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Abstract

For many complex traits, single nucleotide polymorphisms (SNPs) identified from genome-wide association studies (GWAS)
only explain a small percentage of heritability. Next generation sequencing technology makes it possible to explore
unexplained heritability by identifying rare variants (RVs). Existing tests designed for RVs look for optimal strategies to
combine information across multiple variants. Many of the tests have good power when the true underlying associations
are either in the same direction or in opposite directions. We propose three tests for examining the association between a
phenotype and RVs, where two of them jointly consider the common association across RVs and the individual deviations
from the common effect. On one hand, similar to some of the best existing methods, the individual deviations are modeled
as random effects to borrow information across multiple RVs. On the other hand, unlike the existing methods which pool
individual effects towards zero, we pool them towards a possibly non-zero common effect by adding a pooled variant into
the model. The common effect and the individual effects are jointly tested. We show through extensive simulations that at
least one of the three tests proposed here is the most powerful or very close to being the most powerful in various settings
of true models. This is appealing in practice because the direction and size of the true effects of the associated RVs are
unknown. Researchers can apply the developed tests to improve power under a wide range of true models.
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Introduction

Genome-wide association studies (GWAS) utilizing common

single nucleotide polymorphisms (SNPs) have been successful in

identifying genetic variants associated with various diseases and

complex traits [1]. However, for many complex traits, heritability

explained by identified SNPs is low [2]. It has been hypothesized

that some of the heritability may be explained by previously un-

identified rare variants [3–5]. With the advances of next-

generation sequencing technology, data from targeted or whole

genome sequencing is being produced where many of sequencing

variants are rare, e.g., minor allele frequency (MAF) less than 1%.

Since rare variants (RVs) have extremely low frequencies,

traditional single-variant based analysis for GWAS is under-

powered for detecting rare variants. In recent literature, various

approaches specifically designed for rare variants are proposed

and compared [6–11]. Most approaches involve combining

information across rare variants. For example, the Sum-Test

proposed by Li and Leal [6] and other similar approaches collapse

multiple rare variants into a single ‘‘super’’ variant [7–8] through a

weighted average, and test the association between the ‘‘super

variant’’ and the trait. The motivation of these tests is to minimize

the cost of the degrees of freedom of the association test. They

have the best power when the effects of all genetic variants are in

the same direction. The power diminishes if the true associations

vary across variants in opposite directions.

Pan [12] proposed a summed score test (SSU) motivated from

combining squared score statistics across multiple variants. It was

found to be equivalent to testing a variance component in a

random effects model [13] with a binary outcome when

permutation is used to compute its p-value [12]. This model

assumes that the association parameters are random effects

centered around zero. Thus the average association across variants

is zero. Wu, et al. [10,14] proposed kernel based tests (SKAT) that

exploit information across variants using kernel machines. The

connection between SSU and SKAT also lies in testing a variance

component in a random effects model. Lin and Tang [15] recently

proposed an extension of the Sum-Test, named EREC, where

each variant is weighted by its estimated effect size plus a constant.

As noted by the authors, a very large sample size is required to

achieve the asymptotic normality and optimality of the test

statistics. In addition, the choice of the constant is rather arbitrary.

Basu and Pan [11] conducted extensive simulations to compare

eight RV tests including the Sum-Test, SSU, and SKAT with

binary traits under numerous settings. They concluded that SSU

and SKAT are among the best across many settings. None of the

existing RV tests suitable for associations in opposite directions

considers testing both the common association and the individual

deviations from the common association.

Here, we first propose a joint likelihood ratio test (LRT-Joint)

and a joint score test (Score-Joint) for a common association and

individual associations of the rare variants with a continuous or
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binary trait. The test is motivated by taking advantage of both the

Sum-Test and the SSU (or SKAT). Essentially, we add a pooled

super variant into the model. On one hand, like the SSU or

SKAT, the individual associations are modeled as random effects

to borrow information across multiple RVs. On the other hand,

unlike these two existing methods which pool the individual effects

to zero, we pool them towards a possibly non-zero common effect

(or average effect) as in the Sum-Test. Secondly, we examine a

restricted likelihood ratio test (RLRT) of individual associations in

a random effects model. We compare the proposed tests with the

Sum-Test, SSU, and SKAT by extensive simulations and show

that in many cases, at least one of the proposed tests outperform

existing ones that ignore either the common association or the

individual effects. All proposed tests are fast to compute and easy

to implement with standard statistical softwares such as R or SAS.

