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Summary. In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with
varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates
with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using
P-splines, we propose nonparametric estimation of the population mean function, varying coefficient, random subject-specific
curves, and the associated covariance function that represents between-subject variation and the variance function of the
residual measurement errors which represents within-subject variation. Proposed methods offer flexible estimation of both the
population- and subject-level curves. In addition, decomposing variability of the outcomes as a between- and within-subject
source is useful in identifying the dominant variance component therefore optimally model a covariance function. We use
a likelihood-based method to select multiple smoothing parameters. Furthermore, we study the asymptotics of the baseline
P-spline estimator with longitudinal data. We conduct simulation studies to investigate performance of the proposed methods.
The benefit of the between- and within-subject covariance decomposition is illustrated through an analysis of Berkeley growth
data, where we identified clearly distinct patterns of the between- and within-subject covariance functions of children’s heights.
We also apply the proposed methods to estimate the effect of antihypertensive treatment from the Framingham Heart Study
data.
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1. Introduction
Longitudinal designs are routinely implemented in biomedical
research studies. Comprehensive presentations on parametric
methods for analyzing longitudinal data can be found in, for
example, Diggle, Liang, and Zeger (2002). In some applica-
tions, in addition to modeling a mean function, modeling a
covariance function of the subject-specific processes is of sci-
entific interest. For example, in genetic studies the covariance
of related subjects within a family represents genetic infor-
mation. This function is used to compute heritability (ratio
of genetic variance and total trait variance), which quanti-
fies the genetic effect on a trait (Khoury, Beaty, and Cohen,
1993). In other applications, although not of direct scientific
interest, accurate estimation of a covariance function leads
to efficiency gain in estimating the population mean function
and fixed effects parameters (Fan, Huang, and Li, 2007).

In practice, concerns on model misspecification for para-
metric methods may call for more flexible nonparametric or
semiparametric approaches. In the context of longitudinal
data analysis, Diggle and Verbyla (1998) provided nonpara-
metric estimation of covariance structure by using local poly-
nomials to smooth various moment estimators of the variance
and covariance functions. Wu and Pourahmadi (2003) and
Huang et al. (2006) proposed nonparametric estimators for
large covariance matrix via Cholesky decomposition that are
guaranteed to be positive definite. In the context of func-
tional data analysis, Guo (2002) considered functional mixed

effects models and introduced a Kalman filtering algorithm
to handle large matrices in the mixed model representation
of smoothing splines that may be computationally challeng-
ing. Crainiceanu et al. (2007) proposed Bayesian penalized
spline (P-spline) to model variance function of heteroscedas-
tic errors nonparametrically and provided a spatially adap-
tive smoothing parameter for the population mean function.
Krafty et al. (2008) dealt with a varying coefficient model
and pursued a smoothing spline-based approach with an it-
erative reweighted least square procedure to fit the model.
Rice and Wu (2001) used regression spline-based methods
and treated subject-specific curves to be nonparametric ran-
dom curves. Fan et al. (2007) proposed a semiparametric
method to estimate the error covariance function where the
variance function is modeled nonparametrically with local
polynomials and the correlation function is modeled para-
metrically. In the context of spatial smoothing, Wood, Jiang,
and Tanner (2002) considered spatial process as a mixture of
smoothing splines to achieve spatial adaptivity. Alternatively,
functional principal components are used to reduce dimen-
sionality and model a covariance function. Methods along this
line include Ramsay and Silverman (2005, Chapter 8–10) for
univariate data; Yao, Müller, and Wang (2005), Yao and Lee
(2006), and Kauermann and Wegener (2009) for longitudi-
nal data (or sparse functional data); and Di et al. (2009)
and Staicu, Crainiceanu, and Carroll (2010) for multilevel
functional data. To alleviate computational burden, Durbán
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et al. (2005) pursued a simple P-spline (O’Sullivan, 1986; Eil-
ers and Marx, 1996) approach to fit subject-specific curves,
which expresses these curves as a linear combination of trun-
cated polynomial spline basis with random coefficients and
specifies a simplified parametric covariance matrix for the ba-
sis coefficients.

In this article, we present methods for functional mixed
effects models that decompose longitudinal or functional
outcomes as a sum of several terms: an unspecified pop-
ulation mean function, covariates with time-varying coeffi-
cients, functional subject-specific random effects, and residual
measurement error process. Using P-splines, we propose non-
parametric estimation of the population mean function, vary-
ing coefficient, subject-specific curves and the associated
covariance function, which represents between-subject vari-
ation, and the variance function of the residual measurement
errors, which represents within-subject variation. The pro-
posed model and methods maintain flexibility in modeling
both the population- and subject-level curves. In addition,
decomposing variability of the outcomes as a between- and
within-subject source is useful in identifying the dominant
variance component therefore optimally modelling a covari-
ance function. The benefit of such decomposition is illustrated
through an analysis of the Berkeley growth data (Tudden-
ham and Snyder, 1954), where we identified clearly distinct
patterns of the between- and within-subject covariance. Both
estimated covariance functions satisfy the positive semidefi-
nite constraint.

