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Summary. Population admixture can be a confounding factor in genetic association studies. Family-based methods (Rabi-
nowitz and Larid, 2000, Human Heredity 50, 211–223) have been proposed in both testing and estimation settings to adjust for
this confounding, especially in case-only association studies. The family-based methods rely on conditioning on the observed
parental genotypes or on the minimal sufficient statistic for the genetic model under the null hypothesis. In some cases, these
methods do not capture all the available information due to the conditioning strategy being too stringent. General efficient
methods to adjust for population admixture that use all the available information have been proposed (Rabinowitz, 2002,
Journal of the American Statistical Association 92, 742–758). However these approaches may not be easy to implement in
some situations. A previously developed easy-to-compute approach adjusts for admixture by adding supplemental covariates
to linear models (Yang et al., 2000, Human Heredity 50, 227–233). Here is shown that this augmenting linear model with
appropriate covariates strategy can be combined with the general efficient methods in Rabinowitz (2002) to provide computa-
tionally tractable and locally efficient adjustment. After deriving the optimal covariates, the adjusted analysis can be carried
out using standard statistical software packages such as SAS or R. The proposed methods enjoy a local efficiency in a neighbor-
hood of the true model. The simulation studies show that nontrivial efficiency gains can be obtained by using information not
accessible to the methods that rely on conditioning on the minimal sufficient statistics. The approaches are illustrated through
an analysis of the influence of apolipoprotein E (APOE) genotype on plasma low-density lipoprotein (LDL) concentration in
children.
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1. Introduction
Association studies are used to locate genetic locus influenc-
ing a trait of interest by evaluating association between allelic
variability at a candidate locus and a trait. These association-
based methods are especially useful for evaluating genetic fac-
tors with small-to-moderate effects (Risch and Merikangas,
1996). However, it is well known that population admixture
can be a confounding factor for association-based methods
(see for example, Elston, 1998). When the study sample con-
sists of subjects drawn from subpopulations with different al-
lele frequencies and trait distributions, spurious association
may be detected even when the trait and the gene are not
biologically linked.

Family-based association studies have been proposed to
adjust for population admixture. The transmission dis-
equilibrium test (TDT) and its extensions (Falk and
Rubinstein, 1987; Terwilliger and Ott, 1992; Spielman,
McGinnis, and Ewens, 1993; Lazzeroni and Lange, 1998;
Spielman and Ewens, 1998) examine the transmission of
parental alleles to the offsprings in a family given the parental
genotypes. By conditioning on the parental genotypes, the
bias due to population admixture is avoided. However when
the parental genotypes are not all observed, these tests can-
not be applied. Applying TDT tests to restricted data sets of

families with complete parental genotypes can result in bias
(Curtis and Sham, 1995). Rabinowitz and Larid (2000) pro-
posed a general approach to adjust for population admixture
by comparing the test statistics to their conditional distri-
butions given the minimal sufficient statistics for the genetic
model under the null hypothesis that does not require com-
plete parental genotype information.

When the association between a trait and a locus has been
established by testing, it may be desirable to estimate the
form and strength of the trait-genotype association and to
evaluate the interaction between genotypes and other envi-
ronmental factors. Yang et al. (2000) proposed an approach
to estimate candidate gene effect in a linear model that is
not affected by spurious association. In this approach, the
paradigm of conditioning on minimal sufficient statistics is
achieved through augmenting the standard regression models
with appropriate additional covariates. The approach is com-
putationally convenient: after obtaining additional covariates,
the analysis can be carried out by standard statistical pack-
ages such as SAS or R.

The approaches proposed in Rabinowitz and Larid (2000)
for testing and in Yang et al. (2000) for estimation do not
capture all of the available information (the minimal sufficient
statistic is not always complete). Rabinowitz (2002) proposed

C© 2010, The International Biometric Society 331



332 Biometrics, June 2011

a general framework to develop efficient test statistic that ex-
ploits all of the available information that is not potentially
confounded by population stratification. Whittemore (2004)
proposed a general framework for efficient estimation func-
tions that protects against population stratification. Allen,
Satten, and Tsiatis (2005) developed locally efficient estima-
tion of haplotype-disease association in case-parent trio de-
signs that is robust to confounding.

Here is shown that the approach of eliminating bias by
adding supplemental covariates to a linear model in Yang
et al. (2000) can be combined with the method of deriv-
ing efficient estimating equations in Whittemore (2004) or
Rabinowitz (2002) to obtain a computationally tractable es-
timation approach that is efficient but not confounded by pop-
ulation admixture. The optimal supplemental covariates are
obtained through matrix algebra calculations. In the cases
where the family-specific effects are absent, the additional co-
variates have closed-form expressions. The proposed methods
enjoy a local efficiency in a neighborhood of the true model.
We use simulation studies to investigate unbiasedness and ef-
ficiency of the methods under conditions including violation
of assumptions and departure from the true model. The sim-
ulation results show that nontrivial efficiency gains can be
obtained by using information not accessible to methods that
rely on conditioning on the minimal sufficient statistics. The
approaches are illustrated through an analysis of the influence
of apolipoprotein E (APOE) genotype on plasma low-density
lipoprotein (LDL) concentration in children.

2. Methods
In this section, linear models for quantitative traits are intro-
duced and optimal additional covariates to be included in the
models are derived. Two models are considered: one does not
involve family-specific terms and the other includes random
family-specific effects.

2.1 Model Without Family-Specific Effects
Let Yij denote a quantitative trait of the jth individual in
the ith family, and let Gij denote the genotype of the same
individual at a candidate locus. A simple linear model relating
Yij to Gij is

Yij = X(Gij )β + εij , (1)

where X(Gij ) is a coding for the genotype, and β is the effect
of the genotype on the trait. For example, for a recessive trait,
X(Gij ) can take value one for subjects carrying two copies of
the disease allele and value zero for subjects carrying zero
or one copy of the disease allele. The εij are residual effects
other than the genotypes under examination, which may be
environmental factors that are independent of the genotypes
or genetic factors at unlinked loci. When there is no popu-
lation admixture, εij are independent of Gij and the usual
least square estimate of β is unbiased. However, when there
is population admixture, the membership of subpopulation is
part of the residual effects εij . Since the subpopulation mem-
bership influences the genotype distribution in the subpopu-
lation, εij and Gij are correlated so that the ordinary least
squares estimate of β is biased.

To motivate the derivation of efficient estimator of β when
the genotypes and the residual effects are not independent, it

is useful to review the method proposed in Yang et al. (2000).
The validity of Yang et al. (2000) relies on the fact that even
though Gij and εij in model (1) may be marginally correlated,
they are conditionally independent, given the minimal suffi-
cient statistic for the genetic model under the null hypothesis.
In Yang et al. (2000), after adding the conditional expectation
of X(Gij ) given the minimal sufficient statistics as additional
covariates to the model, the least squares estimate for β is
unbiased even when population admixture is present. In the
current work, the form of the optimal additional covariates
that leads to efficient estimator of β is unknown, and is de-
rived from the constrained optimization problem.

Similar to Yang et al. (2000), the key assumption underly-
ing the proposed approaches is that although the genotype-
related covariates and the residuals are correlated due to
population admixture, they are conditionally independent
given the founder genotypes. As noted in Yang et al. (2000),
this assumption corresponds to the transmission of parental
alleles to the offspring generation being independent to any
other factors that influence the trait, given the parental geno-
types. While this assumption is surely an approximation of
the biological truth, it is the basis for other methods adjusting
for population admixture in family-based association studies
(for example TDT and FBAT).