Methods

Continuous trait
We start by introducing methods for the continuous trait. Let Yi

denote the outcome, and let Xi1, � � � ,XiK denote the number of

minor alleles for each RV. Assume subjects’ outcomes are

independent and assume an additive genetic model. There are

two extreme modeling strategies, as noted in Pan [12]. One

strategy is to jointly model all variants by a linear regression,

Yi~b0zb1Xi1z � � �zbK XiKzei, E(ei)~0, var(ei)~s2, ð1Þ

and the hypothesis of no association in the above model is

H0 : b1~ � � �~bK~0,

which involves a test of K degrees of freedom. Such a test may

have very low power when K is large and some of the RVs

included have no association with the trait. To improve power, a

possibly misspecified working model is to assume that all the RVs

have the same magnitude of association with the outcome, that is,

b1~ � � �~bK . Let h1 denote this common association effect. Then

the model is

Yi~h0zh1Cizei, E(ei)~0, var(ei)~s2,

where Ci~
XK

k~1
Xik is considered as a ‘‘super variant’’ [7–8].

Under this working model, no association is tested by

H0 : h1~0,

which involves only one degree of freedom. The resulting test is

referred to as the Sum-Test [6]. It is expected that the Sum-Test is

most powerful when the working model assumption of

b1~ � � �~bK is correct. However, when the assumption is

incorrect, especially when the associations are in opposite

directions, the Sum-Test suffers from significant power loss.

Pan [12] proposed the SSU test as

SSU~
XK

k~1

U2
k ~UT U ,

where Uk is the score statistic obtained from a marginal model of

Yi on Xik, and U~(U1, � � � ,UK )T . The SSU was shown to

improve the power compared to the Sum-Test when the

associations are in opposite directions [11]. Furthermore, Pan

[12] showed that SSU is related to Goeman, et al. [13], which is

designed for testing a high dimensional alternative. Assuming Yi’s

are centered, then the Goeman’s test is the score statistic derived

from a random effects model

Yi~b1Xi1z � � �zbK XiKzei,

E(bk)~0, cov(b)~s2
bS, ei*N(0,s2

e ),

where b~(b1, � � � ,bK )T are random effects independent of ei, and

S is a semi-positive-definite covariance matrix. Note that no

distributional assumption is placed on bj . The test statistic is

UTSU{ tr(SW ),

where W is the observed Fisher’s information matrix of b under

H0. In such a random effects model, the null hypothesis of no

association with any of the K variants is

H0 : s2
b~0:

The test pertains to a single parameter instead of K parameters

in (1). If computing the critical value of the SSU using permutation

and choosing S~IK , then the SSU is equivalent to the Goeman’s

test [12].

Here we propose several tests that combine the advantages of

the Sum-Test and SSU (or the Goeman’s test). Note that the

Goeman’s test is derived under the assumption that the means of

bk are all zero, therefore all bk are pooled towards zero when s2
b is

small. However, unless the effect of all rare variants are in opposite

directions with the same strength and therefore they cancel out,

the average effect will not be zero. Thus, a model restricting the

average effect to be zero may have lower power than a more

flexible model.

We propose a score test based on the model

Yi~h0zh1Cizb1Xi1z � � �zbK XiKzei, ð2Þ

E(bj)~0, cov(b)~s2
bIK , ei*N(0,s2),

where b~(b1, � � � ,bK )T . Note that in this model, h1 represents the

average effect across all RVs, and bk represents the deviation of

the kth RV from the common effect. Essentially, we add the super

variant Ci as a fixed effect into the model. No distributional

assumption about b is placed. The null hypothesis of no

association between the phenotype and any of the RVs is

H0 : h1~0,s2
b~0: ð3Þ

Joint Rare Variant Tests for Sequencing Data
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Note that testing only h1~0 in model (2) is not equivalent to the

Sum-Test due to the presence of b if the true b is not all zero.