All nonparametric components of our model are estimated
through P-spline, which is considered as a reduced rank
smoother. P-spline was originally proposed by O’Sullivan
(1986) and has gained popularity since Eilers and Marx (1996)
and Ruppert, Wand, and Carroll (2003). A comprehensive re-
view of P-spline can be found in Ruppert et al. (2003) and
Ruppert, Wand, and Carroll (2009). With a P-spline basis ex-
pansion of the random subject-specific curves, the dimension-
ality of the covariance matrix of the random basis coefficients
is reduced due to the moderate number of knots, leading to
computational advantage. Theoretical work has shown that
P-spline as a low rank approximation can be asymptotically
as efficient as full rank estimators such as smoothing splines
(Li and Ruppert, 2008; Claeskens, Kivobokova, and Opsomer,
2009).

This article distinguishes from the functional principal
components based and longitudinal data analysis based ap-
proaches in the literature (e.g., Diggle and Verbyla, 1998; Yao
et al., 2005; Yao and Lee, 2006; Di et al., 2009; Kauermann
and Wegener, 2009) in that we do not require a moment esti-
mator or a surface smoother of the covariance function/matrix
before smoothing, and the dimensionality is reduced through
using moderate number of knots instead of using reduced
number of principal components. The proposed methods im-
prove upon the regression spline-based approaches (Rice and
Wu, 2001) that are sensitive to number and location of the
knots through imposing a penalty on the spline coefficients
to control overfitting and achieve smooth fit. This article also
distinguishes from Durbán et al. (2005) by allowing a gen-
eral unstructured covariance matrix for random spline basis
of the subject-specific curves and allowing the residual error
variance to be modeled nonparametrically. Compared to the

local polynomial- or kernel-based approaches (e.g., Fan et al.,
2007) the proposed methodologies allow for easy incorpora-
tion of the fixed and random effects.

Current literature studies the asymptotic properties of P-
spline estimator obtained from univariate data (a single mea-
surement for each subject). Li and Ruppert (2008) exam-
ined the asymptotics of a P-spline estimator with B-spline
basis and first- or second-order penalty assuming the num-
ber of knots is relatively large. Kauermann, Krivobokova, and
Fahrmeir (2009) studied asymptotics of P-spline estimator al-
lowing for generalized nonnormal outcomes. Claeskens et al.
(2009) obtained two asymptotic scenarios of the P-spline esti-
mator and showed the asymptotic bias and variance for each
scenario with univariate data. In this article, we examine the
asymptotic properties of the P-spline nonparametric popu-
lation mean function estimated with longitudinal data. We
show that under appropriate assumptions, the order of the
bias and the variance term is the same as for the univariate
data as shown in Claeskens et al. (2009).

The remaining part of the article is structured as follows.
Section 2 proposes methods to estimate the population mean
function and the within-subject heteroscedastic error variance
function nonparametrically. Section 3 develops methods for a
wider class of functional mixed effects models with varying
coefficients, random unspecified subject-specific curves, and
heteroscedastic measurement errors. In Section 4, we show
the asymptotic bias, variance, and normality of the P-spline
estimator with longitudinal data. In Section 5, we conduct two
simulation studies to investigate performance of the proposed
methods and apply them to analyze the Berkeley growth data
and the Framingham Heart Study data. In Section 6, we dis-
cuss possible extensions.

2. Semiparametric Estimation of the Within-Subject
Variation

In this section, we account for heteroscedastic within-subject
errors while estimating the population mean function and the
residual variance function nonparametrically. Let i index sub-
jects and let j index visits. A useful model for longitudinal
data analysis is a partially linear mixed effects model,

yij = μ(tij ) + xT
ij β0 + zT

ij bi + εij (tij ),

εi ∼ N
(
0, V

1
2

i Ri (θ)V
1
2

i

)
, Vi = diag

{
σ2(ti1), . . . , σ2(ti,m i

)
}
,

(1)

where μ(t) is a nonparametric population mean function, xij

is a px × 1 vector of covariates and β0 is the associated pa-
rameter vector, bi are i.i.d. random effect vectors following
N (0, D), zij are the associated design vectors, and the vectors
of heteroscedastic measurement errors εi = (εi1, . . . , εim i

)T

are assumed to be independent of the random effects, and
their variance function, σ2(t), will be modeled nonparametri-
cally, and Ri (θ) is a parametric correlation matrix such as AR-
1 (first-order autoregressive) or compound symmetry with θ
as the vector of unknown parameters. When μ(t) takes a lin-
ear form in model (1), it reduces to a linear mixed effects
model with heteroscedastic errors. When μ(t) has a known
nonlinear form such as exponential, the model (1) reduces to
a nonlinear mixed effects model with heteroscedastic errors.
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In practice it may not be easy to model the population
mean and the error variance function parametrically. For
example, the Berkeley growth data that we analyze in Sec-
tion 5.2 clearly illustrates a nonlinear trend of the mean func-
tion and the variance function of children’s heights, which are
not straightforward to be specified parametrically. In the Web
Appendix, we provide methods to estimate these functions
nonparametrically by P-splines and present a likelihood-based
smoothing parameter selection approach to choose multiple
smoothing parameters.

