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Summary. In clinical practice, an informative and practically useful treatment rule should be simple and transparent.
However, because simple rules are likely to be far from optimal, effective methods to construct such rules must guarantee
performance, in terms of yielding the best clinical outcome (highest reward) among the class of simple rules under consideration.
Furthermore, it is important to evaluate the benefit of the derived rules on the whole sample and in pre-specified subgroups
(e.g., vulnerable patients). To achieve both goals, we propose a robust machine learning method to estimate a linear treatment
rule that is guaranteed to achieve optimal reward among the class of all linear rules. We then develop a diagnostic measure
and inference procedure to evaluate the benefit of the obtained rule and compare it with the rules estimated by other methods.
We provide theoretical justification for the proposed method and its inference procedure, and we demonstrate via simulations
its superior performance when compared to existing methods. Lastly, we apply the method to the Sequenced Treatment
Alternatives to Relieve Depression (STAR*D) trial on major depressive disorder and show that the estimated optimal linear
rule provides a large benefit for mildly depressed and severely depressed patients but manifests a lack-of-fit for moderately
depressed patients.

Key words: Dynamic treatment regime; Machine learning; Qualitative interaction; Robust loss function; Treatment
response heterogeneity.

1. Introduction

Heterogeneity in patient response to treatment is a long-
recognized challenge in the clinical community. For example,
in adults affected by major depression, only around 30% of
patients achieve remission with a single acute phase of treat-
ment (Rush et al., 2004; Trivedi et al., 2006); the remaining
70% of patients require augmentation of the current treatment
or a switch to a new treatment. Thus, a universal strategy that
treats all patients by the same treatment is inadequate, and
individualized treatment strategies are required to improve
response in individual patients. In this regard, rapid advances
in technologies for collecting patient-level data have made it
possible to tailor treatments to individual patients based on
specific characteristics, thereby enabling the new paradigm of
personalized medicine.

Statistical methods have been proposed to estimate optimal
individualized treatment rules (ITR) (Lavori and Dawson,
2004) using predictive and prescriptive clinical variables
that manifest quantitative and qualitative treatment inter-
actions, respectively (Gunter et al., 2011; Carini et al., 2014).
Q-learning (Watkins, 1989; Qian and Murphy, 2011) and A-
learning (Murphy, 2003; Blatt et al., 2004) are proposed to
identify an optimal ITR. Q-learning estimates an ITR by
directly modelling the Q-function. A-learning only requires
posited models for contrast functions and uses a doubly
robust estimating equation to estimate the contrast functions.
This makes A-learning more robust to model misspecifica-
tion than Q-learning and provides a consistent estimation
of an ITR (Schulte et al., 2014). Other proposed approaches

include semiparametric methods and machine learning meth-
ods (Foster et al., 2011; Zhang et al., 2012; Zhao et al., 2012;
Chakraborty and Moodie, 2013). For example, the virtual
twins approach (Foster et al., 2011) uses tree-based estima-
tors to identify subgroups of patients who show larger than
expected treatment effects. Zhang et al. (2012, 2013) esti-
mated the optimal ITR by directly maximizing the value
function over a specified parametric class of treatment rules
through augmented inverse probability weighting. In con-
trast, Zhao et al. (2012) proposed outcome weighted learning
(O-learning), which utilizes weighted support vector machine
to maximize the value function. More recently, Huang and
Fong (2014) proposed a robust machine learning method to
select the ITR that minimizes a total burden score. Interactive
Q-learning (Laber et al., 2014) models two ordinary mean-
variance functions instead of modeling the predicted future
optimal outcomes. Fan et al. (2016) proposed a concordance
function for prescribing treatment, where a patient is more
likely to be assigned to a treatment than another patient if
s/he has a greater benefit than the other patient.

In clinical practice, simple treatment rules such as linear
rules, are preferred due to their transparency and conve-
nience for interpretation. However, when only linear rules
are in consideration, many existing methods including semi-
parametric models and some machine learning methods may
not yield a rule with optimal performance, because they
focus on optimization of a surrogate objective function of
treatment benefit. Using surrogate objective functions may
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only guarantee the optimality when there is no restriction
on the functional form of the treatment rules. For exam-
ple, with O-learning, the objective function is a weighted
hinge-loss, which yields the optimal rule among nonparamet-
ric rules, but may not be optimal when the candidate rules are
restricted to the linear form. Therefore, learning algorithms
are desired to derive a treatment rule with guaranteed perfor-
mance when constraints are placed on the class of candidate
rules.

An additional consideration is the need to evaluate,
through diagnostics, any approach for rule estimation. How-
ever, less emphasis has been placed on the evaluation of the
estimated ITR in the context of personalized medicine. Resid-
ual plots were used to evaluate model fit for G-estimation
(Rich et al., 2010) and Q-learning (Ertefaie et al., 2016). In
the recent work by Wallace et al. (2016), a dynamic treat-
ment regime (DTR) is estimated by G-estimation and double
robustness is exploited for model diagnosis. How to evaluate
the optimality of an ITR in general remains an open research
question.