In the Supporting Information S1, we show that the score for

testing (h1,s2
b)T is

S~(S1,S2)T~
Xn

i~1

1

s2
(Yi{ �YY )Ci,

1

2s4
UT U{

1

2s2
trace(IU )

" #T

,

where U~(U1, � � � ,UK )T , Uk~
Xn

i~1
(Yi{Y )Xik, and

IU~(X{X )T (X{X ). The score test statistic for hypothesis (3)

in model (2) is (Score-Joint)

STfcov(S)g{1
S, ð4Þ

and we show in the Supporting Information S1

cov(S)~diag 1s2
Xn

i~1

C2
i , 12s4 tracef½(X{X )(X{X )T �2g

 !
:

Under the null hypothesis, s2 is estimated by the sample

variance of Y . Note that since cov (S) is a diagonal matrix, the

score statistic is simply

T~
S2

1

var (S1)
z

S2
2

var (S2)
, ð5Þ

which standardizes each component of S by its variance and

assigns equal weight to both components. Since the variance

component in hypothesis (3) is on the boundary of the parameter

space under the null, the usual chi-square approximation does not

apply. We use permutation to compute the p-value of the test.

Note that the score statistic only involves matrix manipulations

and is fast to compute.

Next, we describe two likelihood based tests where distributional

assumption is placed on bj ’s. The first one is a likelihood ratio test

(LRT) for testing the null hypothesis (3) in the model (2) with an

additional assumption that b has a multivariate normal distribu-

tion, which we refer as LRT-Joint. Crainiceanu and Ruppert [16]

found that the LRT involving a variance component does not

follow a standard chi-square mixture distribution and using the

usual 50:50 chi-square mixture can be conservative. We use

permutation to compute the p-value of the LRT-Joint. The second

likelihood based test is a restricted likelihood ratio test (RLRT) of a

variance component, that is, to test

H0 : s2
b~0 ð6Þ

in a model not accounting for the common association, i.e.,

Yi~b0zb1Xi1z � � �zbK XiKzei, ð7Þ

b*N(0,s2
bIK ), ei*N(0,s2

e ),

where b~(b1, � � � ,bK )T . This can be regarded as the RLRT

version of the SSU and the Goeman’s test. Again, due to a non-

standard null distribution, we use permutation to compute the null

distribution of the RLRT.

Among three proposed tests, the Score-Joint and LRT-Joint are

two variations of the likelihood-based joint tests of the common

and individual effects. They are two tests of the same hypothesis (3)

under slightly different model. The RLRT only tests the individual

effects, i.e., hypothesis (6), in model (7) through the restricted

maximum likelihood. Similar to the Goeman’s test, the Score-Joint

here does not assume multivariate normality while the LRT-Joint

and RLRT do.

Binary traits
Many genetic studies involve binary outcomes such as the

presence or absence of a disease. A popular model used to analyze

binary data is the logistic model. We propose a similar joint score

test for the binary trait based on the logistic regression. The model

for binary data corresponding to (2) is

logitfpr(Yi~1)g~h1zh1Cizb1Xi1z � � �zbK XiK , ð8Þ

E(bj)~0, cov(b)~s2
bIK :

We show in the Supporting Information S1 that the score vector

for the parameters (h1,s2
b)T is

S~(S1,S2)T~
Xn

i~1

(Yi{Y )Ci,
1

2
fUT U{ trace(IU )g

 !T

,

where IU~p(1{p)(X{X )T (X{X ) and p~E(Yi). Under

the null hypothesis, p is estimated as ~Y and IU~Y

(1{Y )(X{X )T (X{X ). We compute the covariance matrix of

the score vector in the online Supporting Information S1. The

score statistic T is defined similarly as the continuous case in (4).