Let Uij denote the unknown additional covariate for the jth
individual from the ith family, let n denote the total number of
families, let ni denote the number of subjects in the ith family,
and let N denote the total number of subjects. A linear model
relating a trait to a genotype with additional covariates is

Yij = X(Gij )β + Uij γ + εij .

Without loss of generality, the above model can be written as

Yij = (X(Gij ) − Uij )β + Uij γ̃ + εij , (2)

where γ̃ = −β + γ. In standard multiple regression analysis,
the least squares estimates of a subset of regression coeffi-
cients can be acquired by first regressing the covariates of
these coefficients on the covariates of the remaining coeffi-
cients, taking the residuals, and then regressing the response
variable on the residuals. We apply this observation to model
(2), where we are interested in estimating β. When the co-
variates X(Gij ) − Uij are uncorrelated with Uij (in terms of
expectation), the residuals of regressing X(Gij ) − Uij on Uij

are X(Gij ) − Uij themselves. Therefore the least squares es-
timate of β can then be written as

β̂ = [(X − U )T (X − U )]−1(X − U )T Y, (3)

where the unknown covariates U satisfy

E(X − U )T U = 0. (4)

Here, Xi = (X(Gi1), . . . , X(Gin i
))T , Ui = (Ui1, . . . , Uin i

)T ,
X = (X1, . . . , Xn )T , U = (U1, . . . , Un )T , and Y = (Y1, . . . ,
Yn )T .

Let G�
i denote the genotypes of founders in the ith family.

Note that G�
i may not be completely observed. An impor-

tant assumption ensuring the validity of the proposed meth-
ods analogous to that in Yang et al. (2000) is that even though
Gij and εij may be marginally dependent, they are condition-
ally independent given G�

i . It is shown in the Appendix that
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under this assumption, the expectation of β̂ in (3) is

β + E

{
[(X − U )T (X − U )]−1

∑
i

E
[
(Xi − Ui )T 1n i

|G�
i

]
E

[
εi |G�

i

]}
,

(5)

and the variance of β̂ is

σ2E[(X − U )T (X − U )−1], (6)

where 1n i
is the ni × 1 vector of one. From (5), the condition

for obtaining unbiased estimate of β is then

E
[
(Xi − Ui )T 1n i

|G�
i

]
= 0, i = 1, . . . , n. (7)

It follows that the optimal unbiased estimator for β can be
obtained by minimizing (6) under the constraints (4) and (7).

It is convenient to introduce some notations to describe
the solution to the above constrained maximization problem.
Let ϑ�

i denote all possible founder genotypes compatible with
that observed in the ith family, and let ϑi denote all possible
combinations of offspring genotypes in the ith family. Let ci

denote the dimension of ϑi and let di denote the dimension of
ϑ�

i . Let Wi denote the ci × ci diagonal matrix with the diago-
nal entries given by the (possibly misspecified) probabilities of
founder genotypes, P(g). In reality, Wi are usually computed
from observed founder genotypes. Let Zi denote the ci × di

matrix with the (g, g� ) entry given by the conditional prob-
ability of an offspring genotype given the founder genotypes,
P (g | g� ). Let Xi denote the ni × ci matrix with rows index
individuals in a family and columns index components in ϑi ;
that is, the kth row in the matrix is (Xik (g1), . . . , Xik (gci

)).
Let Vi denote the ni × ci matrix with the (m, g)th component
being Uim (g). The corresponding matrices Wi, Zi , Xi , and Vi

for an example pedigree are given in the Appendix. With these
notations, it is shown in the Appendix that the solution to the
constrained optimization problem of minimizing (6) subject
to (4) and (7) is

Vi = XiZi

(
ZT

i W −1
i Zi

)−1
ZT

i W −1
i . (8)

The additional covariates Ui can be picked from the rows of Vi

that correspond to the observed genotypes in members of the
ith family. A simple example illustrating the computations is
presented in the Appendix.

We use family-specific residual sums to estimate the vari-
ance of β̂. By the conditions (4) and (7), the estimating equa-
tion for β̂, ∑

i

(Xi − Ui )T [Yi − (Xi − Ui )β],

has expectation zero. Since the family-specific residual terms
are independent, the variance of the solution to this estimat-
ing equation is (Cox and Hinkley, 1979)∑

i

[(Xi − Ui )T (Yi − (Xi − Ui )β̂)]2[∑
i

(Xi − Ui )T (Xi − Ui )

]2 . (9)

One advantage of the proposed estimator is that it is un-
biased even when the founder genotype distributions Wi are
misspecified. To see this, note that the condition for obtain-
ing unbiasedness (7) holds regardless of whether the marginal
probabilities Wi are correctly specified. To be specific, denote
the misspecified Wi as W ∗

i . As derived in the Appendix, the
solutions for the corresponding U ∗

i are the components of

XiZi

(
ZT

i W ∗−1
i Zi

)−1
ZT

i W ∗−1
i .

By the introduced notations, taking the conditional expecta-
tion of a random variable amounts to multiplying it by com-
ponents of Zi . Therefore, from

E
[(

Xi − U ∗
i

)T
1n i

|G�
i

]
= 1T

n i
ZT

i XT
i 1n i

− 1T
n i

ZT
i W ∗−1

i

×Zi

(
ZT

i W ∗−1
i Zi

)−1
ZT

i XT
i 1n i

= 1T
n i

ZT
i XT

i 1n i
− 1T

n i
ZT

i XT
i 1n i

= 0,

it follows that the unbiasedness condition (7) is satisfied with
misspecified Wi (denoted as W ∗

i ) and misspecified Ui (denoted
as U ∗

i ). Although in this case the adjusted estimator remains
unbiased, it is not efficient. We study the magnitude of ef-
ficiency loss due to misspecification of W by simulations in
Section 3.

2.2 Including Family-Specific Effects
In some situations, there may exist family-specific effects in-
fluencing a trait. The linear model in this case can be ex-
pressed as

Yij = X(Gij )β + αi + εij , (10)

where αi is a random family-specific factor. Due to popu-
lation stratification, αi may not be independent of Gij , but
may be independent of the subject-specific residual effects εij .
An assumption ensuring validity of the proposed methods in
this case is that even though Gij and αi may be marginally
correlated, they are conditionally independent given G�

i .
When there are family-specific effects, to obtain the optimal

estimator, weighted least squares

β̂ ′ = [(X − U )T Σ−1(X − U )]−1(X − U )T Σ−1Y (11)

should be used, where Σ is the conditional covariance matrix
of Y given G� . From the Appendix, the expectation of β̂ ′ is

β + E

{[
(X − U )T Σ−1(X − U )

]−1

×
∑

i

E
[
(Xi − Ui )T Σ−1

i 1n i
|G�

i

]
E

[
αi |G�

i

]}

+ E

{[
(X − U )T Σ−1(X − U )

]−1

×
∑

i

E
[
(Xi − Ui )T Σ−1

i 1n i
|G�

i

]
E

[
εij |G�

i

]}
,

(12)

where Σi is the conditional covariance of the observa-
tions from the ith family given the founder genotypes,
cov(YiY

T
i |G�

i ). The unbiasedness condition analogous to (7)
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should be modified as

E
[
(Xi − Ui ))T Σ−1

i 1n i
|G�

i

]
= 0, i = 1, . . . , n. (13)

The constraint analogous to (4) should be modified as

E(X − U )T Σ−1U = 0. (14)

In addition, we show in the Appendix that the variance to be
minimized is

E(X − U )T Σ−1(X − U ). (15)

Now define

X ′
i = Σ− 1

2
i Xi , U

′
i = Σ− 1

2
i Ui , Y

′
i = Σ− 1

2
i Yi , and 1′

n i
= Σ− 1

2
i 1n i

.