The purpose of this article is: we first develop a general
approach to identify a linear ITR with guaranteed perfor-
mance; we then propose a diagnostic method to evaluate
performance of any derived ITR including the proposed
one. Our two-stage approach separates the estimation of
the ITR from its evaluation and the sample used in each
stage. Specifically, in the first stage, we propose ramp-loss-
based (McAllester and Keshet, 2011; Huang and Fong, 2014)
learning for the estimation and we show that this approach
guarantees the derived linear ITR to be asymptotically opti-
mal within the class of all linear rules. We refer our method
as Asymptotically Best Linear O-learning, ABLO. For the
second stage, in practice, it is infeasible to expect that an
ITR that benefits each individual can be identified due to
the unknown treatment mechanism and the likely omission
of some prescriptive variables. Thus, we propose a practical
solution to calibrate the average ITR effect in the popula-
tion given the observed variables, or in pre-specified important
subgroups (e.g., patients in most severe state). Specifically, to
obtain an ITR evaluation criterion, we define the benefit of a
candidate ITR as the average difference in the value function
between those who follow the ITR and those who do not. We
then use the ITR benefit as a diagnostic measure to evaluate
its optimality. Our method exploits the fact that if an ITR
is truly optimal for all individuals, then for any given patient
subgroup, the average outcome for patients who are treated
according to the ITR should be greater than for those who
are not treated according to the ITR. On the contrary, if the
average outcome of the ITR is worse for some patients who
follow the ITR than for those who do not, then the ITR is
not optimal on this subgroup.

Compared to the existing literature, two main contribu-
tions of this work are to propose a benefit function to calibrate
an ITR, and a diagnostic procedure to evaluate optimality of
a derived ITR, while most of the existing work focuses on
the estimation of ITR/DTR. A third contribution is to prove
asymptotic properties of ITR estimated under the ramp loss
(Huang and Fong, 2014). Asymptotic results in the existing
literature (e.g., Zhao et al., 2012) are obtained for the hinge
loss. Due to these theoretical results, we can provide valid

statistical inference procedure for testing optimality of an ITR
using asymptotic normality.

In the remainder of this article, we show that ABLO consis-
tently estimates the ITR benefit for a class of candidate rules
regardless of two potential pitfalls: (i) the consistency of bene-
fit estimator is maintained even though the functional form of
the rule is misspecified; (ii) the rule does not include all pre-
scriptive/tailoring variables and thus the true global optimal
rule is not in the specified class. We further derive the asymp-
totic distribution for the proposed diagnostic measure. We
conduct simulation studies to demonstrate finite sample per-
formance and show advantages over existing machine learning
methods. Lastly, we apply the method to the Sequenced
Treatment Alternatives to Relieve Depression (STAR*D) trial
on major depressive disorder (MDD), where substantial treat-
ment response heterogeneity has been documented (Trivedi
et al., 2006; Huynh and McIntyre, 2008). Our analyses esti-
mate an optimal linear ITR, and we demonstrate a large
benefit in mildly depressed and severely depressed patients
but a lack-of-fit among moderately depressed patients.

2. Methodology

Let R denote a continuous variable measuring clinical
response after treatment (e.g., reduction of depressive symp-
toms). Without loss of generality, assume a large value of
R is desirable. Let X denote a vector of subject-specific
baseline feature variables, and let A = 1 or A = −1 denote
two alternative treatments being compared. Assume that we
observe (Ai, Xi, Ri) for the ith subject in a two-arm random-
ized trial with randomization probability P(Ai = a|Xi = x) =
π(a|x), for i = 1, ..., n.

An ITR, denoted as D(X), is a binary decision function
that maps X into the treatment domain A = {−1, 1}. Let PD
denote the distribution of (A, X, R) in which D is used to
assign treatments. The value function of D satisfies

V (D) = ED(R)=
∫

R dPD =
∫

R
dPD

dP
=E

{
RI(A = D(X))

π(A|X)

}
.

(1)

In most applications, D(X) is determined by the sign
of a function, f (X), which is referred to as the ITR
decision function. That is, D(X) = sign(f (X)). In general
settings, f ∈ F can take any form, either a parametric
function or a non-parametric function. To quantify the ben-
efit of an ITR, a measure related to the value function
is a natural choice. The mean difference is widely used
to compare the average effect of two treatments. Anal-
ogously, we define the benefit function corresponding to
an ITR as the difference in the value function between
two complementary strategies: one that assigns treatments
according to D(X) and the other assigns according to
the complementary rule −D(X) for any given feature vari-
ables X. That is, the benefit function for D(X) = sign
(f (X)) is

δ(f (X))=E

{
R|A = sign(f (X)),X

}
−E

{
R|A = − sign(f (X)),X

}
.

(2)
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2.1. Estimating Optimal Linear Treatment Rule

To obtain a practically useful and transparent ITR, we
consider a class of linear ITR decision functions, denoted
by L, and estimate the optimal linear function f ∗

L ∈
L, that maximizes the value function (1) among this
class. To this end, following the original idea of Liu
et al. (2014), we note that maximizing V (D) is equiva-
lent to minimizing a residual-weighted misclassification error
given as

E

[
|R − r(X)| I

{
A sign(R − r(X)) �= D(X)

}
π(A|X)

]
,

where r(X) is any function of X, taken as an approximation to
the conditional mean of R given X. Thus, we aim to minimize
the empirical version of the above quantity, given as

1

n

∑
i

|Wi|I(AiZi �= D(Xi))

π(Ai|Xi)
= 1

n

∑
i

|Wi|I(AiZif (Xi) < 0)

π(Ai|Xi)

for f ∈ L, where Wi = Ri − r̂(Xi), Zi = sign(Wi), and r̂(X) is
obtained from a working model by regressing Ri on Xi (Liu
et al., 2014).

The above optimization with zero-one loss is a non-
deterministic polynomial-time hard (NP-hard) problem
(Natarajan, 1995). To avoid this computational challenge,
the zero-one loss was replaced by some convex surrogate
loss in existing methods, for instance, the squared loss or
hinge loss. Let f ∗ denote the global optimal decision func-
tion corresponding to the optimal treatment rule among
any decision functions. That is, f ∗(X) = E(R|A = 1, X) −
E(R|A = −1, X). When L consists of linear decision functions
that are far from the global optimal rule such that f ∗ �∈ L,
estimating optimal linear rule by minimizing the surrogate
loss (e.g., hinge loss or squared loss) no longer guarantees
that the induced value or benefit is maximized among the
linear class.