It is straightforward to carry out the LRT and RLRT for the

binary outcome under the extra assumption of the multivariate

normality of the random effects (for example, using SAS procedure

GLIMMIX). However, since both of these tests involve a variance

component, similar to the continuous outcome case, their null

distributions are non-standard. Therefore, we also use permuta-

tion to compute the p-value of the LRT-Joint and RLRT.

Results

Simulation settings and methods
We designed our simulation studies following procedures similar

to that of Basu and Pan [11]. We generated samples with 1000

subjects. We simulated 10 RVs associated with the disease and 0,

5, 10, 20 or 30 neutral variants (NVs) that do not associate with the

disease. To simulate correlated RVs, we generated a 10-

dimensional latent continuous vector from a multivariate normal

distribution with AR(1) correlation structure. The autocorrelation

r was set as 0, 0.5 or 0.8 to represent no correlation, moderate

correlation and strong correlation. We created two independent

haplotypes dichotomized from the latent multivariate normal

random variable. The threshold for dichotomization was chosen

such that the haplotypes will have the MAFs randomly drawn

Joint Rare Variant Tests for Sequencing Data

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e32485



from a uniform distribution with support between 0.001 and 0.01.

The two haplotypes were then combined to create genotypes.

The continuous outcomes were simulated from model (1) with

standard normal random errors. The binary outcomes were

generated from a logistic model logitfpr(Yi~1)g~b0zb1Xi1

z � � �zbK XiK . We considered five different settings for the

coefficients of genetic associations. Each setting corresponds to a

different combination of bj ranging from one extreme of taking the

same value to the other extreme of taking exactly opposite values.

For the continuous case, the average effect across ten disease

associated SNPs (i.e.,
1

K

X
k

bk) ranges from zero to 0.4 (a small

effect size). For the binary case, the average odds ratio across ten

SNPs ranges from 1.0 to 2.0. For each set of bj , we simulated three

different autocorrelations (r~0,0:5,0:8) and five different num-

bers of NVs (0, 5, 10, 20, and 30).

To compute the null distribution of a test statistic by

permutation, we randomly permuted the outcome among all

subjects 2000 times and determined the critical value as the

desired percentile from the empirical distribution of the permuted

test statistic. We then computed the proportion of the test statistics

simulated under the null (or the alternative) greater than or equal

to the threshold as the empirical type I error rate (or power). We

computed the p-value as the proportion of the permuted test

statistics greater than or equal to the simulated observed test

statistic.

Table 1. Type I error rate for all tests: continuous trait, a~0:01.

No. of NV r LRT-joint Score-joint Sum Test LRT-single SumSqB SKAT

0 0 0.012 0.011 0.013 0.010 0.009 0.008

0 0.5 0.012 0.012 0.014 0.012 0.008 0.014

0 0.8 0.012 0.011 0.010 0.011 0.011 0.012

5 0 0.012 0.012 0.014 0.012 0.008 0.012

5 0.5 0.013 0.010 0.014 0.006 0.006 0.014

5 0.8 0.008 0.009 0.008 0.010 0.006 0.010

10 0 0.005 0.010 0.006 0.010 0.014 0.012

10 0.5 0.008 0.007 0.006 0.012 0.010 0.008

10 0.8 0.013 0.007 0.014 0.010 0.008 0.016

20 0 0.008 0.015 0.006 0.008 0.010 0.012

20 0.5 0.006 0.010 0.009 0.013 0.013 0.016

20 0.8 0.008 0.008 0.009 0.008 0.007 0.014

30 0 0.010 0.010 0.007 0.010 0.010 0.010

30 0.5 0.008 0.008 0.010 0.010 0.009 0.006

30 0.8 0.007 0.009 0.004 0.014 0.012 0.014

doi:10.1371/journal.pone.0032485.t001

Table 2. Type I error rate for all tests: continuous trait, a~0:05.