3. Functional Mixed Effects Model and
Nonparametric Estimation of the Between-Subject
Variation

3.1 Model and Proposed Methods
In this section, we propose methods for a wider class of func-
tional mixed effects models where we accommodate covariates
with varying coefficients and in addition to heteroscedastic
errors, we accommodate functional subject-specific random
effects. To be specific, consider

yij = xT
ij β0 + μ(tij ) + wij β(tij ) + νi (tij ) + εij (tij ),

νi (t) ∼ W (0, γ), εi ∼ N
(
0, V

1
2

i Ri (θ)V
1
2

i

)
,

Vi = diag
{
σ2(ti1), . . . , σ2(ti,m i

)
}
, (2)

where νi (t) are functional subject-specific random effects as-
sumed to be independent, W (0, γ) is a Gaussian process with
covariance function γ(s, t), and the residuals εij are again as-
sumed to have nonparametric variance σ2(t). When β(t) = 0
and νi (t) has a parametric form, model (2) reduces to model
(1). The model (2) can handle nonparametric population
mean function, varying coefficients and unspecified subject-
specific curves with an unspecified covariance function; there-
fore, one obtains flexible estimation of both the population-
and subject-level curves.

Assume that the population mean, time-varying coefficient,
functional random effects, and heteroscedastic error variance
functions can be approximated as

μ(t) = Bμ (t)βμ , β(t) = Bc (t)βc ,

νi (t) = Bν (t)ξi , and log σ2(t) = Bσ (t)η,

where Bμ (t), Bc (t), Bν (t), and Bσ (t) are row vectors of ba-
sis functions for the mean, varying coefficient, subject-specific
curves, and error variance function with possible different or-
der and different number of knots; βμ , βc , and η are the asso-
ciated basis coefficients; and ξi are vectors of random subject-
specific basis coefficients. Because the functional random ef-
fects νi (t) are approximated by a linear combination of spline
basis with random coefficients, the between-subject covari-
ance function can be approximated by

γ(s, t) = Bν (s)ΩBT
ν (t), where Ω = cov(ξi ).

Let Bi
c =(wi1B

T
c (ti1), . . . , wim i

BT
c (tim i

))T , Xi = (xi , B
i
μ , Bi

c ),
Zi = (BT

ν (ti1), . . . , BT
ν (tim i

))T and β = (βT
0 , βT

μ , βT
c )T . Then

the model (2) can be re-written as

Yi = Xiβ + Ziξi + εi , ξi ∼ N (0, Ω), and εi ∼ N (0, V
1
2

i RiV
1
2

i ).

Direct maximization of the penalized marginal likelihood of
the above model is a difficult nonconvex problem. However,
we can treat ξi as missing data and employ the expectation–
maximization algorithm. Define the penalized joint log likeli-
hood of Yi and ξi as

n∑
i=1

{
(Yi − Xiβ − Ziξi )T

(
V

1
2

i RiV
1
2

i

)−1

× (Yi − Xiβ − Ziξi ) + ξT
i Ω−1ξi

}
+ λμ βT

μ Pμ βμ

+ λc β
T
c Pc βc + λη ηT Pη η + λν

m∑
i=1

ξT
i Pν ξi , (3)

where λμ , λc , λν , and λη are smoothing parameters and
Pμ , Pc , Pν , and Pη are penalty matrices depending on the cho-
sen basis. For example, for the pth-order truncated polyno-
mial basis with K knots, the penalty matrix is diag(0p+1, 1K ).
The first three penalty terms in (3) control the smoothness
of the fitted population mean, varying coefficient, and error
variance functions. The last penalty term controls smooth-
ness of the fitted subject-specific curves. It is motivated by
the assumption that the random effects are realizations of a
Gaussian process with smooth covariance function. Similar
penalty was used in Krafty et al. (2008) for smoothing splines
and in Wu and Zhang (2006).

Given the variance components Ω, Vi , and Ri , we minimize
the joint penalized likelihood (3) with respect to β and ξi to
obtain

β̂ =

(
n∑

i=1

XT
i Σ̂−1

i Xi + Pλ μ ,λ c

)−1 (
n∑

i=1

XT
i Σ̂−1

i Yi

)
,

ξ̂i = Ω̂∗
λ ν

ZT
i Σ̂−1

i

(
Yi − Xi β̂

)
,

(4)

where Σ̂i = ZiΩ∗
λ ν

ZT
i + V

1
2

i RiV
1
2

i , Ω̂∗
λ ν

= (Ω̂−1 + λν Pν )−1,
and Pλ μ ,λ c = diag(0px , λμ Pμ , λc Pc ), where px is the column
dimension of Xi . The estimation of the between-subject vari-
ance component Ω is through restricted maximum likelihood,
which yields

Ω̂ =
1
n

n∑
i=1

{
ξ̂i ξ̂

T
i + Ω̂∗

λ ν
− Ω̂∗

λ ν
ZT

i MiZi Ω̂∗
λ ν

}
, (5)

with Mi = Σ̂−1
i − Σ̂−1

i Xi (
∑n

i=1 XT
i Σ̂−1

i Xi + Pλ μ ,λ c )−1Xi Σ̂−1
i .