With these notations, the constraint (13) becomes (7), the
constraint (14) becomes (4), and the minimization term (6)
becomes (15) with Xi , Ui , and 1n i

replaced as X ′
i , U

′
i , and 1′

n i
.

Consequently, carrying out the same constrained optimiza-
tion procedure for model (1) using the newly defined variables
leads to the solution

V ′
i = X ′

iZi

(
ZT

i W −1
i Zi

)−1
ZT

i W −1
i . (16)

In practice, we can fit a linear mixed effects model that has a
random family-specific effect and include the original supple-
mental covariates without considering the family-specific ef-
fects (the β̂ obtained from fitting a linear mixed effects model
is estimated by weighted least squares).

It is worth mentioning that population admixture behaves
as a source of family-specific effects (Fulker et al., 1999;
Abecasis, Cardon, and Cookson, 2000). The weighted least
squares approach therefore provides efficiency gain over the
ordinary least squares even when there are no additional
family-specific effects, αi . We compare the two approaches
by simulations. For the weighted least squares, the variance
can be estimated by∑

i

[(Xi − Ui )T Σ̂−1
i (Yi − (Xi − Ui )β̂)]2[∑

i

(Xi − Ui )T Σ̂−1
i (Xi − Ui )

]2 . (17)

3. Simulation Studies
In this section, we use extensive simulation studies to evaluate
properties of the proposed methods. We examine the effect of
misspecifying marginal probabilities in W and the influence
of the family-specific effects. We also compare ordinary least
squares with weighted least squares, and the proposed meth-
ods with Yang et al. (2000).

We generated 100 nuclear families each with two children.
To simulate population stratification, we drew parental geno-
types from a 50:50 admixture of two populations. Parents
in the same family were drawn from the same population.
The disease allele frequency in each subpopulation was 0.1
and 0.3, so that the marginal disease allele frequency in the
whole population was 0.2. The parental genotypes within each
subpopulation were simulated based on the Hardy–Weinberg
equilibrium. The offspring genotypes were simulated based
on Mendelian transmission probabilities. We assumed a dom-
inant effect of the disease allele. We simulated a linear model

Table 1
Type I error rates of various methods

α Unadjusted Adjusted Unadjusted Adjusted Adjusted
level OLS OLS WLS WLS Yang∗

μ1 = 5, μ2 = 10
0.01 0.208 0.007 0.138 0.008 0.007
0.05 0.432 0.041 0.343 0.05 0.043
0.1 0.57 0.091 0.477 0.099 0.09

μ1 = 5, μ2 = 20
0.01 0.83 0.007 0.201 0.012 0.007
0.05 0.952 0.043 0.425 0.053 0.046
0.1 0.975 0.103 0.571 0.105 0.106

∗Adjusted by method in Yang et al. (2000).

with different intercept for each population. To investigate the
impact of varying severity of population admixture, we sim-
ulated several combinations of the intercepts. The intercept
in the first population was 5, while in the second population
was 10 or 20. The genetic effect was chosen to be 10, 20, 50,
or 100. In the models with random family-specific effects, the
variances of these effects were 5, 15, or 25. There were 1000
replications in each set of the simulations. We simulated resid-
uals from a normal distribution with mean zero and standard
deviation five.

We first examine performance of the proposed methods un-
der the null hypothesis (β = 0). Table 1 shows the type I er-
ror rates of test statistics computed using various methods.
When the population admixture is moderate, the type I error
rates of the unadjusted ordinary least squares and unadjusted
weighted least squares are clearly much higher than the nom-
inal level. For example, for α = 0.05, the type I error is 0.43
for the former and 0.34 for the latter. In contrast, the pro-
posed adjusted ordinary and weighted least squares methods
have maintained the desirable error rates. We also investigate
the method in Yang et al. (2000) and find its type I error
rate to be close to the nominal level. When the population
admixture is more severe, the type I error rates of the two
unadjusted analyses are substantially higher than the nomi-
nal level while the proposed approach and Yang et al. (2000)
have maintained the correct α-level.

Next we examine performance of various methods under
the alternative hypothesis (β �= 0). The first set of simula-
tions corresponds to model (1) where there are no family-
specific effects. Table 2 summarizes results for the ordinary
least squares and the weighted least squares method. We first
examined the properties of the proposed estimator when there
was no genetic effect, that is, β = 0. Under this null model,
the unadjusted estimator reported a large spurious genetic ef-
fect, that is, the mean β̂ = 1.54 for the ordinary least squares
and the mean β̂ = 1.39 for the weighted least squares anal-
ysis. In contrast, the adjusted estimators were very close to
zero: the mean β̂ was 0.02 (average empirical SE = 1.38) for
ordinary least squares and the mean β̂ = 0.02 (average empir-
ical SE = 1.37) for weighted least squares. Next we examined
the estimator where the true genetic effect was greater than
zero (β = 10, 20, 50 or 100). It can be seen that the unad-
justed estimates had large bias while the adjusted estimates
had negligible bias: the bias of the former ranged from 1.48
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Table 2
Estimates with correctly specified W: no family-specific effects

μ1 = 5, μ2 = 10 μ1 = 5, μ2 = 20

True Unadjusted Adjusted Empirical Estimated Unadjusted Adjusted Empirical Estimated
β mean β̂ mean β̂ S.E. S.E. mean mean β̂ S.E. S.E.

Ordinary least squares estimates (OLS)
0 1.54 0.02 1.38 1.31 4.48 −0.02 1.89 1.88

10 11.48 9.98 1.32 1.31 14.53 9.98 1.90 1.87
20 21.53 20.01 1.35 1.31 24.48 19.93 1.88 1.87
50 51.51 50.00 1.33 1.31 54.50 49.99 1.89 1.89

100 101.51 100.05 1.34 1.31 104.43 100.00 1.89 1.87
Weighted least squares estimates (WLS)

0 1.39 0.02 1.37 1.32 2.27 0.02 1.45 1.47
10 11.32 9.98 1.32 1.32 12.27 10.02 1.49 1.47
20 21.31 20.01 1.33 1.32 22.26 19.95 1.48 1.47
50 51.35 49.99 1.33 1.32 52.30 50.02 1.48 1.46

100 101.38 100.05 1.32 1.32 102.22 100.05 1.47 1.46

Comparing to Yang et al. (2000)

True Yang Empirical Eff. gain Eff. gain Yang Empirical Eff. gain Eff. gain
β mean β̂ S.E. OLS∗ WLS† mean β̂ S.E. OLS∗ WLS†
10 10.32 2.20 40% 40% 10.88 2.91 35% 49%
20 20.33 2.25 40% 41% 20.85 2.88 35% 49%
50 50.3 2.25 41% 41% 50.78 2.93 35% 49%

100 100.2 2.20 39% 40% 100.84 2.83 33% 48%
∗[SE(Yang) − SE(OLS)]/SE(Yang); †[SE(Yang) − SE(WLS)]/SE(Yang).

to 4.53, while for the latter it ranged from zero to 0.07. The
magnitude of the bias for the unadjusted methods increased
with the severity of population stratification. When the
population admixture was moderate (μ1 = 5, μ2 = 10), the
bias of the unadjusted least squares estimator was around
1.5. When the population admixture was more severe (μ1 =
5, μ2 = 20), the bias increased to around 4.5. The bias for the
unadjusted weighted least squares estimator in each scenario
of the population admixture was 1.3 and 2.3, respectively.
The magnitude of the bias was similar across all values of the
genetic effect for both estimators.