No. of NV r LRT-joint Score-joint Sum Test LRT-single SumSqB SKAT

0 0 0.048 0.046 0.050 0.050 0.056 0.052

0 0.5 0.043 0.042 0.044 0.058 0.052 0.048

0 0.8 0.040 0.048 0.043 0.058 0.046 0.066

5 0 0.042 0.042 0.042 0.052 0.056 0.062

5 0.5 0.054 0.046 0.056 0.056 0.060 0.044

5 0.8 0.056 0.046 0.058 0.040 0.042 0.056

10 0 0.048 0.056 0.040 0.058 0.050 0.042

10 0.5 0.050 0.058 0.060 0.040 0.034 0.054

10 0.8 0.044 0.046 0.054 0.046 0.048 0.054

20 0 0.056 0.052 0.056 0.044 0.042 0.038

20 0.5 0.040 0.058 0.048 0.044 0.048 0.040

20 0.8 0.042 0.044 0.056 0.048 0.040 0.064

30 0 0.046 0.048 0.040 0.056 0.056 0.072

30 0.5 0.048 0.054 0.051 0.046 0.050 0.048

30 0.8 0.052 0.050 0.047 0.048 0.044 0.050

doi:10.1371/journal.pone.0032485.t002
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We compared six tests by simulations. The first is the LRT-Joint

of both the common and individual RV effects. The second is the

Score-Joint in (4).The third is the RLRT to test the individual

effects through the hypothesis (6) of a variance component. The

fourth test is the Sum-Test which is most suitable for testing the

common association effect. The fifth test is the SSU for individual

effects proposed in Pan, [12]. The last test is the SKAT with

weighted linear kernel (Beta distribution as weights with default

parameters) and Davies [17] (implemented in SKAT) to compute

the p-value. For each setting, we ran 1000 permutations for the

proposed tests and 500 replications to examine the empirical type I

error or power.

Simulation results
First, we assessed the type I error rate of all the tests. In Tables 1

and 2, we present the empirical type I error rates for the

continuous trait at a~0:01 and a~0:05, respectively. In Tables 3

and 4, we present the type I error rates for the binary trait. These

four tables show that all tests adhere to the nominal level for both

types of traits at each significance level. To examine the

distribution of the p-values under the null, we present the

empirical cumulative distribution function (ECDF) of the p-values

for all six tests with the continuous and binary trait in Figures 1

and 2. Except for the RLRT, the expected distribution of the other

five tests is a uniform distribution between zero and one. For the

Table 3. Type I error rate for all tests: binary trait, a~0:01.

No. of NV r LRT-joint Score-joint Sum Test LRT-single SumSqB SKAT

0 0 0.006 0.008 0.006 0.008 0.009 0.010

0 0.5 0.008 0.008 0.005 0.010 0.007 0.010

0 0.8 0.006 0.013 0.006 0.006 0.011 0.008

5 0 0.008 0.006 0.011 0.009 0.006 0.007

5 0.5 0.012 0.010 0.010 0.008 0.007 0.010

5 0.8 0.010 0.012 0.007 0.010 0.008 0.018

10 0 0.010 0.013 0.009 0.008 0.013 0.008

10 0.5 0.008 0.009 0.008 0.010 0.007 0.006

10 0.8 0.006 0.008 0.005 0.010 0.007 0.008

20 0 0.006 0.013 0.006 0.008 0.009 0.014

20 0.5 0.010 0.006 0.008 0.012 0.011 0.014

20 0.8 0.014 0.010 0.006 0.010 0.008 0.012

30 0 0.008 0.007 0.006 0.012 0.005 0.010

30 0.5 0.016 0.012 0.006 0.014 0.007 0.006

30 0.8 0.008 0.010 0.011 0.006 0.010 0.006

doi:10.1371/journal.pone.0032485.t003

Table 4. Type I error rate for all tests: binary trait, a~0:05.