To summarize, we use the following algorithm to estimate
parameters in (2). Assuming working independent residuals
(WI) with constant variance, we can obtain initial value β̂(0).
Let Ω(0)=diag {1, . . . , 1}, λν = 1, Ω∗

(0) = (Ω−1
(0) + λν Pν )−1, and

ξ̂i(0) = Ω∗
(0)Z

T
i Σ̂−1

i(0)(Yi − Xi β̂(0)). We repeat the following step
1 and step 2 until convergence is reached.

Step 1. Use methods introduced in Section 2 and the Web
Appendix to estimate η and θ, which are associated with the
within-subject covariance function.

Step 2. Calculate the expectation–maximization algorithm
based estimators (4) and (5).

There are four smoothing parameters, λμ , λc , λν , and λσ ,
involved in the estimation. A crossvalidation-based approach
would be computationally intensive. It is also complicated
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to carry out information-criteria-based model selection due
to difficulties in defining degrees of freedom. We choose the
smoothing parameters by a likelihood-based approach as de-
scribed in the Web Appendix.

After the convergence is reached, the estimated nonpara-
metric population-level curve is μ̂(t) = Bμ (t)β̂μ , and the pre-
dicted nonparametric subject-level curve for the individual i
is

ŝi (t) = xT
i (t)β̂0 + Bμ (t)β̂μ + wi (t)Bc (t)β̂c + Bν (t)ξ̂i .

Furthermore, the estimated between-subject covariance func-
tion is

γ̂(s, t) = Bν (s)Ω̂BT
ν (t). (6)

3.2 Testing the Varying Coefficients
In some applications, one may be interested in testing whether
the varying coefficient changes with time, that is, the hypoth-
esis

H0 : β(t) = β∗ for any t vs. H1 : β(t) �= β∗ for some t.

Due to the nonstandard distribution of the likelihood ratio
test under the null hypothesis reported in Crainiceanu and
Ruppert (2004a, 2004b), we compute p-value of the likelihood
ratio test based on bootstrap resampling. Specifically, let

ε̂i = Yi − xi β̂0 − Bμ (ti )β̂μ − wiBc (ti )β̂c − Zi ξ̂i

be the residuals obtained under H1, and let

Y
(b )

i = xi β̂
H 0
0 + Bμ (ti )β̂H 0

μ + wi β̂c + Zi ξ̂
H 0
i + ε̂i , i = 1, . . . , n,

denote the bth pseudooutcome under H0, where β̂H 0
0 , β̂H 0

μ , β̂c ,
and ξ̂H 0

i are the corresponding estimators obtained under the
null hypothesis. We resample the data Y

(b )
i from the above

model B times, and compute the likelihood ratio test with
each copy of the B samples. We then compute the p-value
of the test based on the empirical distribution of the boot-
strapped likelihood ratio statistics. A similar procedure was
used in Huang, Wu, and Zhou (2002).

4. Asymptotic Properties
In this section, we examine the asymptotic convergence rate of
the bias and variance of the estimated population mean func-
tion and examine the asymptotic normality. These results are
closely related to those obtained in Claeskens et al. (2009) and
Zhu, Fung, and He (2008). Assume that the range of the vari-
able tij is [a, b], with −∞ < a < b < ∞. We will first consider
the estimator with B-spline basis, and then extend the results
to the truncated polynomial basis by a transformation of the
two sets of basis functions (the latter results are presented in
the Web Appendix).

4.1 Preliminary
Let a = τ0 < τ1 < · · · < τK < τK +1 = b. In addition, define
p knots τ−p = τ−p+1 = · · · = τ−1 = τ0 and another set of p
knots τK +1 = τK +2 = · · · = τK +p+1. Denote the B-spline ba-
sis functions as N (t) = {N−p ,p+1(t), . . . , NK ,p+1(t)}, let N =
{NT (t11), . . . , NT (tn m )}T and let Σ = diag{V, . . . , V }. We al-
low the covariance of Yi to be unstructured, assume it is
known and does not change across subjects. As described in

Section 2, the population mean function is obtained by mini-
mizing

(Y − Nβμ )T Σ−1(Y − Nβμ ) + λ

∫ b

a

[
(N (t)βμ )(q )

]2
dt, (7)

where the penalty is the integrated squared qth-order deriva-
tive of the B-spline function and is assumed to be finite.

Let R denote a matrix with elements Rij =∫ b

a
Nj,p+1−q (t)Ni,p+1−q (t)dt, for i, j = −p + q, . . . , K and let

Δq denote a difference operator. The penalty term can be re-
written as λβT

μ ΔT
q RΔq βμ . Let Dq = ΔT

q RΔq , the fitted pop-
ulation mean function can be expressed as a ridge regression
estimator with weighted least squares

μ̂ = N
(
NT Σ−1N + λDq

)−1
NT Σ−1Y,

with μ̂ = {μ̂(t11), . . . , μ̂(tn m )}T . A regression spline estimator
is the solution to (7) ignoring the penalty term, that is,

μ̂reg = N (NT Σ−1N )−1NT Σ−1Y.