Note that when the population admixture was moderate,
the standard errors of the ordinary and weighted least squares
estimators were similar. However, when the population ad-
mixture was more substantial (μ1 = 5, μ2 = 20), the weighted
least squares method was more efficient even when there were
no family-specific effects. This is because population admix-
ture acts as a source of family-specific effects (Fulker et al.,
1999; Abecasis et al., 2000) in which case the weighted least
squares method is more efficient. The efficiency gains of the
weighted least squares increased with the severity of admix-
ture. When the difference between the intercepts of the two
populations was 15, the reduction of the empirical standard
error of the estimator was up to 24%. The estimated standard
errors were close to the empirical ones.

We compare the efficiency of the proposed methods with
Yang et al. (2000), that is, adding conditional expectations
of the genotypes given the minimal sufficient statistics of the
null model as additional covariates in the linear model. We
see from the bottom panel of Table 2 that the efficiency gains
of the proposed methods ranged from 33% to 49%, which

were nontrivial. Note that the efficiency gains of ordinary least
squares versus weighted least squares were similar when the
admixture was moderate (the left panel in Table 2). When the
admixture was more severe (the right panel in Table 2), the
efficiency gains increased from about 35% in ordinary least
squares to about 49% in weighted least squares.

The second set of simulations corresponds to model (10)
where there are random family-specific effects. The variance
of these effects was 15. Again we examined the estimator
both under a null model (β = 0) and under several alter-
native models (β > 0). The same phenomenon of the unad-
justed estimators reporting spurious genetic effect when the
true β was zero while the adjusted estimators were very close
to zero was also observed for this set of simulations. From
Table 3, we also see that both the ordinary least squares
and the weighted least squares methods provided unbiased
estimates. As expected, the weighted least squares estimates
were more efficient. When the admixture was moderate, us-
ing weighted least squares instead of ordinary least squares
reduced the empirical standard error by up to 10%. When
the population admixture was more severe, the corresponding
reduction was up to 29%. We noticed larger efficiency gains
of the proposed methods over Yang et al. (2000) in this set
of simulations (the bottom panel of Table 3). The efficiency
gains ranged from 40% to 60%, which are again substantial.

In the third set of simulations, we investigate the unbiased-
ness of β̂ when Wi is misspecified. We analyzed simulated data
with correctly specified allele frequency (0.2), moderately mis-
specified frequency (0.4), and substantially misspecified fre-
quency (0.9). Tables 4 and 5 summarize results under differ-
ent severity of admixture for models (1) and (10). We see that
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Table 3
Estimates with correctly specified W: with family-specific effects, var(αi ) = 15

μ1 = 5, μ2 = 10 μ1 = 5, μ2 = 20

True Unadjusted Adjusted Empirical Estimated Unadjusted Adjusted Empirical Estimated
β mean β̂ mean β̂ S.E. S.E. mean mean β̂ S.E. S.E.

Ordinary least squares estimates (OLS)
0 1.53 −0.05 1.57 1.51 4.51 0.02 2.02 2.01

10 11.54 10.03 1.53 1.53 14.53 9.92 2.04 2.01
20 21.44 19.95 1.51 1.52 24.45 20.02 2.04 2.02
50 51.50 49.99 1.51 1.52 54.50 49.92 2.05 2.02

100 101.49 99.91 1.54 1.52 104.49 99.98 2.09 2.02
Weighted least squares estimates (WLS)

0 1.07 −0.04 1.42 1.40 1.96 −0.03 1.42 1.48
10 11.05 10.04 1.41 1.41 11.96 9.96 1.53 1.49
20 21.07 20.0 1.36 1.40 22.04 20.02 1.45 1.48
50 51.07 50.0 1.36 1.40 51.96 49.95 1.50 1.48

100 101.1 99.9 1.40 1.41 102.02 100.08 1.50 1.48

Comparing to Yang et al. (2000)

True Yang Empirical Eff. gain Eff. gain Yang Empirical Eff. gain Eff. gain
β mean β̂ S.E. OLS∗ WLS† mean β̂ S.E. OLS∗ WLS†
10 10.50 3.01 49% 53% 10.81 3.59 43% 57%
20 20.23 2.99 49% 55% 20.78 3.65 44% 60%
50 50.24 3.02 50% 55% 50.80 3.61 43% 58%

100 100.23 3.09 50% 55% 100.80 3.49 40% 57%
∗[SE(Yang) − SE(OLS)]/SE(Yang); †[SE(Yang) − SE(WLS)]/SE(Yang).

Table 4
Unbiasedness under misspecification of W: no family-specific effects, μ1 = 5, μ2 = 20

p = 0.2 p = 0.4 p = 0.9

True Adjusted Empirical Estimated Adjusted Empirical Estimated Adjusted Empirical Estimated
β mean β̂ S.E. S.E. mean β̂ S.E. S.E. mean β̂ S.E. S.E.

Ordinary least squares estimates
10 9.94 1.89 1.88 9.73 1.95 1.86 9.80 1.93 1.83
20 19.97 1.94 1.87 19.68 1.90 1.87 19.81 1.94 1.85
50 49.90 1.92 1.87 49.75 1.94 1.88 49.74 1.91 1.84

100 99.99 1.91 1.87 99.70 1.91 1.87 99.70 1.9 1.82
Weighted least squares estimates

10 9.94 1.51 1.47 9.93 1.52 1.48 9.94 1.55 1.51
20 20.00 1.49 1.47 49.90 1.51 1.48 49.88 1.53 1.51
50 49.98 1.48 1.47 49.90 1.51 1.48 49.9 1.56 1.5

100 99.93 1.47 1.47 99.90 1.51 1.48 99.90 1.47 1.51

the unbiasedness holds with misspecified W. The mean bias
of both methods ranged from 0.01 to 0.3. There appears to be
a small sample bias for the proposed methods when the allele
frequency was severely misspecified as 0.4 and 0.9. However,
the bias went away when we increased the sample size to 200
families. Specifically, for ordinary least squares, the mean bias
decreased from approximately 0.2 (when p = 0.4) to 0.04 and
from approximately 0.3 (when p = 0.9) to 0.05. For weighted
least squares, the mean bias decreased from approximately
0.1 (when p = 0.4) to 0.02 and from approximately 0.1 (when
p = 0.9) to 0.03.

In the fourth set of simulations, we investigate efficiency
loss due to misspecification of W. In Tables 6 and 7, we
present the empirical standard errors of the point estimates

with different scenarios of misspecification. For model (1),
where there are no family-specific effects, when the allele fre-
quency was moderately misspecified (p = 0.4), the efficiency
loss ranged from 1% to 5%, which was moderate. The ef-
ficiency loss for ordinary least squares and weighted least
squares was similar. When the allele frequency was severely
misspecified (p = 0.9), the efficiency loss ranged from 7% to
13 %. For model (10), where there are family-specific effects,
the efficiency loss ranged from 0% to 6%. The magnitudes
of the loss were comparable for the moderately and severely
misspecified allele frequency.

In the fifth set of simulations, we examine the efficiency loss
due to adjusting for population admixture when it is in fact
absent. We considered both the cases when the family-specific
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Table 5
Unbiasedness under misspecification of W: with family-specific effects, μ1 = 5, μ2 = 20, var(αi ) = 25

p = 0.2 p = 0.4 p = 0.9

True Adjusted Empirical Estimated Adjusted Empirical Estimated Adjusted Empirical Estimated
β mean β̂ S.E. S.E. mean β̂ S.E. S.E. mean β̂ S.E. S.E.