No. of NV r LRT-joint Score-joint Sum Test LRT-single SumSqB SKAT

0 0 0.052 0.044 0.060 0.048 0.044 0.050

0 0.5 0.056 0.058 0.048 0.060 0.044 0.056

0 0.8 0.044 0.046 0.050 0.034 0.032 0.048

5 0 0.050 0.048 0.052 0.052 0.044 0.062

5 0.5 0.060 0.046 0.054 0.062 0.052 0.048

5 0.8 0.048 0.052 0.042 0.058 0.042 0.050

10 0 0.046 0.040 0.048 0.044 0.038 0.056

10 0.5 0.050 0.050 0.042 0.050 0.034 0.056

10 0.8 0.058 0.046 0.050 0.060 0.038 0.052

20 0 0.046 0.052 0.066 0.036 0.038 0.044

20 0.5 0.056 0.052 0.032 0.050 0.060 0.050

20 0.8 0.046 0.060 0.036 0.046 0.032 0.042

30 0 0.058 0.060 0.058 0.062 0.048 0.042

30 0.5 0.046 0.044 0.048 0.042 0.044 0.056

30 0.8 0.038 0.042 0.036 0.046 0.040 0.046

doi:10.1371/journal.pone.0032485.t004
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RLRT, the null distribution of the test statistic is non-standard

due to that the parameter being tested (i.e., s2
b) is on the

boundary of the parameter space under the null and the non-

independence of the response variable under the alternative

model [16]. The null distribution of the RLRT test statistics is a

mixture of x2
0 (:0) and x2

1, i.e., ax2
0z(1{a)x2

1. Since x2
0 is a

degenerated distribution that is exactly zero, a proportion of the

RLRT test statistics are zero (RLRT has a point mass at zero).

Therefore the distribution of the p-values is also non-standard: it

has a point mass (which equals to a) at one and has a uniform

distribution between zero and 1{a. The null distribution of

LRT-Joint test statistics is also a mixture of x2
1 and x2

2. However,

since x2
1 is non-degenerated, the distribution of the p-values does

not have a point mass at one.

To compare power with a~0:05, we designed five settings with

different magnitude of the average common effect and individual

SNP effects. In the first setting, the coefficients for all the SNPs are

the same: bk~0:3 for the continuous trait and ORk~2 for the

binary trait. Thus, this setting favors the tests involving the

common effect. We summarize the results in Figure 3. When there

are no neutral variants, no correlation (r~0) and continuous

traits, the Sum-Test has the best power and is closely followed by

the LRT-Joint and Score-Joint (Figure 3). The RLRT, SSU and

SKAT do not test the common association and have much less

power in this case (about 30% power loss). Still, with no NV but

with an increasing correlation, the LRT-Joint, Score-Joint and

Sum-Test continue to have comparable high power, while the

difference between them and the RLRT, SSU and SKAT gets

Figure 1. Empirical cumulative distribution function (ECDF) of the p-values under the null for continuous trait.
doi:10.1371/journal.pone.0032485.g001
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smaller. When there are NVs included, the power of the Sum-Test

can be much less than the LRT-Joint or Score-Joint, especially

when r~0:5 and r~0:8 and NV = 20 or NV = 30. This is

because since the NVs have zero association, even though the

disease associated RVs have the same association, the average

effect across all RVs included in the test statistic is decreased.

For the binary trait, the power comparison between the first five

tests follow a similar trend. The SKAT has much less power than

the other tests in this setting. The Score-Joint has the best power

among all tests in most scenarios. The RLRT and SSU are inferior

to the LRT-Joint and Score-Joint. It is worth to note that in this

setting, for both the continuous and binary traits, stronger

correlation leads to increased power for all tests. This is because

the associations are in the same direction for all RVs and stronger

correlation among RVs happens to strengthen similarity between

the effects of RVs.

In the second setting, the association parameters have opposite

signs with the same magnitude and the average effect across all

RVs is zero. Since this setting is least favorable for tests involving

common effect, as expected the Sum-Test has little power. For the

continuous trait, the RLRT, SSU and SKAT have similar power

across different scenarios of correlation and number of NVs

(Figure 4). The Score-Joint performs better than LRT-Joint in

many cases, but has less power than the RLRT, SSU or SKAT.

