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Summary. In many clinical settings, a commonly encountered problem is to assess accuracy of a screening test for early
detection of a disease. In these applications, predictive performance of the test is of interest. Variable selection may be useful
in designing a medical test. An example is a research study conducted to design a new screening test by selecting variables
from an existing screener with a hierarchical structure among variables: there are several root questions followed by their stem
questions. The stem questions will only be asked after a subject has answered the root question. It is therefore unreasonable
to select a model that only contains stem variables but not its root variable. In this work, we propose methods to perform
variable selection with structured variables when predictive accuracy of a diagnostic test is the main concern of the analysis.
We take a linear combination of individual variables to form a combined test. We then maximize a direct summary measure of
the predictive performance of the test, the area under a receiver operating characteristic curve (AUC of an ROC), subject to
a penalty function to control for overfitting. Since maximizing empirical AUC of the ROC of a combined test is a complicated
nonconvex problem (Pepe, Cai, and Longton, 2006, Biometrics 62, 221–229), we explore the connection between the empirical
AUC and a support vector machine (SVM). We cast the problem of maximizing predictive performance of a combined test
as a penalized SVM problem and apply a reparametrization to impose the hierarchical structure among variables. We also
describe a penalized logistic regression variable selection procedure for structured variables and compare it with the ROC-
based approaches. We use simulation studies based on real data to examine performance of the proposed methods. Finally
we apply developed methods to design a structured screener to be used in primary care clinics to refer potentially psychotic
patients for further specialty diagnostics and treatment.

Key words: Area under the curve; Disease screening; Hierarchical variable selection; ROC curve; Support vector machine.

1. Introduction
Screening tests are applied in many clinical settings for early
detection of a disease. The goal of a screening test is to de-
tect a disease condition as early as possible. Subjects screened
positive will be referred for more definitive diagnostic tests.
Statistical problems arising from such practices include how
to assess the accuracy of the test and how to design tests
with adequate sensitivity and specificity. In this article, we
develop prediction-based structured variable selection proce-
dures in order to develop a new disease screener based on an
existing screener.

This work was motivated by the development of an
improved psychosis screener described later. A study of
Psychosis Screening Questionnaire (PSQ; Bebbington and
Nayani, 1995) and other variables as a medical test for
psychosis detection in primary care clinics in Latino popu-
lation was conducted at the New York State Psychiatric In-
stitute (Lewis-Fernández, 2003). The PSQ originally designed

in Britain was found to have poor performance in a Latino
population (Lewis-Fernández, 2003). The goal of the study is
to develop an improved screener to more accurately detect
psychosis in low-income Latino primary care patients by se-
lecting variables from the PSQ and other surveys. Based on
the score from the newly designed screener, a subject visit-
ing a primary care clinic classified as positive will be referred
to a psychiatrist for further diagnosis and treatment while a
subject classified as negative will not be referred.

It is important to identify important variables in PSQ and
other surveys to construct a new screener. This is a variable
selection problem with predicting a gold standard psychosis
outcome as the goal. The PSQ is a screener with a hierarchi-
cal structure among variables. All the variables are grouped
into five domains. In each domain, there is a root variable and
several stem variables. The stem questions will only be asked
after a subject has answered the root question. Readers in-
terested in questions or items in PSQ can consult Bebbington
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and Nayani (1995). The statistical problem is to select root
variables and stem variables to best predict the gold standard
disease status. If one ignores the hierarchical structure in the
PSQ and performs a variable selection procedure treating all
variables as unrelated, it is possible that a model contain-
ing stem variables but not their root variables will be chosen.
However, such a model is not interpretable and therefore not
admissible.

Several variable selection procedures for structured predic-
tors have been proposed in the literature. Huang et al. (2009)
applied a group bridge penalty to perform both the group level
and within-group individual level variable selection. Yuan,
Joseph, and Zou (2009) proposed methods for variable se-
lection that obey a certain hierarchical rule by imposing in-
equality constraints to the selection procedure. Wang et al.
(2009) proposed penalized Cox regression analysis for hierar-
chical variables by reparametrization where the variables are
selected at the group level first and then at the within-group
individual level, and all variables within a group are treated
as exchangeable. Methods aforementioned may not be directly
applied to our setting in that since the prediction accuracy of
a diagnostic test is of primary concern, the likelihood func-
tion may not be the optimal loss function to use in a variable
selection procedure because it does not directly relate to the
prediction performance of a diagnostic test (Pepe, 2005; Pepe
et al., 2006). Moreover, the variables in a group in the PSQ
study may not be exchangeable in the sense that there is a
leading root variable followed by stem variables.

To assess prediction accuracy of a medical test, true pos-
itive and false-negative rates are two popular indices. From
a continuous test score Y, one can define a binary test un-
der a threshold c as: Y � c: positive, and Y < c: negative.
The receiver operating characteristic (ROC) curve is the en-
tire collection of possible true positives and false positives
with different thresholds. A summary index of a medical test
performance can then be defined as the area under an ROC
curve (AUC of an ROC), which is equivalent to the probabil-
ity that test results from a randomly selected pair of diseased
and nondiseased subjects are correctly ordered, that is, the
diseased subject has a higher score than the nondiseased sub-
ject. Pepe (2005) and Pepe et al. (2006) showed that when
using a combined linear test as decision rule, the ROC-based
approach may outperform the likelihood-based approach in
terms of prediction performance. On the one hand, there may
exist variables that have large odds ratios in terms of asso-
ciation, but contribute little in terms of prediction. On the
other hand, it is possible that when prediction is of inter-
est, allowing some variables with weaker association to stay
in a model may improve prediction accuracy (Pinsky, 2005).
Therefore prediction and association are two distinct goals,
which deserve to be treated separately.