In order to obtain the best linear ITR with guaranteed
performance, we propose to use an authentic approximation
loss that will converge to zero-one loss, referred to as the
ramp loss (McAllester and Keshet, 2011; Huang and Fong,
2014), for value maximization. The ramp loss, as plotted in
Figure A.1 in the Supplementary Material, has been used in
the machine learning literature to provide a tight bound on
the misclassification rate (Collobert et al., 2006; McAllester
and Keshet, 2011). Mathematically, this function can be
expressed as

hs(u) = I(u ≤ − s

2
) − u − s

2s
I(− s

2
< u <

s

2
) (3)

where s is a tuning parameter to be chosen in a data-
adaptive fashion. Clearly, when s converges to zero, the
ramp loss function converges to the zero-one loss; thus,
we expect that the estimated rule from this loss function
should approximately maximize the value function among
class L.

Specifically, with the ramp loss (3), we propose to estimate
the optimal linear ITR decision function, f ∗

L(X), by mini-
mizing the penalized weighted sum of ramp loss of a linear
decision function f (X) = β0 + XT β,

L(f ) =C

n∑
i=1

|Wi|hs(ZiAif (Xi))

π(Ai|Xi)
+ 1

2
||β||2, (4)

where C is the cost parameter. Because the ramp loss is not
convex, we solve the optimization by the difference of con-
vex functions algorithm (DCA) (An et al., 1996). First, we
express hs(u) as the difference of two convex functions, hs(u) =
h1,s(u) − h2,s(u) = ( 1

2
− u

s
)+ − (− 1

2
− u

s
)+, where function (x)+

denotes the positive part of x. Let ηi denote ZiAif (Xi). With
the DCA, starting from an initial value for η, the minimiza-
tion in (4) can be carried out iteratively, and denote the
solution as

β̂ = arg min

n∑
i=1

C
|Wi|{h1,s(ηi) − ĥ2,s(ηi, η

0
i )}

π(Ai|Xi)
+ 1

2
||β||2, (5)

where ĥ2,s(ηi, η
0
i ) = h2,s(η

0
i ) + h′

2,s(η
0
i )ηi, and h′

2,s(u) =
−I(u/s < −1/2)/s. The iteration stops when the change in
the objective function is less than a pre-specified threshold.
Detailed steps in estimating β are provided in Section A1 of
the Supplementary Materials.

We denote the optimal linear decision function obtained
by the above procedure as f̂ ∗

L(X) = β̂0 + XT β̂, and denote

the optimal ITR as sign(f̂ ∗
L(X)). In the Supplementary

Materials (Section A2), we show that f̂ ∗
L converges to the

true best linear rule, f ∗
L, asymptotically, at a slower rate

than the usual root-n rate. We refer the proposed estima-
tion procedure as Asymptotically Best Linear O-learning,
ABLO. We also prove the asymptotic normality of β̂ and
the estimated benefit function, which provides justifica-
tion of the inference procedures proposed in the next two
sections.

2.2. Performance Diagnostics for the Estimated ITR

ABLO guarantees that the optimal value among the class
L is achieved asymptotically. Nevertheless, the optimal lin-
ear rule f ∗

L(X) may still be far from the global optimal,
f ∗, such that for some important subgroups, f ∗

L(X) may
be non-optimal or even worse than the complementary
treatment rule. Therefore, an empirical measure must be
constructed to evaluate the performance of an estimated
ITR.

To develop a practically feasible diagnostic method for any
estimated ITR, given by sign(f̂ (X)), we note that if f̂ (X) is

truly optimal among any decision functions in F, that is, f̂ (X)
has the same sign as f ∗(X), then for any subgroup defined
by X ∈ C for a given set C in the domain of X, the value
function for those subjects whose treatments are the same as
sign(f̂ (X)) should always be larger than or equal to the value
function for those subjects with the same X ∈ C, but whose
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treatments are opposite to sign(f̂ (X)). This is because

E

⎡⎣RI

{
A=sign(f̂ (X))

}
π(A|X)

∣∣∣X
⎤⎦−E

⎡⎣RI

{
A=−sign(f̂ (X))

}
π(A|X)

∣∣∣X
⎤⎦

= I(f ∗(X)>0)E(R|A = 1,X)+I(f ∗(X) ≤ 0)E(R|A=−1,X)

−I(f ∗(X)>0)E(R|A=−1, X)

−I(f ∗(X) ≤ 0)E(R|A=1, X) = |f ∗(X)| ≥ 0.

It then follows that the group-average benefit for f̂ ,
defined as

δC(f̂ ) ≡ E

⎡⎣RI

{
A = sign(f̂ (X))

}
π(A|X)

∣∣∣X ∈ C

⎤⎦
−E

⎡⎣RI

{
A = −sign(f̂ (X))

}
π(A|X)

∣∣∣X ∈ C

⎤⎦ ,

should be non-negative. On the other hand, if δC(f̂ ) ≥ 0 holds
for any subset C, then the above derivation also indicates that
f̂ (X) must have the same sign as f ∗(X), that is, f̂ (X) is the
optimal treatment rule for subjects in C.

These observations suggest a diagnostic measure δC(f̂ ) for
any subgroup C. Specifically, we propose an empirical ITR
diagnostic measure as

δ̂C(f̂ ) =
∑n

i=1

[
I

{
Xi ∈ C, Ai = sign(f̂ (Xi))

}
− I

{
Xi ∈ C, Ai = −sign(f̂ (Xi))

}]
Ri/π(Ai|Xi)∑n

i=1
I(Xi ∈ C)

.