This reflects a loss in power for testing the extra common

association parameter of the joint tests when the true average

Figure 2. Empirical cumulative distribution function (ECDF) of the p-values under the null for binary trait.
doi:10.1371/journal.pone.0032485.g002
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association is zero. For the binary trait, the RLRT is the most

powerful and is closely followed by the LRT-Joint in most cases.

Note that in this case, greater correlation resulted in lower power

for all tests. This is because the true associations are not in the

same direction, while more correlation encourages similar fit

among parameters in the model.

In the third setting, all the associations are in the same direction,

but with varying magnitude. Similar to the first setting, the two

joint tests involving common association effect outperform the

SSU, RLRT, and SKAT, which only test for individual effects

(Figure 5). The difference in the power is smaller when there are

stronger correlation or more NVs. The Sum-Test performs worse

than the two joint tests when there is a large number of NVs. For

the continuous trait, the power of the LRT-Joint and Score-Joint

are close to the best or the best across multiple settings. For the

binary trait, in a majority of the scenarios, the Score-Joint

outperforms all other tests with the exception of two cases where

the Sum-Test is slightly more powerful.

In the fourth setting, the associations are in opposite directions

with varying magnitudes, and the average effect across all RVs is

again zero. As expected, the Sum-Test has no power in all the

scenarios here (Figure 6). The RLRT is the most powerful across a

majority of the scenarios in this setting. For the continuous trait,

the second best test is usually the SSU or SKAT. With no

Figure 3. Simulation setting 1: bk~(0:3,0:3,0:3,0:3,0:3,0:3,0:3,0:3,0:3,0:3)T (continuous trait), and OR~(2,2,2,2,2,2,2,2,2,2)T (binary trait).
doi:10.1371/journal.pone.0032485.g003
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correlation or moderate correlation, the difference between the

RLRT and the second best test is modest. However, with strong

correlation, the difference between the RLRT and SSU can be as

large as 17%. For the binary trait, the second most powerful test is

the LRT-Joint.

The fifth setting is a mixture of the above settings where the

majority of the association parameters is in the same direction and

only two of them are in the opposite direction. Again, when NVs

are present, the Sum-Test is clearly inferior to the other tests

(Figure 7). In most scenarios, the Score-Joint is the most powerful

test for both traits. For the continuous trait with strong correlation,

the Score-Joint, RLRT and SSU all have similar power and

outperform the LRT-Joint. With the binary trait and strong

correlation, the Score-Joint and SSU have similar power and

outperform the other tests. The SKAT has low power in this setting.

Discussion

In this work, we propose three new tests (Score-Joint, LRT-

Joint, and RLRT) for detecting disease association with RVs. The

two joint tests examine both a common association across RVs

and individual deviations from the common effect. The RLRT we

propose only examines the individual effects. When the true

underlying disease model includes RVs with the same association

Figure 4. Simulation setting 2: bk~(0:4,{0:4,0:4,{0:4,0:4,{0:4,0:4,{0:4,0:4,{0:4)T (continuous trait) and OR~(2,1=2,2,1=2,2,1=2,2,1=2,2,
1=2)T (binary trait).
doi:10.1371/journal.pone.0032485.g004
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effect, the two joint tests outperform RLRT, SKAT, or SSU,

especially with no correlation or moderate correlation among

RVs. This reflects the benefit of considering the average

association in the joint tests and the power loss without accounting

for such effects in the RLRT, SKAT and SSU. Also note that in

cases where there are no individual deviations among disease

associated RVs, the loss in power for testing an extra variance

component in the joint tests comparing to the Sum-Test is

minimal. In addition, the Sum-Test is only more powerful when

there are no NVs. Thus, the joint tests are preferred in cases where

there are NVs.