Although AUC for an ROC curve is a widely used mea-
sure of predictive performance, other measures may be useful
when a decision has to be made on the threshold of a di-
agnostic test. For example, Briggs and Zaretzki (2008) pro-
posed the Skill Plot, which is a plot of the estimated skill
score versus the threshold and is directly related to a deci-
sion maker who must use a diagnostic test. The Skill Plot can
allow different weights for false positives and false negatives
through a constant representing the loss. In contrast to ROC
curves, using Skill Plot one can easily identify the optimal

threshold. In the comments to Briggs and Zaretzki (2008),
Hand (2008) pointed out that AUC for the ROC curve uses
a weighting scheme of the false positives and false negatives
derived empirically from the data. However, in practice, the
importance of misclassifying a case as noncase or vice versa
may not be determined solely by the data itself, instead it may
come from external information with practical consideration
of the impact of the misclassification. In these situations, mea-
sures other than AUC of an ROC curve such as Skill Plot or
alternative ROC utility function may be used.

When there are only a few variables involved, Pepe et al.
(2006) considered maximizing the empirical AUC of a lin-
ear combination of the variables (up to two variables in their
application) that do not exhibit hierarchial structure. To be
specific, they proposed to maximize the empirical AUC de-
fined in (1) in Section 2.1 by a simple grid search to obtain
coefficients of the linear combination. However, since the em-
pirical AUC is not a continuous function, it is difficult to
optimize the empirical AUC for a large number of variables
and high-dimensional grid search is not computationally fea-
sible. Overfitting or hierarchical structure was not considered
in Pepe et al. (2006).

In this article, we develop a new variable selection proce-
dure with hierarchical structure among variables. We use a
linear combination of variables as a combined test to con-
struct a screener for early disease detection. Compared with
penalized least squares or likelihood methods in the literature,
the newly proposed variable selection procedure is to maxi-
mize the empirical AUC of an ROC curve subject to a penalty
function that controls for over-fitting, which is suitable when
prediction accuracy of the combined test is of primary inter-
est. Due to complexity and nonconvexity in maximizing the
empirical AUC of an ROC (Pepe et al., 2006), we utilize the
connection between the empirical AUC and a support vec-
tor machine (SVM; Brefeld and Scheffer, 2005), and cast the
problem of maximizing prediction performance of a combined
test with hierarchical structure among individual variables as
a penalized SVM problem and reparametrize coefficients of
the variables to impose the hierarchical rule. As an alterna-
tive, a penalized logistic regression variable selection proce-
dure is considered for structured variables and compared with
the ROC based approaches. We examine performance of the
proposed methods by Monte Carlo simulation studies based
on real data. We further illustrate the proposed procedures to
design a structured screener to be used in primary care clinics
to refer potentially psychotic patients for specialty diagnostics
and treatment.

The rest of this article is organized as follows. In Section 2,
we proposed a penalized AUC method and a penalized logis-
tic regression approach for hierarchically structured variable
selection, and develop an inference procedure through boot-
strap. In Section 3, we present our simulation studies. We give
an empirical analysis of a real data example in Section 4. In
Section 5, we present concluding remarks and discussions.

2. Methods
2.1 Penalized SVM for Maximizing AUC of an ROC Curve

with Unrelated Variables
When accuracy of a medical test is of interest, in a vari-
able selection procedure it is desirable to maximize an ob-
jective function that is directly related to the performance of
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prediction or classification of the test: the AUC of an ROC
curve. We find a linear combination of variables or individual
test scores that can maximize the empirical AUC of an ROC,
which is a consistent estimator of the true AUC under suitable
conditions (Pepe, 2003). This ROC-based approach is appli-
cable to retrospective designs (e.g., case-control studies) and
is nonparametric in the sense that it does not assume a known
link function between the outcome and the variables, which
is in contrast to a generalized linear model-based approach.

First consider the simple case where the predictor variables
are not structured. Denoted by D the disease status of a sub-
ject diagnosed by a gold standard with one indicating diseased
and zero indicating disease free. Let n+ be the number of sub-
jects with D = 1, and n− the number of subjects with D = 0.
Denoted by xik the observation of the kth variable on the ith
subject, or the kth individual test score on this subject. We
consider the following linear decision rule to form a combined
test

Lβ (xi ) = β1xi1 + β2xi2 + · · · + βp xip ,

where we will fix β1 = 1, and do not include an intercept.
This is because the linear decision rules are scale invariant
and location-shift invariant in computing the AUC of an ROC
curve, therefore a decision rule of Lβ (xi ) > c is equivalent to
a decision rule of θ0 + θ1Lβ (xi ) > c1. Let x+

i , i = 1, . . . ,
n+ be the observations of the diseased subjects, and x−

i , i =
1, . . . , n− be the observations of the disease-free subjects. For
a given threshold c, a linear decision rule classifies a subject as
diseased when Lβ (X) � c, and classifies a subject as disease
free when Lβ (X) < c. The ROC curve plots the true positive
rate versus the false positive rate for all possible c’s. The area
under an ROC curve denoted by AUC is used to summarize
the performance of a diagnostic test. It is equivalent to the
probability that in a randomly selected pair of subjects the
diseased subject will have the combined score higher than
the disease-free subject, that is,

AUC (β) = Pr
(
Lβ

(
x+

i

)
> Lβ

(
x−

j

))
.

It is evident that this probability can be consistently esti-
mated by its empirical version,

̂AUC(β) =
1

n+n−

n +∑
i=1

n−∑
j=1

[
I
(
Lβ

(
x+

i

)
> Lβ

(
x−

j

))
+ 0.5I

(
Lβ

(
x+

i

)
= Lβ

(
x−

j

))]
, (1)

where I(·) is an indicator function. When the variables used
to construct the combined test are given, the coefficients for
the combined test can be obtained by

β̂ = arg max
β

̂AUC(β).