Because δ̂C(f̂ ) approximates δC(f̂ ), the measure δ̂C(f̂ ) is

expected to be positive with a high probability if f̂ (X) is
close to the global true optimal. Furthermore, the evidence
that δ̂C(f̂ ) is positive for a rich class of subsets C will sup-

port the approximate optimality of f̂ in the class. However,
because it is infeasible to exhaust all subgroups, we sug-
gest a class of pre-specified subgroups C1, ..., Cm and calculate
the corresponding δ̂C1(f̂ ), ..., δ̂Cm

(f̂ ). An aggregated diagnostic

measure is �̂(f̂ ) = min
{

δ̂C1(f̂ ), ..., δ̂Cm
(f̂ )

}
. A positive value

of �̂(f̂ ) implies approximate optimality of f̂ when m is large
enough. In practice, we consider Ck to be pre-specified groups
or the sets determined by the tertiles of each component of
X, for example, the jth component of X below its first tertile,
between the first and the second tertiles, or above the sec-
ond tertile. Moreover, using the proposed diagnostic measure,
by examining the subsets C (or tertiles defined by variables)

with negative or close to zero values of δ̂C(f̂ ), we can iden-
tify subgroups or components of X for which the estimated
rule f̂ may not be sufficiently optimal. Thus, we can further
improve the rule estimation in this subgroup to obtain an
improved ITR.

If the same data used for estimating the optimal ITR and
performing diagnostics, the latter may not be an honest mea-
sure of performance (Athey and Imbens, 2016). Thus, we
suggest the following sample-splitting scheme. Divide the data
into K folds, and denote f̂ (−k) as the optimal ITR obtained
using data without the kth-fold. Next, each f̂ (−k) is calibrated
on the kth-fold data using the diagnostic measure and then
averaged. Let nk denote the sample size of the kth-fold, and let
Ik index subjects in this fold. The honest diagnostic measure

for subgroup C is estimated by δ̂C(f̂ ) = 1
K

∑K

k=1
δ̂
(k)
C , where

δ̂
(k)
C = 1

nk

∑
{i:i∈Ik}

[
I

{
Ai = sign(f̂ (−k)(Xi))

}
−I

{
Ai = −sign(f̂ (−k)(Xi))

}]
Ri/π(Ai|Xi).

We will implement this scheme in subsequent analysis.

2.3. Inference Using the Diagnostic Measure

The proposed diagnostic measure, δ̂C(f̂ ), can be used to
compare different ITRs and non-personalized rules, make
comparisons within certain subgroups, and assess heterogene-
ity of ITR benefit (HTB) across subgroups. Hypotheses of
interest may include:

� Test significance of the optimal linear rule compared to the
non-personalized rule in the overall sample, that is, H0 :
δ(f ∗

L) − δ0 = 0 v.s. H1 : δ(f ∗
L) − δ0 > 0, where δ0 is the aver-

age treatment effect of a non-personalized rule (difference

in the mean response between treatment groups). For
this purpose, we can construct the test statistic based on
δ̂C(f̂ ) − δ0, where f̂ is obtained from any method, and
C is the whole population. We reject the null hypothesis
at a significance level of α if the (1 − α)-confidence inter-

val with ∞ as the upper bound for δ̂C(f̂ ) − δ0 does not
contain 0.

� Test significance of the optimal linear rule compared to
the non-personalized rule in a subgroup k, that is, H0 :
δCk

(f ∗
L) − δ0k = 0 v.s. H1 : δCk

(f ∗
L) − δ0k > 0, where δ0k is the

average treatment effect in the subgroup. The same test
statistic as the previous one can be used but with C = Ck.

� Test the HTB across subgroups {C1, · · · , CK}, that is, H0 :
δCk

(f ∗
L) − δCK

(f ∗
L) = 0, k = 1, · · · , K − 1. We propose the

HTB test statistic T = �̂
T

C {cov(�̂C)}−1�̂C, where �̂
T

C =
(̂δC1(f̂ ) − δ̂CK

(f̂ ), · · · , δ̂CK−1(f̂ ) − δ̂CK
(f̂ )). It can be shown

that T asymptotically follows χ2
K−1 under H0, so we reject

H0 when T is larger than the (1 − α)-quantile of χ2
K−1.

� Test the non-optimality of the best linear rule f ∗
L in a sub-

group C by evaluating H0 : δC(f
∗
L) ≥ 0 v.s. H1 : δC(f

∗
L) < 0.
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Table 1
Simulation results: mean and standard deviation of the accuracy rate, mean ITR benefit, and coverage probability for

estimation of the benefit of the optimal ITR.

Setting 1. Four region means = (1, 0.5, −1, −0.5).

Overall Benefit W < −0.5 W ∈ [−0.5, 0.5] W > 0.5

Accuracy rate Mean (sd) Coverage Mean (sd) Coverage Mean (sd) Coverage Mean (sd) Coverage

N = 800
PM 0.71 (0.04) 0.37 (0.17) 0.69 0.08 (0.23) 0.97 0.36 (0.23) 0.82 0.67 (0.30) 0.72
Q-learning 0.76 (0.03) 0.45 (0.17) 0.80 0.17 (0.22) 0.97 0.46 (0.23) 0.89 0.73 (0.29) 0.78
O-learning 0.77 (0.05) 0.46 (0.18) 0.82 0.17 (0.24) 0.97 0.46 (0.24) 0.89 0.76 (0.30) 0.80
ABLO 0.83 (0.04) 0.65 (0.14) 0.94 0.30 (0.23) 0.92 0.64 (0.20) 0.96 1.01 (0.24) 0.93

N = 1600
PM 0.75 (0.03) 0.44 (0.12) 0.64 0.11 (0.17) 0.96 0.43 (0.17) 0.80 0.79 (0.20) 0.71
Q-learning 0.81 (0.02) 0.52 (0.11) 0.86 0.18 (0.16) 0.97 0.53 (0.15) 0.92 0.86 (0.19) 0.82
O-learning 0.84 (0.02) 0.57 (0.11) 0.93 0.19 (0.15) 0.97 0.57 (0.16) 0.95 0.94 (0.19) 0.90
ABLO 0.86 (0.02) 0.63 (0.09) 0.96 0.22 (0.15) 0.97 0.63 (0.15) 0.95 1.04 (0.17) 0.94

Best linear rule 0.890 δl
C = 0.629 δl

C = 0.192 δl
C = 0.621 δl

C = 1.071

Setting 2. Four region means = (1, 0.3, −1, −0.3).