Denote Cp+1[a, b] = {μ : μ has p + 1 continuous derivatives.
Under the assumptions A1, (A-1) in A2, and A3 stated in the
Web Appendix, and μ ∈ Cp+1[a, b], Zhu et al. (2008) obtained
the approximation bias and variance for μ̂reg as

Eμ̂reg(t) − μ(t) = ba (t, p + 1) + o(δp+1),

V ar{μ̂reg(t)} =
1
n

N (t)G−1NT (t) + o((nδ)−1),

where μ̂reg(t) = N (t)(NT Σ−1N )−1NT Σ−1Y, G = (gij ), and
Σ−1 = (σst ) with

gij =
m∑

s �=t

∫ b

a

∫ b

a

Ni (x)σstNj (y)ρst (x, y) dxdy

+
m∑

s=1

∫ b

a

Ni (x)σssNj (x)ρs (x) dx,

where ρs and ρst are defined in the Web Appendix. The ap-
proximation bias is

ba (t, p + 1) = −μ(p+1)(t)
(p + 1)!

×
K∑
i=0

I(τi � t < τi+1)δ
p+1
i Bp+1

(
t − τi

δi

)
,

with Bp+1(t) as the (p + 1)th Bernoulli polynomial (Barrow
and Smith, 1978). These results will be used to derive the
asymptotic properties of the P-spline estimator. The asymp-
totic results are in the sense of keeping the number of mea-
surements per subject fixed and letting the number of subjects
go to infinity.

4.2 Asymptotic Properties for P-Spline Estimator with
B-Spline Basis

Denote Kq = λK2q /n and μ̂(t) = N (t)(NT Σ−1N + λDq )−1

NT Σ−1Y .
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Theorem 1: (1) Under assumptions A1, (A-1) in A2, A3,
Kq = o(1), and μ(·) ∈ Cp+1[a, b], the following statements hold

E(μ̂(t))−μ(t) = ba (t, p + 1) + bλ (t, Σ) + o(δp+1) + o(λn−1δ−q ),

V ar(μ̂(t)) =
1
n

N (t)

(
G +

λ

n
Dq

)−1

× G

(
G +

λ

n
Dq

)−1

NT (t) + o(n−1δ−1),

and for K ∼ n1/ (2p+3) and λ = O(n(p+2−q )/ (2p+3)), the optimal
rate for mean squared error (MSE), n−(2p+2)/ (2p+3), is attained
by the P-spline estimator.

(2) Under assumptions A1, (A-2) in A2, A3, Kq = O(1) and
μ(·) ∈ W q [a, b] = {μ : μ has q-1 absolutely continuous deriva-
tives,

∫ b

a
{μ(q )(x)}2dx < ∞} the Sobolev space of order q, the

following statements hold

E(μ̂(x))−μ(x) = ba (t, q) + bλ (t, Σ) + o(δq ) + o((λ/n)1/2),

V ar(μ̂(x)) =
1
n

N (t)

(
G +

λ

n
Dq

)−1

G

(
G +

λ

n
Dq

)−1

NT (t)

+ o(n−1(λ/n)−1/2q ),

and for λ ∼ n1/ (2q+1) and K ∼ n1/ (2q+1), the optimal rate for
MSE, n−2q / (2q+1), is attained by the P-spline estimator.

The proof of the theorem is given in the Web Appendix.

Remark 1: For the both scenarios in the Theorem 1, the

shrinkage bias bλ (t, Σ) = −λ

n
N (t)(G +

λ

n
Dq )−1Dq β depends

on Σ through G.

Remark 2: Theorem 1 holds for both fixed designs and
random designs. The asymptotic approximation bias does not
depend on the design distribution. The asymptotic shrinkage
bias depends on the design distribution through G.

Remark 3: Under different conditions, Theorem 2 in
Claeskens et al. (2009) obtained the same rate for the bias
and the variance with m = 1 and Σ = σ2In , i.e., the univari-
ate case.

Remark 4: The above theorem suggests that the asymp-
totic properties of the P-spline estimator are closer to the
regression spline estimator when the number of knots is small
(Kq = o(1)) while its asymptotic properties are closer to the
smoothing spline estimators when the number of knots is
large (Kq = O(1)). This observation is also noted in Claeskens
et al. (2009) for independent data.

Theorem 2: Assume K2p+3 ∼ n, λ = O(Kp−q+2), and h >
0, C > 0, such that supi ,j E|εij |2+h � C . Then

μ̂(t) − μ(t) − ba (t, p + 1) − bλ (t, Σ)√
V ar(μ̂(t))

−→ N (0, 1)

in distribution, as n −→ ∞.