The above estimator was shown to be consistent and asymp-
totically normal by relating to a maximum rank correlation
estimator with given predictors (Han, 1987). In many appli-
cations, however, it is unknown which variables should be
chosen to construct a combined test. To select variables that
contribute to the prediction while controlling for over-fitting
when there is a large number of variables, we penalize the
objective function (1) and solve for the coefficients β by

β̂ = arg max
β

[
̂AUC (β) −

p∑
k=1

pλ (|βk |)
]

, (2)

where λ > 0 is a tuning parameter and pλ (·) is a penalty
function such as ridge penalty or SCAD function (Fan and Li,
2001). The tuning parameter can be selected by a data-driven
procedure such as generalized approximate cross-validation
(Wahba, Lin, and Zhang, 2000).

Unfortunately maximizing the empirical AUC in (1) is a
difficult nonconvex problem (Pepe et al., 2006) and the indi-
cator function in the above objective function is not differen-
tiable. Ma and Huang (2005, 2007) used a sigmoid function
to approximate an indicator function in computing the em-
pirical AUC. Here, we introduce a support vector machine
(SVM)-based approach to approximate the empirical AUC of
an ROC curve and cast the optimization problem (2) as a pe-
nalized SVM problem. To see this connection, we first briefly
review the regular SVM. An SVM is used to perform classifi-
cation by constructing a hyperplane that optimally separates
the data into two categories. To be specific, a regular SVM
with a linear decision rule is to solve

arg min
β

[
C

2

n∑
i=1

εi +
1
2
||β||2

]
subject to yi (β0 + β1xi1 + · · · + βp xip ) � 1 − εi ,

εi � 0, i = 1, . . . , n. (3)

The above problem is equivalent to penalizing a hinge loss
function subject to an L2 penalty (Hastie, Tibshirani, and
Friedman, 2001, p. 380), that is,

arg min
β

n∑
i=1

[1 − yi (β0 + β1xi1 + · · · + βp xip )]+ + λ||β||2, (4)

where the subscript + denotes the positive part of a function.
Zhang et al. (2006) proposed to replace the L2 penalty in the
objective function in (4) with other penalty functions such
as the L1 penalty and the SCAD penalty to achieve variable
selection with SVM.

Brefeld and Scheffer (2005) showed that an approximation
of the solution to (2) can be found through the following sup-
port vector machine allowing for margins between x+

i and x−
j :

arg min
β

[
1

n+n−

n +∑
i=1

n−∑
j=1

εij +
p∑

k=1

pλ (|βk |)
]

subject to Lβ (x+
i ) − Lβ (x−

j ) � 1 − εij ,

i = 1, . . . , n+, j = 1, . . . , n−,

εij � 0, i = 1, . . . , n+, j = 1, . . . , n−. (5)

To connect the two optimization problems, note that from
the constraint Lβ (x+

i ) − Lβ (x−
j ) � 1 − εij it follows that

εij � 1 when Lβ (x+
i ) − Lβ (x−

j ) � 0. Since εij � 0, under

the constraints we have that
∑n +

i=1

∑n−
j=1 εij is greater than or

equal to the number of pairs that satisfy Lβ (x+
i ) − Lβ (x−

j ) �
0, which is also the number of pairs that violates Lβ (x+

i ) �
Lβ (x−

j ). Consequently, by solving the SVM problem (5), one
minimizes the number of pairs that violates the correct rank
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order in computing an empirical AUC. Therefore the algo-
rithm corresponds to a minimax rule that finds a model with
maximum lower bound of the empirical AUC subject to a
penalty function pλ (·) (see Brefeld and Scheffer, 2005).

Comparing (5) with (3), we see that the optimization prob-
lem (5), referred to as penalized ROC-SVM throughout this
article, is equivalent to a regular SVM (3) with input vari-
ables wij = x+

i − x−
j and outcome variables yij = 1 (Brefeld

and Scheffer, 2005). By this equivalence, the geometric inter-
pretation of the penalized ROC-SVM with squared penalty is
to find the hyperplane that passes through the origin that will
maximize the margin from the points x+

i − x−
j to the plane,

or equivalently, to ensure that the signed distance from the
points x+

i − x−
j are at least C(1 − ξi ). Since when converting

to the regular SVM all the response variables yij are positive,
misclassification occurs when βT wij = βT (x+

i − x−
j ) < 0.

The penalty function pλ (·) can be a LASSO (Tibshirani,
1996) or a SCAD function (Fan and Li, 2001) when sparse
solution is desirable. The computation of a regular penal-
ized SVM with various penalty functions was described in
Zhang et al. (2006) and Becker et al. (2009). The main algo-
rithm involves a Newton linear programming SVM algorithm
(NLPSVM; Fung and Mangasarian, 2004). By transforming
the penalized ROC-SVM to a regular penalized SVM, these
algorithms developed for the latter can be directly used.

2.2 Handling Structured Variables: SROC-SVM
In some applications, there is a hierarchical structure among
variables being considered with root variables and stem vari-
ables. For example, in the PSQ questionnaire, a stem question
will only be asked after its root question is asked. For the ith
subject, let xi1, . . . , xid be the ith subject’s root variables, and
xikj , j = 1, . . . , Jk , be the same subject’s stem variables fol-
lowing the kth root variable. Denoted by α1, . . . , αd and βkj

the corresponding coefficients. The combined linear score for
a subject is then

Lα,β (xi ) =
d∑

k=1

αk xik +
d∑

k=1

Jk∑
j=1

βkj xik j ,

where we fix α1 = 1 due to the scale invariance of a linear
decision rule in computing the empirical AUC.