Overall Benefit W < −0.5 W ∈ [−0.5, 0.5] W > 0.5

Accuracy rate Mean (sd) Coverage Mean (sd) Coverage Mean (sd) Coverage Mean (sd) Coverage

N = 800
PM 0.68 (0.04) 0.34 (0.17) 0.67 0.10 (0.24) 0.95 0.34 (0.24) 0.83 0.59 (0.30) 0.71
Q-learning 0.74 (0.03) 0.43 (0.16) 0.85 0.16 (0.23) 0.97 0.44 (0.22) 0.92 0.70 (0.28) 0.82
O-learning 0.73 (0.04) 0.42 (0.17) 0.84 0.16 (0.21) 0.98 0.43 (0.24) 0.90 0.68 (0.29) 0.79
ABLO 0.78 (0.03) 0.62 (0.13) 0.95 0.30 (0.21) 0.96 0.62 (0.21) 0.96 0.94 (0.25) 0.92

N = 1600
PM 0.72 (0.03) 0.42 (0.12) 0.69 0.12 (0.17) 0.95 0.42 (0.17) 0.84 0.72 (0.20) 0.73
Q-learning 0.78 (0.02) 0.51 (0.11) 0.89 0.19 (0.16) 0.96 0.52 (0.15) 0.94 0.81 (0.18) 0.85
O-learning 0.79 (0.02) 0.52 (0.11) 0.91 0.19 (0.16) 0.95 0.53 (0.16) 0.93 0.85 (0.19) 0.89
ABLO 0.82 (0.02) 0.61 (0.10) 0.94 0.25 (0.16) 0.94 0.61 (0.15) 0.95 0.96 (0.17) 0.95

Best linear rule 0.850 δl
C = 0.593 δl

C = 0.200 δl
C = 0.583 δl

C = 0.996

Best global rulea δC = 0.678 δC1 = 0.285 δC2 = 0.647 δC3 = 1.109

Note: PM, predictive modeling by random forest; Q-learning, Q-learning with linear regression; O-learning, improved single stage
O-learning (Liu et al., 2014); ABLO, asymptotically best linear O-learning.
The theoretical best linear rule for both settings is sign(Xs), where Xs = X1 + X2 + · · · + X10.
aThe true value of the best linear rule and best global rule is computed from a large independent test data set.

For this purpose, we can directly use δ̂C(f̂ ) and reject the
null hypothesis if the confidence interval with lower bound
of −∞ does not contain zero.

The asymptotic properties of β̂ and δ̂C(f̂ ) are required to
perform inference above. Based on the theoretical properties
(asymptotic normality) given in the Supplementary Materials
(Section A2), we propose a bootstrap method to compute con-
fidence interval for the diagnostic measure. We denote the bth

bootstrap sample as (Ã
(b)
i , X̃

(b)

i , R̃
(b)
i ), where i = 1, 2, · · · , n,

and re-estimate residuals as W̃
(b)
i in (5). Next, we re-fit

treatment rule f̃ (b) and obtain δ̃
(b)
C (f̃ (b)). The 95% confidence

interval for δ̂C(f̂ ) is constructed from the empirical quantiles

of δ̃
(b)
C (f̃ (b)), b = 1, 2, · · · , B.

3. Simulation Studies

3.1. Simulation Design

For all simulation scenarios, we first generated four latent
subgroups of subjects based on 10 feature variables X =
(X1, · · · , X10) informative of optimal treatment choice from
a pattern mixture model. Treatment A = 1 has a greater
average effect for subjects in subgroups 1 and 2, and the
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alternative treatment −1 has a greater average effect in sub-
groups 3 and 4. Within each subgroup, X were independently
simulated from a normal distribution with different means
and standard deviation of one. Two settings were considered.
In Setting 1, the means of the feature variables for subjects
in the four subgroups were (1, 0.5, −1, −0.5), respectively. In
Setting 2, the means were (1, 0.3, −1, −0.3). Five noise
variables U = (U1, · · · , U5) not contributing to R were inde-
pendently generated from the standard normal distribution
and included in the analyses in order to assess the robustness
of each method in the presence of noise features. The treat-
ments for each subject were randomly assigned to 1 or −1
with equal probability, and the number of subjects in each
subgroup was equal.

Three additional feature variables W , V , and S were gen-
erated to be directly associated with the clinical outcome R.
Here, W is an observed prescriptive variable informative of
the optimal treatment, V is a prognostic variable predictive
of the outcome but not the optimal treatment, and S is an
unobserved prescriptive variable not available in the analysis.
The clinical outcome for subjects in the kth subgroup was
generated by

R = 1 + I(A = 1)(δ1k + α1k ∗ W + β1k ∗ S)

+ I(A = −1)(δ2k + α2k ∗ W + β2k ∗ S) + V + e,

where e ∼ N(0, 0.25), V , W , and S are i.i.d. and
follow the standard normal distribution, δ = [δlk]2∗4 =[
1 0.3 0 0

0 0 1 0.3

]
, α = [αlk]2∗4 =

[
1 0.6 0.5 0.3

0.5 0.3 1 0.6

]
,

and β = 2α. Within each group k, there is a qualitative inter-

action between treatment and W . Additional visualization
of the simulation setting is provided in the Supplementary
Materials (Figure A.2).