Remark 5: Under the assumptions of this theorem,
Kq = λK2q /n = O(Kp−q+2K2q /n) = O(n(p+q+2)/ (2p+3)/n) =

O(n− p −q +1
2p +3 ) = o(1). Hence, the asymptotic normality ad-

dresses the first scenario in Theorem 1.
In the Web Appendix, we present similar asymptotic prop-

erties for P-spline estimator with truncated polynomial basis.

5. Numerical Results
5.1 Simulation Studies
Simulation Study I. Our first simulation study examines
performance of the semiparametric estimator of the within-
subject covariance presented in Section 2. We compared the
proposed P-spline estimator with three other alternatives: (1)
Regression spline estimator (R-spline) for both mean and vari-
ance function; (2) P-spline estimator for the mean function
when assuming WI with constant variance; and (3) P-spline
estimator for the mean function when assuming a correctly
specified parametric model for the covariance function of the
residuals (Parametric). Two simulation scenarios were consid-
ered. In the first model, we generated data from

yij = sin(2πtij ) + bi + εij (tij ),

where the variance function of the residuals was V ar{εij (t)} =
exp(3t), and the correlation structure was AR-1 with autore-
gressive parameter ρ = 0.6. The number of subjects n = 200
and the number of repeated measurements per subject m = 10
with probability of missing equals to 0.1. Hence the number of
repeated measurements can differ across subjects. The covari-
ates tij were generated from a uniform distribution, U (0, 1).
The random effects bi were generated independently from a
standard normal distribution.

In the second simulation model, we used μ(t) = 7 − 16t +
30t2 − 15t3 and σ2(t) = 10

√
t and all the other settings were

the same as the first case.
We conducted 200 simulation runs. To evaluate perfor-

mance of the estimated nonparametric functions, the MSEs
were calculated over grid points {0.05, 0.06, . . . , 0.95} for each
simulated dataset. The MSEs were then averaged across the
200 simulated datasets to obtain the average MSE (AMSE).
Table 1 summarizes the simulation results. The AMSEμ and
AMSEσ are the corresponding AMSEs of μ(t) and σ2(t). The
RMSEμ and RMSEσ are the ratios of AMSE of the pro-
posed P-spline estimators μ̂(t) and σ̂2(t) over other estima-
tors. The RMSEμ of the proposed method over assuming WI
was around 0.85 for both simulation models, which suggests
efficiency gain of estimating mean function by properly ac-
counting for the within-subject covariance by the proposed
semiparametric estimator. The RMSEμ of the proposed P-
spline estimator over the regression spline was about 0.95.
The corresponding AMSEσ for the variance function of the
proposed over the regression spline was about 0.90 for both
simulation models, which shows the proposed method to be
also more efficient (10% reduction in AMSE) in estimating
the variance function. To compare with the parametric ap-
proach assuming the functional form of the variance function
to be known, we note that the RMSEμ of the proposed over
the parametric approach was slightly over one indicating low
efficiency loss in adopting the proposed semiparametric ap-
proach to estimate variance functions.
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Table 1
Simulation results based on model 1,200 replications

Method RMSE †
μ AMSE μ RMSE †

σ AMSE σ Method RMSE ∗
μ AMSEμ

Case I
P-spline 1 0.0317 1 0.637 Parametric 1.001 0.0315
R-spline 0.948 0.0335 0.901 0.708 WI 0.829 0.0381

Case II
P-spline 1 0.0281 1 0.611 Parametric 1.005 0.028
R-spline 0.946 0.0297 0.889 0.687 WI 0.849 0.033

∗RMSE: The ratio of AMSE between the proposed method and other methods.

Simulation Study II. Our second simulation study exam-
ines methods proposed for the functional mixed effects model
with varying coefficients and nonparametric random subject-
specific curves in Section 3. We generated data from the model

Yij = μ(tij ) + β(tij ) ∗ trti + bi0 + bi1 ∗ ν(tij ) + εij (tij ),

where we considered two simulation scenarios. In the first sce-
nario, we specified

μ(t) = 2 sin(2πt), β(t) =
1
3

log t,

ν(t) = 1.5 exp{−10(t − 0.8)2}, σ2(t) = exp(t).

The random coefficients bi0 and bi1 were sampled from N (0, 4)
and N (0, 1), respectively. The measurement errors εij (tij )
were generated independently from N (0, σ2(tij )). The group
indicators, trti , were generated from Bernoulli distribution
with probability 0.6. The total number of subjects n = 200
while the repeated measurements within each subject m = 10
with probability 0.15 of being missing. The measurement time
points were generated from U (0, 1).

In the second scenario, we specified

μ(t) = 2 exp{sin(4t)}, β(t) =
√

t,

ν(t) = 0.7 exp(t), σ2(t) = exp{−5(t − 0.1)2},
n = 100, and m = 20 with a missing probability of 0.15. All
the other settings were the same as the first case.