To implement the group structure, we use a similar strat-
egy as in Wang et al. (2009). To be specific, we apply a
reparametrization that will enforce the hierarchical structure
of the variables, that is, we let

βkj = αk γk j , k = 1, . . . , d, j = 1, . . . , Jk . (6)

In the reparametrization (6), γkj measures the deviation of
each stem variable from its root variable. On the one hand,
the coefficients for the stem variables will be nonzero if αk �=
0 and γkj �= 0. In other words, whenever a stem variable is
selected to enter a model, its root variable will also be selected
because αk �= 0. On the other hand, when a root variable is
selected (αk �= 0), its stem variables still have the flexibility
of dropping out of the model by having γkj = 0. Therefore,
the reparametrization (6) allows for variable selection both at
the root level and at the stem level. The linear scoring system
with the reparametrized parameters is now

Lα,γ (xi ) =
d∑

k=1

αk xik +
d∑

k=1

Jk∑
j=1

αk γk j xik j ,

where we again fix α1 = 1. The variable with the coefficient
one is a baseline variable and the coefficients of the other vari-
ables are relative to this variable. The hierarchical penalized
ROC-SVM is to solve

arg min
α ,γ

[
1

n+n−

n +∑
i=1

n−∑
j=1

εij +
d∑

k=1

pλ 1 (|αk |)

+
d∑

k=1

Jk∑
l=1

pλ 2 (|γk l |)
]

subject to Lα,γ (x+
i ) − Lα,γ (x−

j ) � 1 − εij ,

i = 1, . . . , n+, j = 1, . . . , n−,

εij � 0, i = 1, . . . , n+, j = 1, · · · , n−,

where λ1 > 0 and λ2 > 0 are tuning parameters. Here we
penalize the root variables and the stem variables separately
to allow for flexibility. We solve this optimization problem
by the following iterative procedure to obtain the structured
ROC-SVM estimates, denoted as SROC-SVM:

(1) Given αk , k = 1, . . . , d, and define x̃ij k = αk xik j , and
L̃γ (xi ) =

∑d

k=1

∑Jk

j=1 γk j x̃ik j , where we fix γ11 = 1.
Solve for γ by

arg min
γ

[
1

n+n−

n +∑
i=1

n−∑
j=1

εij +
d∑

k=1

Jk∑
l=1

pλ 2 (|γk l |)
]

subject to L̃γ (x+
i ) − L̃γ (x−

j ) � 1 − εij ,

i = 1, . . . , n+, j = 1, . . . , n−,

εij � 0, i = 1, . . . , n+, j = 1, . . . , n−,

which is a penalized SVM problem.
(2) Given γkj , k = 1, . . . , d, j = 1, . . . , Jk , and define x̃ik =

xik +
∑Jk

j=1 γk j xik j , and L̃α (xi ) =
∑d

k=1 αk x̃ik , where
α1 = 1. Solve for α by

arg min
α

[
1

n+n−

n +∑
i=1

n−∑
j=1

εij +
d∑

k=1

pλ 1 (|αk |)
]

subject to L̃α (x+
i ) − L̃α (x−

j ) � 1 − εij ,

i = 1, . . . , n+, j = 1, . . . , n−,

εij � 0, i = 1, . . . , n+, j = 1, . . . , n−,

which is another penalized SVM problem.

The above two steps in the SROC-SVM can be trans-
formed to a regular penalized SVM as introduced in
Section 2.1. We use algorithms in Zhang et al. (2006) and
Becker et al. (2009) developed for regular penalized SVM and
iterate between steps (1) and (2) until convergence is reached.
The tuning parameters are selected by generalized approxi-
mate cross-validation (Becker et al., 2009). Since the linear
scoring is identifiable up to a scale in computing AUC of an
ROC, the above iterative procedure implies there is a root
variable and a stem variable with similar coefficients selected
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as baseline variables. The coefficients estimated for other vari-
ables are relative to the baseline variables.

2.3 A Penalized Hierarchical Logistic Regression Approach
When the association between variables and a dichotomous
outcome is of interest, logistic regression is commonly used
to model the association. There is an analogous penalized
logistic regression approach for structured variables, which we
describe here and we use to compare with the SROC-SVM in
the simulations. To enforce the relationship between a root
variable and a stem variable in our problem, we apply the
same reparametrization as in (6) to the coefficients of the stem
variables. A logistic regression under this reparametrization
specifies

logitPr(Di = 1 |xi ) = α0 +
d∑

k=1

αk xik +
d∑

k=1

Jk∑
j=1

αk γk j xik j .

To control for over-fitting and obtain sparse solution when the
number of variables is large, we penalize the likelihood under
the logistic regression model. To be specific, we obtain the
coefficients of the root and the stem variables by iteratively
solving the following two penalized likelihood problems:

(1) Given αk , k = 1, . . . , d and define α̃0 = α0 +
∑d

k=1
αk xik , and x̃ij k = αk xik j , solve for γ by minimizing

− 1
n

∑
i

⎡⎢⎢⎢⎢⎢⎣Di log

⎛⎜⎜⎜⎜⎜⎝
exp

(
α̃0 +

∑
k ,j

γk j x̃ik j

)

1 + exp

(
α̃0 +

∑
k ,j

γk j x̃ik j

)
⎞⎟⎟⎟⎟⎟⎠

+ (1 − Di ) log

⎛⎜⎜⎜⎜⎜⎝
1

1 + exp

(
α̃0 +

∑
k ,j

γk j x̃ik j

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
+

d∑
k=1

Jk∑
j=1

pλ 2 (|γk j |);