Ordinary least squares estimates
10 9.95 2.20 2.10 9.80 2.10 2.10 9.70 2.10 2.00
20 19.98 2.15 2.11 19.80 2.20 2.10 19.70 2.05 2.00
50 50.00 2.18 2.11 49.80 2.15 2.10 49.80 2.14 2.02

100 99.95 2.20 2.10 99.70 2.18 2.10 99.70 2.10 2.00
Weighted least squares estimates

10 10.05 1.56 1.50 9.97 1.52 1.51 9.99 1.52 1.51
20 19.99 1.50 1.48 20.01 1.49 1.50 19.90 1.49 1.52
50 50.02 1.53 1.49 50.02 1.50 1.49 49.90 1.50 1.52

100 99.95 1.52 1.49 99.90 1.53 1..50 99.90 1.48 1.51

Table 6
Efficiency loss due to misspecification of W: no family-specific effects, μ1 = μ2 = 5

p = 0.2 p = 0.4 p = 0.9

True Adjusted Empirical Adjusted Empirical Efficiency Adjusted Empirical Efficiency
β mean β̂ S.E. mean β̂ S.E. loss mean β̂ S.E. loss

Ordinary least squares estimates
10 10.01 1.25 10.04 1.30 4% 10.05 1.34 7%
20 20.01 1.26 19.97 1.27 1% 19.97 1.35 8%
50 50.01 1.27 49.99 1.30 2% 49.99 1.36 7%

100 99.99 1.27 100.03 1.28 1% 100.02 1.40 10%
Weighted least squares estimates

10 9.90 1.25 10.04 1.31 5% 10.05 1.35 8%
20 20.01 1.24 19.95 1.27 2% 19.99 1.35 8%
50 50.02 1.24 49.99 1.30 5% 49.99 1.37 10%

100 99.99 1.25 100.02 1.29 3% 100.00 1.41 13%

Table 7
Efficiency loss due to misspecification of W: with family-specific effects, μ1 = μ2 = 5, var(αi ) = 25

p = 0.2 p = 0.4 p = 0.9

True Adjusted Empirical Adjusted Empirical Efficiency Adjusted Empirical Efficiency
β mean β̂ S.E. mean β̂ S.E. loss mean β̂ S.E. loss

Ordinary least squares estimates
10 10.02 1.61 9.99 1.67 4% 10.00 1.64 2%
20 19.96 1.59 19.99 1.66 4% 20.05 1.69 6%
50 50.03 1.63 49.99 1.66 2% 49.94 1.67 2%

100 99.99 1.60 99.95 1.60 0% 100.00 1.64 2%
Weighted least squares estimates

10 10.03 1.42 9.99 1.46 3% 10.00 1.49 5%
20 19.98 1.43 20.02 1.49 4% 20.05 1.45 1%
50 50.00 1.43 50.01 1.50 5% 49.96 1.51 6%

100 99.98 1.43 99.95 1.44 1% 100.00 1.50 5%

effects were present and absent. Tables 8 and 9 summarize
results under these two scenarios. When there was no admix-
ture and the family-specific effects were absent, the efficiency
loss of the adjusted analysis compared to the unadjusted
ranged from 34% to 38%. The magnitude of loss was simi-
lar for ordinary and weighted least squares. When there were

family-specific effects, the efficiency loss was around 28%. The
efficiency loss of ordinary and weighted least squares was also
similar.

In the sixth set of simulations, we investigate the influ-
ence of departure from constant family-specific effects model.
In Table 10, we compare the empirical standard errors of β̂



338 Biometrics, June 2011

Table 8
Efficiency loss due to adjusting for admixture when no

admixture is present: no family-specific effects, μ1 = μ2 = 5

Unadjusted Adjusted

True Mean Emp. Mean Emp. Efficiency
β β̂ S.E. β̂ S.E. loss∗

Ordinary least squares estimates
10 10.00 0.73 9.99 1.11 34%
20 19.95 0.79 19.95 1.19 34%
50 49.99 0.77 50.02 1.23 37%

100 100.01 0.71 100.03 1.15 38%
Weighted least squares estimates

10 10.00 0.73 9.99 1.11 34%
20 19.95 0.79 19.95 1.19 34%
50 49.99 0.78 50.02 1.23 37%

100 100.01 0.71 100.03 1.15 38%
∗ [SE(Adjusted) − SE(Unadjusted)]/SE(Adjusted).

under varying values of the variance of the family-specific
effects. The variance of αi in each model was 0, 15, or 25.
For the ordinary least squares method, the standard error of
β̂ increased with increasing variance of the family-specific ef-
fects, and the loss of efficiency ranged from 8% to 17%. For
the weighted least squares method, the standard errors of the
estimators were similar regardless of the value of the family-
specific variance (efficiency loss up to 3%). In other words, the
family-specific effects have little influence on the efficiency of
the estimates obtained by weighted least squares.

4. Data Analysis
In this section, the proposed approaches are applied to an
analysis of the influence of APOE genotype on plasma LDL
concentrations in young children. There are three common al-
leles at the APOE locus (ε2, ε3, ε4). The apo ε3 is the most
prevalent allele in the general population, with a frequency of
75% to 80%. The frequency of apo ε4 allele varies with eth-
nicity (Howard, Gidding, and Liu, 1998). Previous studies of
adults have shown that apo ε4 allele is associated with higher
LDL cholesterol levels compared to ε3 (Davignon, Gregg, and
Sing, 1988), while the role of ε2 is more complicated.

Table 9
Efficiency loss due to adjusting for admixture when no

admixture is present: with family-specific effects,
μ1 = μ2 = 5, var(αi ) = 15

Unadjusted Adjusted

True Mean Emp. Mean Emp. Efficiency
β β̂ S.E. β̂ S.E. loss∗

Ordinary least squares estimates
10 9.99 1.01 9.97 1.41 28%
20 20.01 1.02 19.98 1.42 28%
50 50.02 1.01 50.02 1.39 27%

100 99.98 1.02 99.98 1.41 28%
Weighted least squares estimates

10 9.99 0.97 9.97 1.34 28%
20 19.99 0.97 19.98 1.32 27%
50 50.01 0.95 50.02 1.31 27%

100 99.99 0.95 99.98 1.32 28%
∗[SE(Adjusted) − SE(Unadjusted)]/SE(Adjusted).

The effect of APOE gene was found to be larger in younger
people (Hixson, 1991). Children included in this data analysis
were recruited through the Columbia University BioMarkers
Study, a cross-sectional study of children and their parents
conducted from 1994 to 1998 (Shea et al., 1999; Isasi et al.,
2000). Families were recruited from lists of cardiac patients
generated through the Presbyterian Hospital Clinical Infor-
mation System, private cardiology practices, lipid clinics, pe-
diatric practices at Columbia-Presbyterian Medical Center,
and fliers posted within the medical center. Families with
at least one healthy child, 4 to 25 years of age, were eligi-
ble for participation. Healthy was defined as not having any
chronic medical condition under treatment by a pediatrician,
other than high blood pressure or high lipids (referral criteria
to the Children’s Cardiovascular Health Center). Some sub-
jects were recruited through family members other than the
children. Around 75% of the children were Hispanic and the
remaining 25% were non-Hispanic White.

There were 621 children recruited for the study, among
whom 55 did not have data on the APOE genotype. Among

Table 10
Effect of departure from constant family-specific effects model (μ1 = 5, μ2 = 20)

Var(αi ) = 0 Var(αi ) = 15 Var(αi ) = 25

True Adjusted Empirical Adjusted Empirical Increase Adjusted Empirical Increase
β mean β̂ S.E. mean β̂ S.E. of S.E. mean β̂ S.E. of S.E.