The simulation results are summarized in Table 2. Again
the AMSEμ , AMSEβ , AMSEσ , and AMSEγ are the corre-
sponding AMSEs of μ(t), β(t), σ2(t), and γ(t, t), respectively.
The RMSEs are the ratios of the AMSE of the proposed
method over other methods. Similar to the first simulation
study, we compared the proposed estimators to regression
spline (R-spline), P-spline assuming WI and P-spline assum-
ing a correctly specified parametric model for the subject-
specific random effects covariance and residual effects variance
(Parametric). The efficiency gains of the proposed method
for estimating the mean and varying coefficient function were
about 15% compared to assuming WI in both simulation sce-
narios, which is nonignorable. For estimating the mean func-
tion, in the first scenario, the proposed method performed bet-
ter than the regression spline in terms of AMSE, while in the
second scenario their performance was similar. The AMESσ

for estimating the covariance function was 30% lower for the
P-spline compared to regression spline in the first scenario and
17% lower in the second scenario. Analogous to the simula-
tion study I, the differences in AMSE between the parametric
approach assuming a correctly specified subject-specific ran-

Table 2
Simulation results based model 2,200 replications

RMSE ∗
μ AMSE μ RMSE ∗

β AMSE β

Case I
P-spline 1 0.0749 1 0.120
R-spline 0.952 0.0787 0.932 0.129
WI 0.800 0.0935 0.841 0.143
Parametric 1.003 0.0746 0.988 0.122

Case II
P-spline 1 0.144 1 0.270
R-spline 0.998 0.144 0.991 0.273
WI 0.834 0.173 0.888 0.304
Parametric 1.007 0.143 1.003 0.269

RMSE ∗
σ AMSE σ RMSE ∗

γ AMSE γ

Case I
P-spline 1 0.111 1 0.606
R-spline 0.701 0.158 0.991 0.611
Case II
P-spline 1 0.0048 1 0.624
R-spline 0.831 0.0058 0.995 0.627

∗RMSE: The ratio of AMSE between the proposed method and other
methods.

dom effects covariance and residual effects variance and the
proposed method were small in both simulation cases.

The computing time to fit the model by the proposed al-
gorithm depends on the number of subjects and number of
observations per subject. For example, for the first scenario
in simulation II, the average running time for 100 repetitions
with 100 subjects and 10 observations per subject on a Dell
desktop with 2.67 GHz CPU and 4GB RAM was 1.42 min-
utes. We present the computing time for other sample sizes
in the Web Appendix.

5.2 Data Examples
Example I. We applied proposed methods to analyze the
Berkeley Growth Study (Tuddenham and Snyder, 1954) data,
a long-term investigation of children’s developmental charac-
teristics conducted by the California Institute of Child Wel-
fare. There were 93 subjects examined, including 39 boys and
54 girls. The heights of the children were measured at each
of the scheduled times. There were four measurements by a
child’s first birthday followed by annual measurements from
2 to 8 years, and then biannual measurements until the end
of age 18.



Functional Mixed Effects Model Analysis 867

5 10 15

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0

Age (year)

M
e

a
n

 f
u

n
c
ti
o

n
 f
o

r 
b

o
y
s
 (

c
m

)

5 10 15

0

Age (year)

D
if
fe

re
n

c
e

 o
f 

h
e

ig
h

t 
b

e
tw

e
e

n
 g

ir
ls

 a
n

d
 b

o
y
s
 (

c
m

)

Figure 1. Estimated population mean function for boys μ(t) (left panel), varying coefficient β(t) (right panel) and their 95%
confidence bands.

Let yij be the height of subject i measured at occasion j,
and let tij be the corresponding age. We fitted the model

yij = μ(tij ) + sexi × β(tij ) + νi (tij ) + εij (tij ),

i = 1, . . . , 93, j = 1, . . . , 31,

where μ(t) was the mean height function for the boys, β(t)
was the height difference between girls and boys over time,
and νi (t) were the random subject-specific deviations from
their respective population mean function for boys and girls.

We used quadratic truncated polynomial splines for the
mean, varying coefficient and variance functions and linear
splines for the random subject-specific curves. The estimated
varying coefficient and mean functions and the associated 95%
confidence bands were plotted in Figure 1. The mean function
for boys increased rapidly and then slowed down after age 16.
The varying coefficient function β(t) decreased quickly after
age 12, while for the remaining time it was close to a constant.
On average, the girls were shorter than the boys by about 2 cm
under the age of 12. After age 12, the difference between boys
and girls increased quickly. At the age of 18, the maximum
difference of about 14 cm was reached, with boys being taller.
Also note that during ages 10 and 12, there was a visible bump
of the difference between the boys and girls corresponding to
the first period of puberty of girls coming 2 years earlier than
boys.

Using the bootstrap test introduced in Section 3.2, we
tested whether the varying coefficient function was a constant.
We simulated B = 100 bootstrap samples. The observed like-
lihood ratio test statistic was T = log LH 1 − log LH 0=3840.
Based on the simulated empirical distribution of T under the
null hypothesis, the p-value < 0.01. Therefore, we observed
significant evidence that the height difference between boys
and girls varies across time. This can also be seen from the
pointwise 95% confidence interval for β(t).