The benefit function of the theoretical global optimal ITR
decision function, denoted as f ∗, was computed numerically
by simulating the clinical outcome R under treatment 1 or
−1, using all observed feature variables (i.e., X, W , and V ),
and taking the average difference of R under the true optimal
and non-optimal treatments using a large independent test
set of N=100,000. In practice, this global optimum may not
be attained by a linear rule due to the unknown and poten-
tially nonlinear true optimal treatment rule. The theoretical
optimal linear rule f ∗

L was computed numerically using the
observed variables and maximizing the value function in the
class of all linear rules under each simulation model (details
in the Supplementary Materials; Section A3). The benefit of
f ∗

L was then computed with a large independent test set of
N=50,000.

For each simulated data set, predictive modeling (PM),
Q-learning, O-learning, and ABLO were applied to estimate

Table 2
Simulation results: probability of rejecting the null hypothesis that the treatment benefit across subgroups is equivalent by the

HTB test.

Setting 1. Four region means = (1, 0.5, −1, −0.5).

W X1 V U1

N = 800
PM 0.16 0.05 0.03 0.02
Q-learning 0.18 0.06 0.03 0.03
O-learning 0.21 0.05 0.03 0.03
ABLO 0.42 0.07 0.05 0.06

N = 1600
PM 0.52 0.05 0.05 0.02
Q-learning 0.61 0.05 0.04 0.02
O-learning 0.71 0.04 0.04 0.02
ABLO 0.84 0.05 0.05 0.03

Setting 2. Four region means = (1, 0.3, −1, −0.3).

N = 800
PM 0.12 0.03 0.02 0.02
Q-learning 0.17 0.04 0.03 0.04
O-learning 0.15 0.03 0.03 0.03
ABLO 0.34 0.06 0.04 0.05

N = 1600
PM 0.42 0.06 0.04 0.03
Q-learning 0.56 0.07 0.04 0.03
O-learning 0.57 0.07 0.03 0.03
ABLO 0.74 0.10 0.04 0.05

Note: W has strong signal; X1 has weak signal; V and U1 have no signal.
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the optimal ITR. For PM, we considered a random forest-
based prediction related to the virtual twins approach of
Foster et al. (2011). PM first applies random forest on R,
including all observed feature variables Z = (X, U, W, V ) and

treatment assignments. It next predicts the outcome for the

ith subject given (Zi, Ai = 1) and (Zi, Ai = −1), denoted as

R̂1i and R̂−1i, respectively. The optimal treatment for the
subject is sign(R̂1i − R̂−1i). Q-learning was implemented by a
linear regression including all the observed feature variables,
treatment assignments, and their interactions. Benefit of the
estimated optimal ITR under each method and was computed

by δ̂C(f̂ ) in Section 2.2.

In the simulations, observed feature variables Z were used
in all methods, while the unobserved prescriptive variable S

and latent subgroup membership were not included. Linear
kernel was used for O-learning and ABLO. Five-fold cross
validation was used to select the tuning parameters C and s.
For each method, the optimal treatment selection accuracy
and ITR benefit were estimated using two-fold cross valida-
tion with equal size of training and testing sets. The training
set was used to estimate the ITR and the testing set was used
to estimate the ITR benefit and accuracy. Bootstrap was used
to estimate the confidence interval of the ITR benefit under
the estimated rule. Coverage probabilities were reported to
evaluate the performance of the inference procedure. To eval-
uate performance on subgroups, we partitioned W , V , X1,

and U1 into three groups based on values in the intervals
(−∞, −0.5), [−0.5, 0.5], or (0.5, ∞). We calculated the HTB
test for the candidate variables and tested the difference
between the estimated rules and the overall non-personalized
rules.

3.2. Simulation Results
Results from 500 replicates are summarized in Tables 1–3, Fig-
ures 1 and 2. For both simulation settings, ABLO with linear
kernel has the largest optimal treatment selection accuracy
regardless of the sample size, and it is also close to the max-
imal accuracy rate based on the theoretical best linear rule.
In addition, ABLO estimates the ITR benefit closest to the
true global maximal value of 0.678 on the overall sample, and
it is almost identical to the benefit estimated by the theoreti-
cal best linear rule when the sample size is large (N = 800
training, 800 testing). PM, Q-learning, and O-learning all
underestimate the ITR benefit, especially when the sample
size is smaller (N = 400 training, 400 testing), and thus they
do not attain the maximal value of the theoretical optimal lin-
ear rule. Based on the empirical standard deviation, we also
observe that ABLO is more robust than all other methods.
For all methods, as the sample size increases, the treatment
selection accuracy increases and the estimated mean benefit
is closer to the true optimal value. Furthermore, the esti-
mated ITR benefit increases as the accuracy rate increases.
The coverage probability of the overall benefit of the best

Table 3
Simulation results: Comparison of the ITR to the non-personalized universal rule. The proportion of rejecting the null that

the ITR has the same benefit as the universal rulea are reported for the overall sample and by subgroups.

Setting 1. Four region means = (1, 0.5, −1, −0.5).

Overall W < −0.5 W ∈ [−0.5, 0.5] W > 0.5

N = 800
PM 0.22 0 0.09 0.33
Q-learning 0.37 0.02 0.20 0.40
O-learning 0.39 0.02 0.20 0.43
ABLO 0.86 0.07 0.47 0.78

N = 1600
PM 0.76 0.02 0.38 0.83
Q-learning 0.92 0.05 0.59 0.90
O-learning 0.95 0.06 0.67 0.94
ABLO 0.99 0.08 0.79 0.98

Setting 2. Four region means = (1, 0.3, −1, −0.3).