Ordinary least squares estimates
10 9.98 1.90 9.87 2.13 12% 9.95 2.22 17%
20 19.93 1.88 19.83 2.03 8% 19.98 2.15 14%
50 49.99 1.89 49.90 2.10 11% 50.00 2.18 15%

100 100.00 1.89 99.97 2.11 12% 99.95 2.20 16%
Weighted least squares estimates

10 10.02 1.49 9.93 1.51 1% 10.05 1.49 0%
20 19.95 1.48 19.87 1.51 2% 19.99 1.50 1%
50 50.02 1.48 49.93 1.50 1% 50.02 1.49 1%

100 100.05 1.47 99.99 1.48 1% 99.95 1.52 3%
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the children with genotype data, 10 were excluded because
of Mendelian genotyping errors. There were 13 children with-
out LDL concentration data. These children contributed to
the computation of the additional covariates, but were not
included in the subsequent regression analysis relating LDL
to genotype because of missing LDL levels. The mean LDL
of the 534 children was 103.8 and the standard deviation
was 43.5. The frequencies of children with APOE genotypes
ε2ε2, ε3ε2, ε3ε3, ε4ε2, ε4ε3, and ε4ε4 were 9.1%, 7.9%, 61.8%,
1.8%, 25.6%, and 2.0%. The mean LDL concentrations for
children in each genotype group were 49.8, 84.9, 106.1, 107.2,
105.4, and 105.9.

Among the 547 children from 322 families with genotype
data, 153 in 78 families had complete parental genotypes, 389
in 241 families had parental genotype available in one of the
parents, and 5 of them in 3 families had no genotype infor-
mation on any of the parents.

Three sets of analyses were presented. First, the unadjusted
analysis was carried out. Then the analysis was repeated with
two approaches to adjust for admixture: the first was the
methods proposed in Yang et al. (2000), which computed the
additional covariates as conditional expectation of the founder
genotypes given the minimal sufficient statistics of the genetic
model under the null; the second was the methods proposed
here, which computed the additional covariate by (8) or (16).
Results from the three analyses were compared.

In each set of the analyses, models with and without a
family-specific random effect were fit to the data. The or-
dinary least squares estimates for model (1) were obtained
by fitting a simple linear model, while weighted least squares
estimates for model (10) were obtained by fitting a mixed
effects model with random family-specific effects. Standard
errors were computed as in (9) or (17). The APOE genotype
was coded as the number of each of the three APOE alle-
les carried by a subject. In this data analysis example, Yij is
the LDL concentration for the jth child in the ith family,
X(Gij ) = (Xε2(Gij ), Xε3(Gij ), Xε4(Gij ))T are the numbers
of ε2, ε3, and ε4 allele carried by the child, β = (β2, β3, β4)T

are the effect of each of the three alleles, and αi is the family-
specific random effect.

Results of the unadjusted analysis are summarized in
Table 11. The significant contrasts were β3 − β2 and β4 − β2.
The estimated differences were 19.9 (SE: 5.3) and 20.7 (SE:
6.1). The interpretation for this analysis was that children
carrying the apo ε2 allele had a significantly lower LDL con-
centration than children with the ε3 or ε4 allele.

For the first adjusted analysis, the FBAT (Rabinowitz and
Larid, 2000; Horvath, Xu, and Laird, 2001) was used to com-
pute the conditional expectation of X(Gi ) given the minimal
sufficient statistics of parental genotypes. Then a linear model
was fit using these conditional expectations as additional co-
variates as in Yang et al. (2000). The results are summarized
in Table 12. In this analysis, the parameter estimates for β
were not identifiable, but the contrasts remained identifiable.
The significant contrasts were still β3 − β2 and β4 − β2 as in
the unadjusted analysis. The values of the contrasts were 24.5
(SE: 11.1) and 31.7 (SE: 11.0) for ordinary least squares, and
22.0 (SE: 9.8) and 30.1 (SE: 10.1) for weighted least squares.
Note that when using the weighted least squares method, the
effect for β3 − β2 changed from 18.8 (unadjusted) to 22.0 (ad-

Table 11
Real data example: the unadjusted analysis

Parameter Estimate Standard error p value

Ordinary least squares estimates
ε2 33.0 5.2 <0.001
ε3 52.9 1.2 <0.001
ε4 53.7 3.2 <0.001
ε3 − ε2 19.9 5.4 <0.001
ε4 − ε3 0.8 3.7 0.83
ε4 − ε2 20.7 6.2 <0.001

Weighted least squares estimates
ε2 33.9 6.3 <0.001
ε3 52.7 1.3 <0.001
ε4 56.6 2.8 <0.001
var(α2

i ) 721.5 145.4 <0.001
var(σ2

i ) 1159.7 115.1 <0.001
ε3 − ε2 18.8 6.5 <0.001
ε4 − ε3 3.9 3.4 0.24
ε4 − ε2 22.7 6.7 <0.001

Table 12
Real data example: adjusting by Yang et al. (2000)

Parameter Estimate Standard error p value

Ordinary least squares estimates
ε3 − ε2 24.5 11.1 0.03
ε4 − ε3 7.2 4.7 0.12
ε4 − ε2 31.7 11.0 0.004

Weighted least squares estimates
var(α2

i ) 718.8 146.1 <0.001
var(σ2

i ) 1165.0 116.0 <0.001
ε3 − ε2 22.0 9.8 0.03
ε4 − ε3 8.2 4.3 0.06
ε4 − ε2 30.1 10.1 0.003

justed), and the effect for β4 − β2 changed from 22.7 (unad-
justed) to 30.1 (adjusted). Similar magnitude of increase was
observed for the ordinary least squares estimates.

For the second adjusted analysis using the methods devel-
oped here, the matrices Wi and Zi are required. The geno-
type frequencies in Wi were computed using observed founder
genotypes. We have shown that misspecification of Wi does
not affect the unbiasedness of β. To illustrate the computa-
tion of Zi and the additional covariates, the calculation was
carried out for an example pedigree with two children and one
observed heterozygous parent in the Appendix.

The results of these analyses were summarized in Table 13.
The significant estimated contrasts were β3 − β2 and β4 − β2,
with values 18.6 (SE: 6.9) and 19.9 (SE: 6.9) for ordinary least
squares, and 17.6 (SE: 7.3) and 22.0 (7.3) for weighted least
squares. The changes of the contrasts in the proposed adjust-
ment were smaller compared to the Yang adjustment, and the
standard errors were also smaller. These comparisons suggest
that applying Yang et al. (2000) may have overcorrected for
population admixture. Furthermore, the larger standard er-
rors for the contrasts in the Yang analysis compared to the
proposed reflected the loss of information by conditioning on
the minimal sufficient statistics in the Yang analysis. We can
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Table 13
Real data example: adjusting by the proposed method

Parameter Estimate Standard error p value

Ordinary least squares estimates
ε3 − ε2 18.6 6.9 0.007
ε4 − ε3 1.3 3.6 0.72
ε4 − ε2 19.9 6.9 0.004

Weighted least squares estimates
var(α2

i ) 734.7 146.6 <0.001
var(σ2

i ) 1157.2 114.6 <0.001
ε3 − ε2 17.6 7.3 0.02
ε4 − ε3 4.4 3.4 0.20
ε4 − ε2 22.0 7.3 0.003

also see that the weighted least squares estimates had smaller
standard error than the ordinary least squares estimates.

5. Discussion
Here a locally efficient approach to adjusting for population
admixture when estimating genetic effect on a quantitative
trait is proposed. The main step is to augment a linear regres-
sion model with supplemental covariates that provides unbi-
ased minimal variance estimator for the genetic parameter of
interest. The form of the additional covariates is similar in
spirit to that proposed in Rabinowitz (2002) and Whittemore
(2004). The models in (1) and (10) can be extended to include
environmental factors.