(2) Given γkj , k = 1, . . . , d, j = 1, . . . , Jk and define x̃ik =
xik +

∑Jk

j=1 γk j xik j , we solve for α by minimizing

− 1
n

∑
i

⎡⎢⎢⎢⎢⎣Di log

⎛⎜⎜⎜⎜⎝
exp

(
α0 +

∑
k

αk x̃ik

)

1 + exp

(
α0 +

∑
k

αk x̃ik

)
⎞⎟⎟⎟⎟⎠

+ (1 − Di ) log

⎛⎜⎜⎜⎜⎝ 1

1 + exp

(
α0 +

∑
k

αk x̃ik

)
⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦
+

d∑
k=1

pλ 1 (|αk |),

where pλ (·) is an LASSO or a SCAD penalty function.
Zou and Li (2008) provided fast one-step solutions to
the above optimization problems, which can be applied
here. We use five-fold cross-validation to select tun-
ing parameters in each step. A linear decision rule is
constructed with the parameters estimated from the
logistic regression, that is, Lα̂ ,γ̂ (xi ) =

∑d

k=1 α̂k xik +∑d

k=1

∑Jk

j=1 α̂k γ̂k j xik j to compute the empirical AUC.

2.4 Inference Procedures via Bootstrap
Here we discuss how to obtain inference for the estimated
AUC of an ROC curve. It is well known that if one uses the
data to obtain parameters of a model and then uses the same
data to estimate measures of prediction performance or model
fit (for example, prediction error or AUC of an ROC), the
prediction accuracy will be over-estimated (Efron, 1986). An
honest estimate of the classification performance should be
assessed using independent data. In practice, however, such
an independent data is usually not available. We propose to
evaluate the estimated AUC through the following bootstrap
procedure:

Step 1. Generate the bth copy of the bootstrap sample with
size n from the observed data.

Step 2. Partition the bootstrap sample into a training set
of size n1 = 2n/3 and a testing set of size n2 = n/3.

Step 3. Fit the model using data in the training set to obtain
SROC-SVM. Use the estimated coefficients to compute the
linear decision rule and the AUC of the ROC curve using
data in the testing set.

Step 4. To avoid getting a large AUC by chance with a
“lucky partitioning,” repeat the random partition in steps 2
and 3 m times, and use the mean AUC of ROC across repe-
titions as the estimated AUC of the bth bootstrap sample.

Step 5. Repeat the steps 1 through 4B times to obtain the
bootstrap distribution of ̂AUC .

By this procedure, we can obtain a distribution and the
confidence interval of the estimated AUC. When the associ-
ation between outcome and predictor in the final model is
also of interest, to obtain a confidence interval for the esti-
mated coefficients, one can use nonparametric bootstrap. For
prospective studies, one takes independent bootstrap samples
with replacement. For retrospective studies, one takes boot-
strap samples for cases and controls separately. For each boot-
strap sample, one can obtain the SROC-SVM and report the
confidence interval based on the empirical quantiles of the
bootstrapped estimates.

3. Simulations
To investigate performance of the proposed methods, we con-
ducted the following two simulation studies. The first study
simulates unstructured variables and the second study simu-
lates structured variables.

3.1 Simulation Study I
The binary outcomes Y were generated from the generalized
linear model

Pr(Y = 1|X) = g(XT β), (7)

where g is a link function and β = (1.5, 0, 0, 0, 2, 0, 0, 0, 0, 0)T .
We considered four different models. In models 1 and 3, g(u)
= exp (u)/(1 + exp (u)) is the logit-link function. In models 2
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Table 1
Independent structure: AUC and coefficients; Training set n = 100, testing set n = 50

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
True relative coeff. AUC 1 0 0 0 1.33 0 0 0 0 0

Model 1 0.910∗

ROC-SVM 0.908 1.00 0.01 −0.01 0.01 1.27 0.00 0.00 0.01 −0.01 0.01
Logistic 0.905 1.03 0.02 −0.01 0.00 1.33 0.00 0.01 −0.01 0.00 0.00
SVM 0.900 1.00 0.02 −0.01 −0.01 1.31 0.02 0.00 −0.01 0.01 −0.01

Model 2 0.889∗

ROC-SVM 0.871 1.00 −0.01 0.01 0.01 1.34 −0.01 0.01 0.00 −0.01 0.01
Logistic 0.862 0.69 −0.01 0.02 0.00 0.93 0.00 0.00 0.00 0.01 0.01
SVM 0.858 1.00 0.00 0.02 0.01 1.41 0.00 0.01 0.01 −0.01 0.01

Model 3 0.856∗

ROC-SVM 0.847 1.00 −0.02 0.01 0.02 1.29 −0.03 0.02 −0.01 0.02 0.01
Logistic 0.814 0.91 −0.01 0.01 0.03 1.29 −0.05 0.01 −0.02 0.03 0.00
SVM 0.829 1.00 −0.01 0.01 0.01 1.31 −0.01 0.00 0.03 0.02 0.00

Model 4 0.888∗

ROC-SVM 0.878 1.00 0.06 −0.01 −0.02 1.45 0.01 0.00 −0.03 0.01 0.01
Logistic 0.845 1.13 0.19 0.05 0.04 1.92 0.13 0.11 0.07 0.07 0.17
SVM 0.860 1.00 0.08 −0.02 0.02 1.41 0.03 0.03 0.01 −0.01 0.05
∗True AUC estimated from datasets with sample size n = 500 based on 200 replications.

and 4, g(u) = 1/(1 + exp (− u/2)) for u < 0 and g(u) = 1/(1
+ exp (−2u)) for u � 0. Such model was also used in Ma and
Huang (2007). For models 1 and 2, the variables (x1, . . . , x10)
were generated from a multivariate normal distribution with
mean zero, variance one, and an AR-1 correlation with ρ =
0.5. For models 3 and 4, the variables were first generated from
multivariate normal distribution as in models 1 and 2, then
we dichotomized x2, . . . , x10 by taking each variable as one if
it was greater than or equal to 0 and otherwise 0. We kept
x1 as a continuous variable. The sample size for the training
dataset was 100 and for the testing dataset was 50.