When the true underlying disease model includes RVs with

associations in opposite directions but the same strength, the

average effect is zero but the individual effects are not zero. The

RLRT is the most powerful test in most scenarios. Note that even

though SSU, SKAT are the score tests and RLRT is the restricted

likelihood ratio test of the same hypothesis on the individual

effects, they do not necessarily have the same power, especially for

the binary trait. One difference between the models used to derive

the RLRT and the SSU (or equivalently the Goeman’s test) is that

the RLRT assumes that the random effects follow a multivariate

normal distribution, while the Goeman’s test assumes the mean

Figure 5. Simulation setting 3: bk~(0:4,0:4,0:35,0:35,0:3,0:3,0:2,0:2,0:1,0:1)T (continuous trait); OR~(2,2,1:8,1:8,1:6,1:6,1:4,1:4,1:2,1:2)T

(binary trait).
doi:10.1371/journal.pone.0032485.g005
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and covariance structure of the random effects but not the

distribution. For the binary trait, the SSU or SKAT can be much

less powerful than the RLRT, even though the multivariate

normal random effects working assumption is not necessarily true.

When the strengths of the disease associated RVs have varying

magnitude in opposite signs, there is no average effect but there

are individual effects. In this case, we continue to see the RLRT as

the leading candidate in terms of power. The difference between

the RLRT and SSU is larger than the previous setting with RVs in

opposite directions but with the same strength, especially when the

correlation is strong. When the majority or all of the RVs in the

true model are in the same direction and with varying strengths,

both the average effect and individual effects are non-zero. In

these cases, the Score-Joint is often the most powerful test.

In practice, the effect sizes of RVs are unknown, therefore it is

difficult to choose a single most powerful method out of a large

number of available tests. At least one of the three tests we

propose here is always the most powerful or very close to being

the most powerful test in different settings. This is appealing in

practice because researchers can apply the three tests to achieve

high power for a wide range of underlying models. All tests

proposed here are easy to implement (codes available at www.

columbia.edu/*yw2016). For the binary trait, computing the

LRT and RLRT may take slightly longer due to the need to fit a

Figure 6. Simulation setting 4: bk~(0:6,{0:6,0:5,{0:5,0:4,{0:4,0:3,{0:3,0:2,{0:2)T (continuous trait); OR~(2:4,1=2:4,2:1,1=2:1,1:8,1=1:8,
1:5,1=1:5,1:2,1=1:2)T (binary trait).
doi:10.1371/journal.pone.0032485.g006
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mixed effects model with generalized outcomes. Score tests do

not require fitting a model under the alternative and therefore are

slightly faster to fit. For example, with the binary trait, it takes

about 8.3 seconds to perform LRT-Joint, 10.4 seconds for

RLRT, and 1.4 second for Score-Joint (each test with

2000 permutations).

Our joint score test (5) assigns equal weight to each component

of the score vector. It is conceivable that an adaptive version with

carefully chosen weights may further improve power. However, if

the weights also depend on outcomes, one may need to split

samples to compute the weights and score statistics separately to

correctly control the type I error rate. Since only a portion of the

sample will be used to compute the score vector, there is a cost of

using adaptive weights depending on the outcomes. Further

research along this line is needed.

In summary, we proposed three new tests for rare variants that

are among the most powerful tests, compared to several popular

existing methods, across multiple scenarios. Our study reveals that

it is worthwhile to jointly test the average association, as well as the

individual deviations when there is a non-null average effect and

there are NVs. This holds even when the individual deviations are

absent. The Sum-Test solely considers average effect and does not

Figure 7. Simulation setting 5: bk~(0:4,0:4,0:35,0:35,0:3,0:3,0:2,0:1,{0:1,{0:2)T (continuous trait); OR~(2,2,1:8,1:8,1:6,1:6,1:4,1:2,
{1:2,{1:4)T (binary trait).
doi:10.1371/journal.pone.0032485.g007
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perform well when there are NVs. When the average effect is zero,

the RLRT appears to be the best test which can be more powerful

than the SSU or SKAT.

Supporting Information

Supporting Information S1 Derivations of score statistic
and its covariance matrix are in the online Supporting
Information S1.
(PDF)
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