N = 800
PM 0.18 0.01 0.07 0.27
Q-learning 0.35 0.03 0.17 0.37
O-learning 0.31 0.03 0.17 0.35
ABLO 0.82 0.07 0.43 0.74

N = 1600
PM 0.72 0.03 0.38 0.75
Q-learning 0.88 0.05 0.57 0.86
O-learning 0.90 0.07 0.59 0.86
ABLO 0.99 0.12 0.77 0.97

Note: For Setting 1, the mean difference (sd) of the universal rule is 0.09(0.08) for N = 800 and 0.07(0.05) for N = 1600.
For Setting 2, the mean difference (sd) of the universal rule is 0.11(0.08) for N = 800 and 0.08(0.05) for N = 1600.
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Figure 1. Simulation results: overall ITR benefit and optimal treatment accuracy rates for the four methods. Dotted-dashed
lines represent the benefit (top panels) and accuracy (bottom panels) under the theoretical global optimal treatment rule f ∗.
Dashed lines represent the benefit and accuracy under the theoretical optimal linear rule f ∗

L. The methods being compared
are (from left to right): PM: predictive modeling by random forest; Q-learning: Q-learning with linear regression; O-learning:
improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best linear O-learning. This figure appears in color
in the electronic version of this article.

linear rule is close to the nominal level of 95% using ABLO,
but less than 95% using other methods. The coverages are
not nominal for O-learning, Q-learning, and PM, since their
benefit estimates are biased when the candidate rules are mis-
specified (e.g., true optimal rule is not linear). This is because
they use a surrogate loss function that does not guarantee
convergence to the indicator function in the benefit function
δC(f̂ ).

The performance of estimation of the subgroup ITR
benefit shows similar results, whereby ABLO outperforms
O-learning, Q-learning, and PM in both settings, especially
when W ∈ [−0.5, 0.5], and W > 0.5. Table 2 reports the proba-
bility of rejecting H0 : δCk

(f ∗
L) − δC3(f

∗
L) = 0, k = 1 or 2, using

the HTB test with a null distribution of χ2
2. The rejection

rates of the HTB tests of V and U1 that do not have a
difference in ITR benefit across subgroups correspond to

the type I error rate. The type I error rates of ABLO are
close to 5%, but conservative for the other three meth-
ods. To examine the power, we test the effect of W on
the benefit across subgroups defined by discretizing W at
−0.5 and 0.5. The power of ABLO is much greater than
the other three methods especially when the sample size is
small. The other three methods underestimate the benefit
function, and thus the HTB test is conservative and less
powerful.

Lastly, we test the difference in the benefit between the
ITRs and the non-personalized rule in the overall sample and
the subgroups. Table 3 shows that with a sample size of 800,
ABLO is the only method that provides a significantly bet-
ter benefit than the non-personalized rule with a large power
(> 80%). When the sample size is large (N = 1600), ABLO,
Q-learning, and O-learning have a power of ≥88%. As for the
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Figure 2. Simulation results: subgroup ITR benefit for the four methods. Dotted-dashed lines represent the benefit under
the theoretical global optimal treatment f ∗. Dashed lines represent the benefit under the theoretical optimal linear rule f ∗

L.
The methods being compared are (from left to right): PM: predictive modeling by random forest; Q-learning: Q-learning with
linear regression; O-learning: improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best linear O-learning.
This figure appears in color in the electronic version of this article.

subgroups, the ITR estimated by ABLO is more likely to out-
perform the non-personalized rule on the subgroups showing
a larger true benefit (i.e., when W > 0.5).

Additional simulation results varying the strength of
the prescriptive feature variable W are described in the
Supplementary Materials (Section A4).

4. Application to the STAR*D Study

STAR*D (Rush et al., 2004) was conducted as a multi-
site, multi-level, randomized controlled trial designed to
compare different treatment regimes for major depressive
disorder when patients fail to respond to the initial treat-
ment of Citalopram (CIT) within 8 weeks. The primary
outcome, Quick Inventory of Depressive Symptomatology
(QIDS) score (ranging from 0 to 27), was measured to
assess the severity of depression. A lower QIDS score

indicates less symptoms and thus reflects a better outcome.
Participants with a total QIDS score under 5 were consid-
ered to experience a clinically meaningful response to the
assigned treatment and were therefore remitted from future
treatments.

The trial had four levels of treatments (e.g., see
Figure 2.3 in Chakraborty and Moodie (2013)); we focused
on the first two levels. At the first level, all participants were
treated with CIT for a minimum of 8 weeks. Participants
who had clinically meaningful response were excluded from
level-2 treatment. At level-2, participants without remission
with level-1 treatment were randomized to level-2 treatment
based on their preference to switch or augment their level-1
treatment. Patients who preferred to switch treatment were
randomized with equal probability to bupropion (BUP), cog-
nitive therapy (CT), sertraline (SER), or venlafaxine (VEN).
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Those who preferred augmentation were randomly assigned
to CIT + BUP, CIT + buspirone (BUS), or CIT + CT. If a
patient had no preference, s/he was randomized to any of
the above treatments.

The clinical outcome (reward) is the QIDS score at
the end of level-2 treatment. There were 788 partici-
pants with complete feature variable information included
in our analysis. We compared two categories of treat-
ments: (i) treatment with selective serotonin reputake
inhibitors (SSRIs, alone or in combination): CIT + BUS,
CIT + BUP, CIT + CT, and SER; and (ii) treatment
with one or more non-SSRIs: CT, BUP, and VEN.
Feature variables used to estimate the optimal ITR
included the QIDS scores measured at the start of
level-2 treatment (level 2 baseline), the change in the
QIDS score over the level-1 treatment phase, patient
preference regarding level-2 treatment, and demographic
variables (gender, age, race), and family history of depres-
sion. As the randomization to treatment was based on
patient preference, we estimated π(Ai|Xi) using empir-
ical proportions based on preferring switching or no
preference, because patients who preferred augmentation
were all treated with an SSRI and were excluded from
the analysis.