Three methods with SCAD penalty were compared: the
ROC-SVM, penalized logistic regression, and regular penal-
ized SVM. For each copy of the simulation data, we used the
bootstrap procedure described in Section 2.4 to compute an
honest estimate of the AUC. Due to computational burden of
simulations, here we used B = 100 bootstrap samples. In the
real data analysis, we used B = 1000 bootstrap samples. We
then reported the mean AUC averaged across all simulation
repetitions to compare different methods. For both the ROC-
SVM and the SVM, x1 was chosen as the baseline variable.
Table 1 summarizes the mean AUC and the mean estimated
coefficients based on 200 replications.

From Table 1 we can see that the ROC-SVM has the high-
est AUC among the three methods in all of the models re-
gardless of whether the logistic link is correctly or incorrectly
specified. The penalized logistic regression and SVM perform
similarly in terms of AUC. However, we can see that when
the link function is misspecified as a logistic link in models
2 and 4, the estimated coefficients from the penalized logis-
tic regression are severely biased. In contrast, ROC-SVM and
SVM are robust to misspecification of the link function due
to their nonparametric nature: in all the models they yield a
consistent estimate for the relative coefficients of the predic-
tors.

To compare sparsity of the fitted models by different meth-
ods, we summarize measures of model complexity and other

Table 2
Independent structure: model sparsity; training set n = 100,

testing set n = 50

No. of zeros Proportion of

Method C IC Under-fit Correct-fit Over-fit

Model 1
ROC-SVM 1.990 0.185 0.010 0.860 0.130
Logistic 1.975 0.480 0.025 0.695 0.280
SVM 1.960 0.355 0.040 0.720 0.240

Model 2
ROC-SVM 1.995 0.220 0.005 0.820 0.175
Logistic 1.885 0.455 0.115 0.615 0.270
SVM 1.940 0.580 0.055 0.580 0.365

Model 3
ROC-SVM 1.940 0.435 0.060 0.675 0.265
Logistic 1.885 0.780 0.110 0.460 0.430
SVM 1.815 0.365 0.165 0.580 0.255

Model 4
ROC-SVM 1.975 0.435 0.025 0.685 0.290
Logistic 1.790 0.875 0.195 0.405 0.400
SVM 1.920 0.900 0.080 0.440 0.480

features as in Zou and Li (2008). In Tables 2 and 4, the column
indexed as “C” is the mean number of variables with nonzero
coefficients correctly estimated to be nonzero. The column
indexed as “IC” is the mean number of variables with zero
as coefficients incorrectly estimated as nonzero in the model.
The column “Under-fit” is the proportion of models that miss
some of the non-noise variables, the column “Correct-fit” is
the proportion of models that correctly select the exact subset
of the non-null variables, and “Over-fit” is the proportion of
models that include some noise variables.

It can be seen from Table 2 that the ROC-SVM has the
highest proportion of selecting the exact subset of variables
in all simulation scenarios. For all methods, the proportion
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Table 3
Hierarchical structure: AUC and coefficients

Method X1 X1a X1b X1c X2 X2a X2b X2c X3 X3a X3b X3c
True coeff. AUC 1 1 0 0 1 1.5 0 0 0 0 0 0

Model 1 0.909∗

SROC-SVM 0.881 1 1 0.05 −0.03 1.00 1.44 −0.01 −0.01 0.04 0.02 −0.01 0.00
Slogistic 0.849 1.15 0.99 0.03 −0.01 1.14 1.52 −0.05 0.03 0.00 −0.05 0.01 0.00
Logistic 0.840 1.01 1.02 0.05 −0.03 0.95 1.61 −0.07 0.02 −0.01 −0.01 −0.01 0.02
SVM 0.836 1 1.03 0.03 −0.02 0.95 1.66 −0.07 0.03 −0.03 0.01 −0.02 0.03

Model 2 0.897∗

SROC-SVM 0.864 1 1 0.01 0.00 0.99 1.48 0.02 0.00 0.019 0.00 −0.01 0.00
Slogistic 0.822 0.88 0.61 0.03 −0.04 0.83 0.81 0.05 0.06 −0.07 −0.04 0.01 −0.02
Logistic 0.811 0.74 0.71 0.05 −0.04 0.68 1.08 0.04 0.06 −0.02 0.02 −0.01 0.03
SVM 0.807 1 1.09 0.04 −0.05 0.95 1.82 0.02 0.01 −0.03 0.02 −0.06 −0.04

Model 3 0.882∗

SROC-SVM 0.849 1 1 0.04 −0.04 1.13 1.71 0.00 −0.10 0.05 0.02 −0.03 0.01
Slogistic 0.801 1.29 0.91 0.02 −0.01 1.27 1.45 −0.04 −0.05 0.05 −0.13 0.06 −0.04
Logistic 0.757 1.01 1.02 0.05 −0.03 0.95 1.61 −0.07 0.02 −0.01 −0.01 −0.01 0.02
SVM 0.743 1 1.15 0.06 −0.03 0.95 1.69 0.01 −0.05 0.00 −0.06 0.00 0.03

Model 4 0.903∗

SROC-SVM 0.881 1 1 0.12 0.03 1.12 1.76 0.08 −0.01 0.05 0.01 0.00 −0.01
Slogistic 0.805 1.35 0.74 0.25 0.04 1.51 1.26 0.13 0.09 0.02 0.02 0.05 −0.05
Logistic 0.734 1.32 0.73 0.30 0.08 1.34 1.40 0.14 0.11 0.01 0.15 0.13 0.02
SVM 0.728 1 1.06 0.02 0.05 0.96 1.66 −0.03 −0.04 −0.05 0.07 0.13 0.00
∗True AUC estimated from datasets with a large sample size (n = 500) based on 200 replications.