In the testing context, it was observed by Whittemore and
Halpern (2003) that both Rabinowitz and Larid (2000) and
Rabinowitz (2002) can be formulated as solutions to a con-
strained optimization problem: the coefficient of variation of
the test statistic is to be maximized under some constraint. In
Rabinowitz and Larid (2000), the constraint is that the condi-
tional expectation of the test statistic given the minimal suf-
ficient statistic of the genetic model under the null hypothesis
is zero; while in Rabinowitz (2002) the constraint is that the
conditional expectation of the test statistic given the founder
genotypes is zero. The column space of the constraints in the
former contains the corresponding column space of the con-
straints of the latter: the vectors in the latter space can be ex-
pressed as a linear combination of vectors in the former space.
This observation implies that the constraints in Rabinowitz
and Larid (2000) are too restrictive and there is potential loss
of information incurred by conditioning on a larger space. For
example, families where all children have the same genotype
do not contribute to the analysis. In contrast, the methods in
Rabinowitz (2002) capture all the available information.

In the estimation context, the analogous comparison of ef-
ficiency is between Yang et al. (2000), which was based on
Rabinowitz and Larid (2000), and the proposed approach,
which has a similar form to Rabinowitz (2002) and Whitte-
more (2004). Yang et al. (2000) corresponds to projecting co-
variates involving genotypes subject to population admixture
onto the space of the minimal sufficient statistics, while the
proposed approach corresponds to projecting the genotype-
related covariates onto an appropriate smaller space. The
larger the space of projection, the more information is lost.
Our simulation results suggest nontrivial efficiency gains of

the proposed methods over Yang et al. (2000). It can also be
seen from the real data analysis example that the standard
errors of the proposed methods were smaller, which suggests
overadjustment in Yang et al. (2000) because conditioning on
the minimal sufficient statistic may be too restrictive.

It is shown in the Appendix that the proposed approach
is optimal when there is no family-specific effect or when the
family-specific effect is a constant. When such effect is not
a constant, the proposed approach is locally optimal because
the family-specific effect is approximately a constant (the vari-
ance of such effect is zero) when considered locally. We used
simulation studies to investigate the efficiency of the estima-
tors when the family-specific effect is not a constant. The ef-
ficiency of the ordinary least squares method was reduced to
up to 17% (Table 10), but the efficiency of the weighted least
squares method was not greatly influenced by the departure
from the constant family-specific effect model (efficiency loss
up to 3%, see Table 10).

The added covariates Ui involve marginal probabilities Wi ,
which are estimated (possibly incorrectly) from the data. The
estimators depending on these estimated values would nor-
mally introduce extra variability. However, since the addi-
tional covariates Xi − Ui can be viewed as residuals from the
projection of Xi onto the space spanned by Wi , they are or-
thogonal to Wi . By the orthogonality, there is no additional
variability introduced by estimating Wi .

Since population admixture acts as a source of family-
specific effects, weighted least squares is more efficient than
ordinary least squares even when there are no additional
family-specific effects. For the real data analysis, weighted
least squares should be used.

The proposed methods are designed for the single-locus
model or the multilocus model without interaction. When
there are multiple loci predisposing a disease and there is no
interaction between the loci, we compute a set of optimal co-
variates for each locus using founder genotypes at this locus.
All the optimal covariates will then be included in the linear
model analyses. When there is interaction between the loci,
the current approaches need to be modified to a haplotype-
based method to account for this effect because haplotype
association analysis may be more powerful than genotype as-
sociation analysis (Morris and Kaplan, 2002). However, one
complication faced by a haplotype analysis is that the phase
of a haplotype is usually not observed. In a haplotype analy-
sis, when the phase is known, one uses functions of haplotypes
as predictors. When the phase is unknown, one uses the con-
ditional distribution of the haplotypes given the genotypes
to compute the conditional expectation of phase-unknown
haplotype scores. The conditional distribution depends on
the marginal distribution of haplotypes, which may be sub-
ject to population stratification or may be estimated using
only approximated assumptions (e.g. Hardy–Weinberg equi-
librium). To extend the methods developed here in this con-
text, the covariates Xi in the equation (8) should be replaced
by the estimated conditional expectation of the functions of
haplotypes. The Wi should be replaced by the marginal dis-
tribution used in the calculations of Xi , and Zi should be re-
placed by the matrix of conditional probability of all possible
haplotypes given the parental haplotypes. Further research
along this direction is underway.
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The proposed methods are easy to implement and the
computational cost is low. The extra computation involved
other than fitting a linear model is to compute the addi-
tional optimal covariates. The form of these covariates (see
(8)) suggests that they are constructed using marginal dis-
tribution of founder genotypes and conditional distribution
of the offspring genotypes and involve some matrix alge-
bra. These computations do not entail iterations and can
be completed in seconds. In our simulations, it took half a
minute to compute the optimal covariates for 1000 repeti-
tions on a Dell Workstation with 2.00 GHz CPU. A link to
the code to compute the optimal covariates can be found at
www.columbia.edu/∼yw2016.

Here the methods are developed in the context of random
sampling. When subjects with extreme values of a quantita-
tive trait are oversampled or when certain outcomes are over-
sampled, these methods are generally biased. In such settings,
the more general estimating equation conditioning on the out-
comes proposed in Whittemore (2004) may be applicable.
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Appendix

In this section, the expectation and the variance of β̂ were
computed, the solution to the constrained optimization prob-
lem was derived, and the efficient additional covariates for an
example pedigree was computed.

From the expression β̂ = [(X − U )T (X − U )]−1(X − U )T Y

and the model (2), the expectation of β̂ is

Eβ̂ = E{[(X − U )T (X − U )]−1(X − U )T Y }
= β + E{[(X − U )T (X − U )]−1(X − U )T U γ̃}

+ E{[(X − U )T (X − U )]−1(X − U )T ε}
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= β + E

{
[(X − U )T (X − U )]−1

×
∑

i

E
[
(Xi − Ui )T 1n i

|G�
i

]
E

[
εij |G�

i

]}
,

where 1n i
denotes the ni × 1 vector of 1. Here the third equal-

ity follows from the constraint (4) and the fact that given the
founder genotypes, X(G) is conditionally independent of ε. It
follows that the condition to ensure the unbiasedness of β̂ is
that

E
[
(Xi − Ui )T 1n i

|G�
i

]
= 0, i = 1, . . . , n.

Now turn to the computation of the variance. We have the
expression

var(β̂) = var(E(β̂ |G� )) + E(var(β̂ |G� )).

Under the conditions (4) and (7), we have E(β̂ |G� ) = β.
Therefore the first term on the right-hand side of the expres-
sion is zero. Let Ai denote the vector X(Gi ) − Ui , and let A
denote the matrix (AT

1 , . . . , AT
n )T . The second term can be

calculated as

var(β̂ |G� ) = E

{
[AT A]−1

∑
i

AT
i εi ε

T
i Ai [AT A]−1 |G�

}
=

∑
i

E
(
ε2

ij |G�
i

)
E{[AT A]−1AT

i Ai [AT A]−1 |G�}

= σ2E{[AT A]−1 |G�}.

Here σ2 is the variance of the residuals. The second equality
follows from the conditional independence of εij and Gij given
G�

i . Taking the expectation we obtain

var(β̂) = σ2E[AT A]−1. (A.1)

Similarly, when there are family-specific effects, expectation
of the weighted least squares β̂ ′ as in (11) is

Eβ̂ ′ = E{[(X − U )T Σ−1(X − U )]−1(X − U )T Σ−1Y }
= E{[(X − U )T Σ−1(X − U )]−1(X − U )T

×Σ−1[(X − U )β + Uγ̃ + α + ε]}

= β + E

{
[(X − U )T Σ−1(X − U )]−1

×
∑

i

E
[
(Xi − Ui )T Σ−1

i 1n i
|G�

i

]
E

[
αi |G�

i

]}

+ E

{
[(X − U )T Σ−1(X − U )]−1

×
∑

i

E
[
(Xi − Ui )T Σ−1

i 1n i
|G�

i

]
E

[
εij |G�

i

]}
.

