of the Lynden–
Bell estimator to the age-at-onset data in affected individuals,
who are all carriers, suggests that onset tends to occur be-
tween ages 16 and 29. This is earlier than the results of this
analysis suggest; the discrepancy can possibly be explained by
random variation and the sparseness of this data set. The dis-
tribution of age at onset for the affected subjects is presented
in Figure 3.

A logistic regression model for the conditional probability
of positive carrier status was also fit, in which age was entered
as a linear term. No intercept was fitted to ensure the pene-
trance is zero at age zero. The regression parameter estimate
for age was −0.027 (SE: 0.010, 95% CI: (−0.047, −0.07)). The
corresponding age-specific penetrance function is depicted in
Figure 4, and reaches a maximum of 85% (CI: 39%, 96%) at
age 70. Here the confidence interval for π̂t is computed by
applying the transformation

Figure 3. Nonparametric maximum likelihood estimate of
the conditional distribution of age at onset for affected carrier
subjects.
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Figure 4. Parametric maximum likelihood estimate of the
age-specific penetrance.

g(β) =
2 exp(βt)/(1 + exp(βt)) − 1

exp(βt)/(1 + exp(βt)) − 1

to the endpoints of the confidence interval for β̂.

4. Bias Introduced by Familial Aggregation
of Additional Risk Factors

An important assumption that underlies the proposed meth-
ods is that there is no additional risk factor, other than the
genotype of interest, that aggregates in families. In this sec-
tion, the effect of violating this assumption is investigated.

Three settings are considered. In the first scenario, the sam-
pled families each have two siblings, one affected and one un-
affected. These families correspond to the first pedigree of
the example pedigrees in Figure 1. The behavior of the esti-
mate of penetrance is investigated when there is an additional
Bernoulli risk factor shared by family members. Denote the
shared family-specific risk factor by X, and let the probability
of a sibling being affected, given the carrier status C and risk
factor X, be

P (D |C,X) =
eβC+δX

1 + eβC+δX
.

Here it is assumed that the family-specific Xi are independent
and that Xi are independent of C. Denote P(Xi = 1) by θ. The
penetrance for the carriers is then π = θp1 + (1 − θ)p0, where
p1 = eβ+δ/(1 + eβ+δ), and p0 = eβ/(1 + eβ). It is assumed
that the risk of disease for the noncarriers is approximately
0.

It is shown in the Appendix, available at www.tibs.org/

biometrics, that the bias in this setting is

E(π̂) − π = (α− θ)(p1 − p0),

where

α =
θp1(1 − p1)

θp1(1 − p1) + (1 − θ)p0(1 − p0)
.

The bias is a function of the risk of the susceptible genetic
variant C measured by β, the risk of the additional factor X

Table 1
Bias due to familial aggregation of an additional risk

factor—first scenario

True Correlation Relative
θ penetrance coefficient Bias bias

β = 0.1, δ = 1.5
0.1 0.304 0.034 0.007 0.215
0.2 0.286 0.062 0.014 0.221
0.3 0.269 0.084 0.019 0.226
0.4 0.251 0.099 0.023 0.230
0.5 0.233 0.108 0.025 0.232
0.6 0.215 0.110 0.026 0.233
0.7 0.197 0.103 0.024 0.231
0.8 0.179 0.085 0.019 0.227
0.9 0.162 0.053 0.012 0.219

True Correlation Relative
δ penetrance coefficient Bias bias

β = 0.1, θ = 0.5
0.2 0.310 0.002 0.000 0.047
0.4 0.298 0.010 0.001 0.073
0.6 0.286 0.021 0.002 0.100
0.8 0.273 0.037 0.005 0.129
1.0 0.261 0.055 0.009 0.158
1.2 0.249 0.075 0.014 0.188
1.4 0.238 0.097 0.021 0.218
1.6 0.228 0.119 0.029 0.247
1.8 0.219 0.141 0.039 0.276
2.0 0.210 0.162 0.049 0.303

Relative bias = bias/correlation coefficient.

measured by δ, and the prevalence of the risk factor measured
by θ. The magnitude of the bias is evaluated relative to the
correlation coefficient between the siblings. The correlation
coefficient of the response variable D between the siblings in
the same family is

r =
θp2

1 + (1 − θ)p2
0 − θp1 − (1 − θ)p0

(θp1 + (1 − θ)p0)(1 − (θp1 + (1 − θ)p0))
.

The bias, the relative bias, and the correlation coefficient
for different combinations of θ, β, and δ are recorded in the
tables. Table 1 shows that the bias increases with increasing
δ. Table 1 also shows that the bias first increases and then
decreases with an increasing value of θ, the prevalence of the
risk factor. The magnitude of the absolute bias can be as much
as 0.05, and the relative bias can be as much as 30%.

In the second scenario, it is assumed that the sampled fam-
ilies have more than two family members. The calculation of
the bias carries through with a different value of α. To be
specific, when there are m family members and k unaffected
members in each family,

α =

θ

(
m

k

)
pk1 (1 − p1)

m−k

θ

(
m

k

)
pk1 (1 − p1)m−k + (1 − θ)

(
m

k

)
pk0 (1 − p0)m−k

.