Table 4
Hierarchical structure: model sparsity

No. of zeros Proportion of

Under- Correct- Over-
Method C IC Fit Fit Fit

Model 1
SROC-SVM 4.000 0.395 0.000 0.685 0.315
Slogistic 3.785 1.215 0.145 0.315 0.540
Logistic 3.615 1.090 0.345 0.225 0.430
SVM 3.475 1.275 0.395 0.145 0.460

Model 2
SROC-SVM 4.000 0.330 0.000 0.705 0.295
Slogistic 3.655 1.505 0.255 0.240 0.505
Logistic 3.355 1.295 0.495 0.155 0.350
SVM 3.650 1.965 0.295 0.135 0.570

Model 3
SROC-SVM 3.935 0.310 0.045 0.745 0.210
Slogistic 3.575 1.215 0.245 0.245 0.510
Logistic 3.695 1.480 0.285 0.175 0.540
SVM 3.615 1.650 0.355 0.155 0.490

Model 4
SROC-SVM 3.970 0.220 0.015 0.790 0.195
Slogistic 3.470 0.640 0.335 0.335 0.330
Logistic 3.505 0.795 0.440 0.240 0.320
SVM 3.680 1.525 0.260 0.180 0.560

of choosing the correct model is higher in the models with
continuous outcomes (models 1 and 2) than the models with
binary outcomes (models 3 and 4). With the same type of out-
come, all methods perform better on models with all contin-
uous predictor variables (models 1 and 2) compared to mod-
els with predominantly binary predictor variables (models 3

and 4). Moreover, the proportion of choosing an under-fitted
model using ROC-SVM is less than or equal to 0.06, hence is
negligible in all of the four simulation settings.

3.2 Simulation Study II
Parallel to the unrelated variables model in the preceding
section, we simulated four similar models with hierarchically
structured variables. The outcomes were generated from (7)
with β = (1, 1, 0, 0, 1, 1.5, 0, 0, 0, 0, 0, 0)T . There were three
groups of predictors with each group having one root variable
and three stem variables. For all the models, variables within
each group were generated from multivariate normal distribu-
tion with mean zero, variance one, and an AR-1 correlation
between variables with ρ = 0.5. Variables in distinct groups
were generated independently. For models 3 and 4, we kept
two variables as continuous predictors while we dichotomized
all the other variables as one if they were greater than or
equal to zero, and otherwise as zero. We specified the first
variable in each group as the root variable and the following
three variables as the stem variables. This simulation setting
is close to the real data analyzed in Section 4.

Four methods with SCAD penalty were compared: hierar-
chical ROC-SVM, hierarchical penalized logistic regression,
regular penalized logistic regression, and regular penalized
SVM. The total sample size was 150 with 100 as the training
set and 50 as the testing set. The AUCs were obtained using
the similar bootstrap procedure described in Sections 2.4 and
3.1. For fair comparison, for the methods that treat variables
as unrelated (regular penalized logistic regression and regu-
lar penalized SVM), when a root variable is not selected in
the final model then its stem variables will be automatically
dropped. Table 3 summarizes the analysis results based on
200 replications.
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From this set of simulations, we see that the SROC-SVM
and hierarchical logistic regression that take into account the
structure among variables have higher AUC than the regular
penalized logistic regression and SVM that ignore the hierar-
chical structure. The improvement in AUC for SROC-SVM
is nonignorable compared to the penalized logistic regression
and regular SVM: the improvement is about 4% for models 1
and 2 and about 10% for models 3 and 4. Therefore when there
are binary variables involved as in our data analysis example,
the advantage of SROC-SVM is more notable. Analogous to
the models with unrelated variables in the preceding section,
when the link function is not a logistic function, the penalized
logistic regression with or without accounting for the hierar-
chical structure lead to biased estimates of the coefficients.
Again, SROC-SVM and SVM are robust to the choice of link
function.

We report the sparsity of the fitted models by different
methods in this simulation setting in Table 4. From this ta-
ble, we can see that the SROC-SVM and hierarchical logistic
regression accounting for the structure among variables are
more likely to choose correct models and less likely to choose
under-fitted models. The SROC-SVM clearly outperforms the
other three methods. The proportion of SROC-SVM choos-
ing an under-fitted model is negligible, which is in contrast
to the higher proportion using the other three methods. This
also explains why they have a smaller AUC compared to the
SROC-SVM.

4. A Real Data Example
In this section, we apply the proposed methods to the PSQ
data introduced in Section 1. In this study, there were 77
Latino subjects recruited and administered PSQ and other
surveys along with a gold standard psychosis diagnostic in-
terview (DSM-IV SCID; First et al., 1998). The PSQ was
developed by Bebbington and Nayani (1995) and studied in
multiple clinical populations in the primary care clinics as well
as in our sample. The screener contains variables grouped into
five domains: hypomania, thought interference, persecution,
strange experiences, and hallucinosis. The hierarchical struc-
ture was chosen for two reasons: First, to start with ques-
tions that were deliberately vague as a gentle introduction, so
as to avoid “over-incisive” initial questions about psychosis
and thereby decrease subjects’ desire to continue. Second, to
streamline the instrument so that subjects who responded
negatively to the initial question could be given a negative
answer to later items. The questions thus act as a kind of
a funnel, with gentle initial questions getting progressively
sharper. The questionnaire requires both kinds of questions

in order to entice subjects in, but then reduce the number of
likely false positives, which is known to be high for psychosis
screeners.