The estimated covariance function γ(s, t) of the subject-
specific curves is plotted on the left panel of Figure 2.
We can see that there was considerable variation of the
subject-specific curves around their mean function, indicat-
ing substantial between-subject variation of the height growth
patterns across children compared to the within-subject vari-
ation. The between-subject variation increased with age. The
estimated standard deviation function σ(t) of the residual
measurement errors is shown in the right panel of Figure 2. It
is evident that the variance function is not a constant. There
was a decreasing trend of the variance function suggesting im-
provement of the precision of height measurements as a child
grows. It is conceivable that height measurements for new-
borns are more variable than teenagers. The magnitude of
σ2(t) is much smaller compared to γ(t, t), suggesting that the
dominant variance component of the variation in children’s
heights is the between-subject source.

Example II. In this example, we applied the proposed
method to analyze the Framingham Heart Study longitudinal
systolic blood pressure (SBP) data. The Framingham Heart
Study is a large ongoing prospective study of risk factors for
cardiovascular disease with the third generation data collected
between 2002 and 2005 (Splansky et al., 2007). We analyzed
subjects with ages ranging between 30 and 75. There were
190 independent subjects with 2406 observations. For each
subject, their SBP, body mass index (BMI), and antihyper-
tensive treatment status (trt) were measured over time. Sex
was a baseline covariate coded as one for females and negative
one for males. We centered the covariate BMI.

Let yij be the SBP of subject i measured at occasion j, and
tij be the corresponding age. We fitted the model

yij = α1sexi + α2BMIij + μ(tij )

+ β(tij ) × trtij + νi (tij ) + εij (tij ),
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Figure 2. Estimated between-subject variation γ(s, t) (left panel) and within-subject variation σ(t) (right panel).
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Figure 3. Observed SBP values (dots) and estimated mean
SBP function for treated (μ(t) + β(t), trt = 1) and untreated
subjects (μ(t), trt = 0).

where μ(t) was the population mean SBP function, β(t) was
the time varying effect of the antihypertensive treatment, and
νi (t) were the random subject-specific deviations from the
population mean function. We used linear truncated polyno-
mial spline basis for the mean function, varying coefficient and
random subject-specific curves; and quadratic spline for the
variance function. We show the estimated mean SBP function
for subjects with and without treatment in Figure 3. The pop-
ulation mean SBP increased with age, and taking antihyper-

tensive treatment reduced the SBP over time. For example,
the mean SBP was 128.8 (95% CI: [126.5, 131.1]) at age 40
and then increased to 139.3 (95% CI: [136.5, 142.1]) at age
60.

We first tested whether the effect of antihypertensive is zero
and the test was found to be significant. Using the bootstrap
procedure in Section 3.2, we then tested whether there is any
time-varying treatment effect (i.e., H0 : β(t) = β∗). The ob-
served log-likelihood ratio test statistic T = 972 with p-value
= 0.02 based on B = 100 bootstrap samples. Therefore, we
observe significant evidence that the effect of antihypertensive
treatment was nonzero and it varied with time. The square
root of the estimated variance function, σ̂2(t), and between-
subject covariance function γ̂(s, t) are plotted in Figure 4. The
variance function appeared to be nonlinear, with a change of
the rate of increase at around age 50 and 68.

6. Discussion
In this article, we propose flexible estimation of population-
and subject-level curves in a class of functional mixed effects
models with varying coefficients. We also propose nonpara-
metric estimation of the between-subject covariance and semi-
parametric estimation of the within-subject covariance, which
are useful descriptive tools to examine the outcome variabil-
ity over time. When parsimony is desirable, these functions
can be used to design reasonable parametric structures for
the covariance of the outcomes. It is easy to see that the
estimated covariance functions satisfy the positive semidefi-
nite constraint. Furthermore, taking into account the covari-
ance function improves efficiency in estimating the population
mean function and the varying coefficients. The relative effi-
ciency of estimating the covariance function with more sub-
jects or more observations per subject depends on complexity
of the functions σ2(t) and γ(s, t).
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Figure 4. Estimated between-subject variation γ(s, t) (left panel) and within-subject variation σ(t) (right panel).

In the model (2), we assumed that the covariance function
γ(s, t) of the subject-specific curves is the same for all sub-
jects. It is possible that γ(s, t) differs across groups of sub-
jects. For example, the covariance function for boys and girls
may be different in the Berkeley Growth data. It is easy to
accommodate such extension through the proposed P-spline
methods by including an interaction between the basis func-
tions and a covariate. In addition, adding parametric random
effects to the model (2) is also straightforward.

The asymptotic theories for P-spline estimator are under-
developed until very recently. In this article, we have extended
the asymptotic bias and variance results in Claeskens et al.
(2009) for univariate data to the longitudinal data case and
we show the asymptotic normality for one of the asymptotic
scenarios. The convergence rates obtained are consistent with
those in Claeskens et al. (2009). Although the sample size re-
quired for the asymptotics to be an accurate approximation
may be large, these results suggest that the P-spline estima-
tor can be asymptotically as efficient as other smoothing tech-
niques such as smoothing splines when the number of knots
increases with sample size at a proper rate.

7. Supplementary Materials
Web Appendix A, referenced in Sections 2, 3, 4, and 5.1, is
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.
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