The bias in this setting is recorded in Table 2. The mag-
nitude of the bias increases with the number of subjects in
each family. It can also be seen that the absolute value of
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Table 2
Bias due to familial aggregation of an additional risk

factor—second scenario

Family Number of Relative
size unaffecteds Bias bias

θ = 0.5, β = 0.1, δ = 1.5, π = 0.23, r = 0.11

3 1 0.064 0.591
3 2 0.005 0.049
3 3 −0.067 −0.616
4 1 0.081 0.748
4 2 0.057 0.530
4 3 −0.015 −0.140
4 4 −0.077 −0.708
5 1 0.087 0.802
5 2 0.080 0.741
5 3 0.049 0.457
5 4 −0.034 −0.314
5 5 −0.082 −0.762
6 1 0.088 0.818
6 2 0.087 0.804
6 3 0.079 0.734
6 4 0.040 0.372
6 5 −0.050 −0.461
6 6 −0.085 −0.791

Relative bias = bias/correlation coefficient.

the bias first decreases and then increases for increasing num-
bers of unaffecteds in each family. The sign of bias changes
from positive to negative. This experiment implies that the
amount of bias when large families are sampled could be
substantial.

In a third scenario, the behavior of the estimate is investi-
gated where there is a continuous risk factor with density f(x)
shared by the family members. The probability of a family
member being affected, given C and X, can be correspond-
ingly modeled as

π(x) = P (D |C,X = x) =
eβC+δx

1 + eβC+δx
.

Then the penetrance is
∫
π(x)f(x) dx . As shown in the Ap-

pendix, the bias in this case is

Table 3
Bias due to familial aggregation of an additional risk factor—third scenario

Standard True Correlation Relative
Mean deviation penetrance coefficient Bias bias

β = 0.1, δ = 1.5
−2 1 0.104 0.192 0.112 0.586
−1 1 0.269 0.267 0.087 0.325

0 1 0.518 0.292 −0.007 −0.024
1 1 0.759 0.259 −0.095 −0.366
2 1 0.910 0.180 −0.110 −0.612

−2 10 0.424 0.894 0.070 0.078
−1 10 0.463 0.894 0.034 0.038

0 10 0.503 0.894 −0.002 −0.003
1 10 0.542 0.894 −0.039 −0.043
2 10 0.581 0.893 −0.074 −0.083

Relative bias = bias/correlation coefficient.

∫
π(x)(1 − π(x))∫

π(x)(1 − π(x))f(x) dx
π(x)f(x) dx −

∫
π(x)f(x) dx .

The bias evaluated with a normal density with different
means and standard deviations is recorded in Table 3. It can
be seen that the bias due to a large shift of mean from 0 could
be substantial. However, the influence of standard deviation
is moderate.

From these calculations, it can be seen that the bias intro-
duced by the familial aggregation of additional risk factors can
be large depending on certain scenarios. The bias increases
with decreasing values of the true penetrance and increasing
values of the correlation between family members.

5. Discussion
A standard strategy for adjusting for trait-based sampling
in genetic epidemiology is to condition on observed pheno-
types. See, for example, Gong and Whittemore (2003). The
approach developed here differs from the standard approach
in conditioning on genotypes in affected members as well
as on the observed phenotypes. This is appropriate because
inclusion in the analysis is not simply determined by ob-
served phenotypes; rather, families are included in the anal-
ysis because affected family members are carriers of the vari-
ant. It is important to note that if the carrier status in
the unaffected family members is used to determine that
a family is worthy of inclusion in the penetrance analysis
(through the observation that unaffected family members are
less often carriers than would be expected under random as-
sortment), then the approach presented here is not directly
applicable.

The approach proposed here is predicated on the assump-
tion of a rare variant. The importance of this assumption
lies in being able to infer that a pair of parents carry-
ing the variant would comprise a single heterozygous carrier
and a homozygous noncarrier. It should be noted, however,
that sampling strategies that call for multiple affected indi-
viduals may result in samples with nonnegligible frequency
of homozygous parents or a pair of heterozygous parents.
Whenever it is possible to observe that there is a homozy-
gous parent or a pair of heterozygous parents, it should be
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used in the computation of the offset terms in the conditional
logistic regression.

In the illustrative example, the families that contributed to
the analysis are the ones in which all the affected members
in the families carried the same variant in the LGI1 gene.
Generally, it is not necessary to restrict the analysis to the
families where all the affected members would carry the same
variant. However, as a practical matter, the genetic variant
is not likely to be identified except when it is responsible for
all cases within a family. Moreover, the proposed approaches
are concerned with a sufficiently rare disease and sufficiently
penetrant mutations, so it is unlikely that multiple etiologies
will coexist in sampled families.

The methods proposed here focused on the case of a dom-
inant variant. For a recessive variant, or more generally, for
a case where penetrance in homozygous carriers is greater
than penetrance in heterozygotes, the frequency in the sample
families of homozygous individuals could be quite substantial.
This, of course, would have an influence on what could be in-
ferred about parental carrier status in cases where parental
genotype information is not available. A reasonable strategy
for handling missing genotype information might be to use
estimates of the distribution of mating types to develop like-
lihoods that take into account ambiguities. However, there
remains a question as to the extent that misspecification of
the mating-type frequencies could induce bias, and whether
there are methods that are robust to misspecifications.

Finally, it should be noted that the approach proposed here
takes no notice of the possibility of heterogeneity in pene-
trance due to the presence of unmeasured genetic or environ-
mental factors that might cluster in families. See, for example,
the discussion in Begg (2002). The presence of multiple af-
fected family members might tend to indicate the presence of
additional factors that predispose toward the disease, so that
samples obtained through multiple affected members might
be families where additional factors are overrepresented. The
methods proposed here avoid bias induced by the sampling
scheme in the absence of heterogeneity, but inference about
a heterogeneous population as a whole can be confounded
by sampling schemes that are restricted to families contain-
ing multiple affected individuals, which cause some portion
of the population to be represented disproportionately. The
sensitivity of the developed method when violating the as-
sumption of no familial aggregation of additional risk factors
is investigated in several settings. The magnitude of the bias
can be substantial when the true penetrance is low and the
correlation is large.
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