Outcomes collected on the PSQ are binary variables. In
addition, there are survey questions such as “how many days
have you been off from work/school” with continuous out-
comes. All the legitimate combinations of variables in each
domain are listed in Table 5. Combinations with only stem
variables but not their root variables are not allowed. In
the analysis, we standardized the continuous variables by
their standard deviations. The hierarchical dependence in
the PSQ questions measured by the correlation between the
root question and their stem questions ranges from 0.52 to
0.83.

We first apply the ROC-SVM and penalized logistic regres-
sion without considering structure among the variables. The
AUCs of the ROC for each root question alone were 0.382,
0.453, 0.440, 0.541, 0.699, and 0.691. Since Q5 has the largest
AUC, we set it as the baseline variable for the ROC-SVM.
The ROC-SVM chooses variables Q1, Q3b, Q4a, Q5, Q5a,
and Q6 with coefficients β̂ = (0.56, 1.26, 1.11, 1, 0.94, 0.35)T

and AUC = 0.841. The penalized logistic regression chooses
variables Q1, Q3a, Q3b, Q5, Q5a, and Q6 with coefficients
β̂ = (3.30, 9.27, 8.26, 4.28, 4.80, 1.05)T and AUC = 0.859. The
AUCs of the ROC-SVM and penalized logistic regression that
did not consider structure among the variables were 0.841 and
0.859, which were not very low. However, none of them gives a
legitimate model, since they choose some stem variables with-
out their root variables. For example, ROC-SVM chooses Q3b
without its root variable Q3.

We next apply SROC-SVM to the data to accommodate
the hierarchical structure of the PSQ. Based on results from
the ROC-SVM and penalized logistic regression, we can see
that Q5 and Q5a have large effects with similar coefficients,
thus we choose Q5 and Q5a as the baseline variables so that
their coefficients are set to be one. In the final model, variables
Q1, Q3, Q3b, Q5, Q5a, and Q6 are chosen with estimated co-
efficients β̂ = (0.68, 0.22, 0.72, 1, 1, 0.12)T. To see whether the
procedure selects variables that have good predictive perfor-
mance, we bootstrapped 1000 times from the original data
set and split the data into a training set of the size 2n/3 and
a testing set of size n/3. Applying the procedure in Section
2.4, we obtain a mean ̂AUC = 0.876, and a 95% confidence
interval of ̂AUC of [0.636, 1] based on the bootstrap sample
quantiles. In practice, an AUC of the ROC between 0.7 and
0.9 is considered to be useful or having a good predictive per-
formance (Swets, 1988). This range covers the estimated AUC
of our final model.

Table 5
Structure of the variables in PSQ of the psychosis data analysis

Domain Variables involved Legitimate combinations

PSQ G1 Q1, Q1a, Q1b NULL, {Q1}, {Q1 Q1a}, {Q1 Q1b}, {Q1 Q1a Q1b}
PSQ G2 Q2, Q2a NULL, {Q2}, {Q2 Q2a}
PSQ G3 Q3, Q3a, Q3b NULL, {Q3}, {Q3 Q3a}, {Q3 Q3b}, {Q3 Q3a Q3b}
PSQ G4 Q4, Q4a NULL, {Q4}, {Q4 Q4a}
PSQ G5 Q5, Q5a NULL, {Q5}, {Q5 Q5a}
Others Q6 NULL, {Q6}
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5. Discussion
We have developed prediction-based structured variable se-
lection procedures through penalizing empirical AUC of an
ROC. The computational issues were resolved by using a con-
nection between the empirical AUC and the penalized support
vector machine. The proposed ROC-SVM is applicable to un-
structured variables. To account for certain hierarchical struc-
ture (e.g., weak hierarchical dependence, Yuan and Lin, 2007)
among variables, we applied an appropriate reparametrization
and proposed SROC-SVM. Here we illustrate our methods
assuming each root variable has several stem variables. It is
straightforward to accommodate variables that do not have
stem variables and therefore are unrelated with other vari-
ables. The proposed methods are illustrated for binary disease
outcomes. Extensions can easily be made to accommodate
continuous or survival outcomes. For example, Obuchowski
(2006) generalizes the usual dichotomous ROC analysis to
continuous outcomes. Heagerty and Zheng (2005) proposed
ROC curves for evaluating predictive accuracy for survival
outcomes. These methods can be implemented for the pro-
posed SROC-SVM without complication.

A limitation of the ROC-based procedures is that one will
choose baseline variables before the analysis. Our simulations
(results not shown) suggest that the model accuracy and AUC
of the ROC curve is not sensitive to the choice of the baseline
variables, as long as they are indeed predictive of the outcome.
However, if uninformative predictors are forced to enter the
model as baseline variables, the performance of the methods
can be severely compromised. This phenomena is consistent
with that reported in Ma and Huang (2005, 2007). In prac-
tice, to avoid choosing an unpredictive variable as baseline,
we can compute AUC using each individual predictor and the
outcome and choose the one with the highest AUC as the
baseline variable.

The asymptotics of the coefficients estimated from the
ROC-SVM and SROC-SVM appear to be complicated. When
the variables are given a priori, the consistency and asymp-
totic distribution are known (Han, 1987). For penalized SVM
with unrelated variables, Koo et al. (2008) showed that the
solution of a regular penalized SVM converges to a minimizer
of an appropriate loss function. Future research on this topic
is needed.

Here, we turn the AUC-based penalized SVM problem to
a regular penalized SVM that allows algorithms developed
for the latter to be directly used. In general, the SVM algo-
rithms converge fast. However, the computation burden in-
creases with the sample size and the number of candidate
variables. In such cases, more efficient SVM algorithms pro-
posed in Calders and Jaroszewicz (2007) are useful.
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