We applied four methods to estimate the optimal ITR
for patients with MDD who did not achieve remission with
8 weeks of treatment with CIT. For all methods, we ran-
domly split the sample into a training and testing set with
a 1:1 ratio and repeated the procedure 500 times. The value
function and ITR benefits were evaluated on the testing set.
PM, Q-learning, O-learning, and ABLO are compared in
Figure 3. The non-personalized rules yield a QIDS score
of 10.16 for SSRI and 9.60 for non-SSRI, with a difference
of 0.56. The ITR estimated by ABLO yields a QIDS score

of 9.32 (sd = 0.23), which is smaller than PM (9.69, sd
= 0.38), Q-learning (9.50, sd=0.35), and O-leaning (9.55,
sd = 0.41). The overall ITR benefit estimated by ABLO
(1.11, sd = 0.46) is much larger than PM (0.38, sd =
0.76), Q-learning (0.77, sd = 0.70), and O-leaning (0.66, sd
= 0.82). The ITR benefit based on ABLO is also larger
than the non-personalized rule (1.11 versus 0.56). The final
ITR estimated by ABLO is reported in Supplementary
Materials (Section A5).

Clinical literature suggests that the baseline MDD severity
may be a moderator for treatment response (Bower et al.,
2013). In addition, baseline MDD severity is highly asso-
ciated with suicidality; thus, patients with severe baseline
MDD (QIDS ≥ 16) represent an important subgroup. We par-
titioned patients into mild (QIDS ≤ 10), moderate (QIDS
∈ [11, 15]), and severe (QIDS ≥ 16) MDD subgroups. Using
ABLO and the HTB test, baseline QIDS score was found to
be significantly associated with ITR benefit: two subgroups
show a large positive ITR benefit (2.22 for the mild group
and 2.02 for the severe group), whereas the moderate sub-
group shows no benefit (ITR benefit = −0.18). This result
indicates that patients with mild or severe baseline depres-
sive symptoms (high or low QIDS score) might benefit from
following the estimated linear ITR. For patients who are mod-
erately depressed (QIDS ∈ [11, 15]), the linear ITR estimated
from the overall sample does not adequately fit the data and
does not outperform a non-personalized rule. Thus, we re-fit
a linear rule using ABLO for the moderate subgroup only.
The re-estimated ITR yields a lower average QIDS score of
8.93 (sd = 0.35), with a much improved subgroup ITR benefit
of 0.60 (sd = 0.70). This analysis demonstrates the advan-
tage of the ITR benefit diagnostic measure, the HTB test,
and the value of re-fitting the ITR on subgroups showing a
lack-of-fit.

Figure 3. STAR*D analysis results: distribution of the estimated ITR benefit (the higher the better) and QIDS score (the
lower the better) at the end of level-2 treatment for the four methods (based on 500 cross-validation runs). The methods being
compared are (from left to right): PM: predictive modeling by random forest; Q-learning: Q-learning with linear regression;
O-learning: improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best linear O-learning. This figure
appears in color in the electronic version of this article.
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5. Discussion

In this article, we propose a diagnostic measure (benefit
function) to compare candidate ITRs, a machine learning
method (ABLO) to estimate the optimal linear ITR, and
several tests for goodness-of-fit. In practice, often not all
predictive and prescriptive variables that influence hetero-
geneous responses to treatment are known and collected.
Thus, it is unrealistic to expect that an ITR that ben-
efits each and every individual can be identified. Our
practical solution proposes to evaluate the average ITR
effect over the entire population and on vulnerable or
important subgroups. Although we focus on linear deci-
sion functions here, it is straightforward to extend ABLO
to other simple decision functions such as polynomial
rules by choosing other kernel functions (i.e., polyno-
mial kernel). ABLO can also be applied to observational
studies using propensity scores to replace π(A|X) under
the assumption that the propensity score model is cor-
rectly specified. We prove the asymptotic properties of
ABLO and identify a condition to avoid the non-regularity
issue (in Supplementary Material Section A2). In practice,
when such issue is of concern, adaptive inference (Laber
and Murphy, 2011) can be used to construct confidence
intervals.

ABLO can consistently estimate the ITR benefit func-
tion regardless of misspecification of the rule by drawing a
connection with the robust machine learning approach for
approximating the zero-one loss. We provide an objective
diagnostic measure for assessing optimization. In our method,
prescriptive variables mostly contribute to the estimation of
the optimal treatment rule while predictive variables mostly
contribute to the development of the diagnostic measure and
assessment of the benefit of the optimal rule. Future work will
consider methods to distinguish these two sets of variables,
which potentially overlap.

ABLO is slower than O-learning because it involves
iterations of quadratic programming when applying the
DCA. In addition, certain simulations show that the algo-
rithm can be slightly sensitive to the initial values in
extreme cases (examples provided in Figure A.5 in the
Supplementary Materials). However, our numeric results
show that O-learning estimators serve as adequate ini-
tial values leading to fast convergence of the DCA.
Another limitation is that the current methods only apply
to single-stage trials. ABLO can be extended to multi-
ple stage setting following a similar backward multi-stage
O-learning in Zhao et al. (2015). The objective func-
tion in multi-stage O-learning will be replaced by the
ramp loss and the benefit function will be extended
with some attention to subjects whose observed treatment
sequences are partially consistent with the predicted optimal
treatment sequences.

6. Supplementary Materials

Appendices and all tables and figures referenced in Sections
2, 3, 4, and 5 are available at the Wiley Online Biometrics
website. Matlab code implementing the new ABLO method is
available with this article at the Biometrics website on Wiley
Online Library.
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