The conditional variance is

var(β̂ ′ |G� ) = E

{
[AT Σ−1A]−1

∑
i

AT
i Σ−1

i

(
α2

i 1n i
1T

n i
+ εi ε

T
i

)
× Σ−1

i Ai [AT Σ−1A]−1 |G�

}

= E

{
[AT Σ−1A]−1

∑
i

AT
i Σ−1

i E
[
α2

i 1n i
1T

n i

+ εi ε
T
i |G∗

i

]
Σ−1

i Ai [AT Σ−1A]−1 |G�

}
=

∑
i

E{[AT Σ−1A]−1AT
i Σ−1

i Ai [AT Σ−1A]−1 |G�}

= E{[AT Σ−1A]−1 |G�}.

Here the second equality follows from the conditional indepen-
dence of αi and Gij given G∗

i , and the third equality follows
from Σi = var(YiY

T
i |G∗

i ). Taking expectation, we have

var(β̂ ′) = E[AT Σ−1A]−1. (A.2)

Therefore minimizing the variance of weighted least squares
when there are family-specific effects amounts to minimizing
(X − U )T Σ−1(X − U ).

Since by a linear transformation solving U for the weighted
least squares estimator can be converted to solving U for or-
dinary least squares, we solve the constrained optimization
problem for the latter. To minimize the variance (A.1) subject
to constraints (4) and (7), we introduce Lagrange equations.
Recall that ϑ�

i denotes all possible founder genotypes compat-
ible with that observed in the ith family, and ϑi denotes all
possible combination of offspring genotypes in the ith family.
The object function is

n∑
i=1

∑
g∈ϑ i

n i∑
j=1

(Xij (g) − Uij (g))2P (g)

−
n∑

i=1

∑
g∈ϑ i

∑
g � ∈ϑ �

i

n i∑
j=1

λi,g � (Xij (g) − Uij (g))P (g | g� )

−η

n∑
i=1

∑
g∈ϑ i

n i∑
j=1

(Xij (g) − Uij (g))Uij (g)P (g).

Here λi,g � and η are Lagrange multipliers. The term Uij (g) is
the additional covariate to add when the observed genotypes
in the offspring is g.

It is convenient to write the objective function in a ma-
trix form and do the calculation in matrix algebra. Recall the
notations for Wi, Xi , and Vi defined in Section 2, and let λi

denote the di × 1 vector of λi,g � . The objective function can
be written as∑

i

1T
n i

(Xi − Vi )Wi (Xi − Vi )T 1n i
−

∑
i

λT
i ZT

i (Xi − Vi )T 1n i

−η
∑

i

1T
n i

(Xi − Vi )WiV
T

i 1n i
,
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and the Lagrange equations can be written as

2Wi (Xi − Vi )T 1n i
− Ziλi − ηWi (Xi − 2Vi )T 1n i

= 0
(A.3)

ZT
i (Xi − Vi )T 1n i

= 0 (A.4)∑
i

1T
n i

(Xi − Vi )WiV
T

i 1n i
= 0. (A.5)

Multiplying both sides of (A.3) on the left by ZT
i W −1

i and
using the condition (A.4) results in

λi = η
(
ZT

i W −1
i Zi

)−1
ZT

i XT
i 1n i

. (A.6)

Plug (A.6) into (A.3) to get

(2 − η)Wi (Xi − Vi )T 1n i
− ηZi

(
ZT

i W −1
i Zi

)−1
ZT

i XT
i 1n i

+ ηWiV
T

i 1n i
= 0.

Solve this equation to arrive at

V T
i 1n i

= W −1
i Zi

(
ZT

i W −1
i Zi

)−1
ZT

i XT
i 1n i

, (A.7)

and η = 2. Here Vi is identifiable up to the sum of its compo-
nents. Adding and subtracting a constant from the elements
of Vi does not change the sum of all the elements. Neverthe-
less, the expectation of the estimator is the same. We simply
pick

Vi = XiZi (ZT
i W −1

i Zi )−1ZT
i W −1

i .

The desirable additional covariates Ui can be picked from the
row of Vi that corresponds to the observed genotypes in family
members of the ith family. The marginal probabilities Wi can
be computed as P (g) =

∑
g ∗∈ϑ i (g ∗∗) P (g | g∗)P (g∗ | g∗∗). Here

g∗∗ index the observed founder genotypes in ϑi . Note that
the solution under the constraints (A.3) and (A.4) satisfies
(A.5) automatically.

Finally the computation for an illustrative example pedi-
gree with two children is presented. Suppose that the ex-
ample pedigree has two children with genotypes (DD, Dd),
one parent with observed genotype Dd, and the other
parent with no genotype information. The parental geno-
types compatible with the observed genotypes are ϑ�

i =
{(Dd, DD), (Dd, Dd), (DD, dd)}. The nine possible genotype
configurations for the children are listed as the rows in
Table A1. Here ci = 9, and di = 3. The entries of matrix Zi

are presented in Table A1.

Table A1
The entries of Zi for the example pedigree

Parental genotypes

Offspring genotypes (Dd, DD) (Dd, Dd) (Dd, dd)

(DD, DD) 1/4 1/16 0
(DD, Dd) 1/4 1/8 0
(DD, dd) 0 1/16 0
(Dd, DD) 1/4 1/8 0
(Dd, Dd) 1/4 1/4 1/4
(Dd, dd) 0 1/8 1/4
(dd, DD) 0 1/16 0
(dd, Dd) 0 1/8 1/4
(dd, dd) 0 1/16 1/4

Table A2
The matrix Xi and Vi for the example pedigree

V T
iOffspring

genotypes XT
i p = 0.1 p = 0.2 p = 0.4

(DD, DD) (2, 2) (2.04, 2.04) (1.98, 1.98) (1.86, 1.86)
(DD, Dd) (2, 1) (1.68, 1.68) (1.66, 1.66) (1.62, 1.62)
(DD, dd) (2, 0) (1.24, 1.24) (1.18, 1.18) (1.06, 1.06)
(Dd, DD) (1, 2) (1.68, 1.68) (1.66, 1.66) (1.62, 1.62)
(Dd, Dd) (1, 1) (0.6, 0.6) (0.7, 0.7) (0.9, 0.9)
(Dd, dd) (1, 0) (0.48, 0.48) (0.46, 0.46) (0.42, 0.42)
(dd, DD) (0, 2) (1.24, 1.24) (1.18, 1.18) (1.06, 1.06)
(dd, Dd) (0, 1) (0.48, 0.48) (0.46, 0.46) (0.42, 0.42)
(dd, dd) (0, 0) (0.44, 0.44) (0.38, 0.38) (0.26, 0.26)

Code Xi as the number of D alleles, then from the equa-
tion (A.7), the matrix Vi can be calculated. The results under
different assumptions of the allele frequency are recorded in
Table A2. It can be seen that there is no big difference in Vi

when we change the allele frequency.
The observed genotypes for children in the example pedi-

gree is (DD, Dd), which correspond to the second entry in
Table A2. Therefore the additional covariate Ui for this fam-
ily when the allele frequency is 0.1 is (1.68, 1.68). When the
allele frequency is 0.2 or 0.4, the additional covariates for this
family are (1.66, 1.66) and (1.62, 1.62), respectively. These
covariates are not substantially affected by the specification
of allele frequency.


