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Abstract

Personalized medicine has received increasing interest among clinicians and statisticians. One

particular aspect of personalized medicine is to consider an individualized treatment strategy based

on an individual’s characteristics that leads to the greatest benefit. Recently, powerful machine

learning methods have been proposed to estimate optimal individualized treatment rule (ITR) but

are mostly restricted to the situation with only two treatments. When many treatment options are

considered, which is often the case in practice, existing methods have to transform multicategory

treatment selection into multiple binary treatment selections, for example, via one vs one or one

vs all comparison. However, combining conclusions from multiple binary treatment selection is

not straightforward and it may lead to inconsistent decision rules. In this article, we propose a

novel and efficient method to generalize outcome weighted learning (O-learning) to multi-treatment

settings. Specifically, we solve a multicategory treatment selection problem via sequential weighted

support vector machines. Theoretically, we show that the resulting ITR is Fisher consistent. We

demonstrate the performance of the proposed method with extensive simulations. An application

to a three-arm randomized trial of treating major depressive disorder (MDD) shows that an in-

dividualiZed treatment strategy tailored to individual patients’ expectancy of treatment efficacy

and their baseline depression severity reduces depressive symptoms more than non-personaliZed

treatment strategies.
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1 Introduction

For many chronic diseases such as major depression and type 2 diabetes, treatment heterogeneity

has been well documented where a treatment that is effective in the overall population may be highly

ineffective in a subgroup of patients with specific characteristics (Trivedi Madhukar et al., 2008), or

no longer beneficial after patients develop resistance (Lipska and Krumholz, 2014). On the other

hand, in some cases a newly developed intervention may not be more efficacious than existing treat-

ments in the overall population, but may reveal a large effect in subgroups of patients (Carini et al.,

2014). Henceforth, there has been a growing interest in understanding treatment heterogeneity and

discovering individualiZed treatment rules tailored to patient-specific characteristics so as to achieve

personaliZed medicine and maximize efficacy (Kosorok and Moodie, 2015). More specifically, tailored

treatment strategy aims to recommend optimal treatment decision for an individual patient based

on a combination of his or her characteristics such as genomic features, medical treatment history,

preference, and treatment expectancy.

Recently, there has been a surge of statistical methods on estimating optimal treatment regimes

involving a single decision point or multiple decision points using data collected from clinical trials

or observational studies (Murphy, 2003; Robins, 2004; Moodie et al., 2007; Qian and Murphy, 2011;

Zhao et al., 2011, 2012; Zhang et al., 2012, 2013). The most widely used method is regression based

Q-learning (Watkins, 1989; Murphy, 2005), which relies on some postulated models to incorporate

treatment-by-covariate interactions. Alternatively, Zhao et al. (2012); Zhang et al. (2012, 2013) pro-

posed machine learning algorithms, for instance, outcome weighted learning (O-learning), to choose

the treatment rules by directly optimizing the expected clinical outcome, called the value function,

and draw connection with a classification problem. Most of these methods aim at estimating optimal

treatment rules for each patient between only two treatment options. However, in many clinical ap-

plications it is common that there are more than two treatments being compared. In our motivating

stud of Research Evaluating the Value of Augmenting Medication with Psychotherapy (REVAMP)

trial (Kocsis et al., 2009), non responders or partial responders to a first-line antidepressant were

randomized to three second-line treatment strategies.

When it comes to multiple arm trials, Q-learning approach, which relies heavily on the correctness

of postulated models, is more prone to model misspecification. For machine learning methods in Zhao

et al. (2012), Zhang et al. (2012, 2013), multicategory comparisons may be obtained via one versus
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one or one versus all comparisons. However, it is well documented in multicategory learning literature

that the resulting classification rules from these methods is inconsistent (Dietterich and Bakiri, 1995;

Kreßel, 1999; Allwein et al., 2001; Lee et al., 2004; Liu and Shen, 2006), due to possible conflicted

decisions from pairwise or one versus all comparisons. To the best of our knowledge, there has been

no work on using multicategory learning to consistently estimate an optimal ITR for multi-arm trials.

In this paper, we propose a new approach to identify optimal individualiZed treatment rules

(ITRs) from multiple treatment options. Specifically, we transform the value maximization problem

into a sequence of binary weighted classifications, which we name as sequential outcome-weighed

multicateogry (SOM) learning. At each step, we use a weighted binary support vector machine (SVM)

for determining the optimal treatment for patients into one treatment category versus remaining

treatment categories, where weights are proportional to outcome values and reflect the fact that one

single treatment category is compared to one or more treatment categories. We first estimate optimal

rule for a designated treatment class by excluding the possibility of deciding any other treatment as

optimal via sequential SVMs; we then exclude already determined treatments and repeat the same

learning approach for the remaining treatment options. Theoretically, we show that the derived

treatment rule is Fisher consistent. We demonstrate through extensive simulations that SOM learning

has superior performance in comparison to Q-learning. Finally, an application of SOM learning to

REVAMP shows that an ITR tailored to individual characteristics such as patients’ expectancy of

treatment efficacy and baseline depression severity reduces depressive symptoms more than a non-

personaliZed treatment strategy.

The rest of the paper is structured as follows. Section 2 introduces the main idea and the math-

ematical framework for multicategory individualiZed treatment rules and formulate the problem for

SOM learning. The detailed algorithm is then provided in the section. In Section 3, we provide theo-

retical justification for SOM learning. Sections 4 and 5 present extensive simulations and application

to REVAMP to examine the performance of SOM learning. Finally, concluding remarks are given in

Section 6. The proof of theoretical results are presented in the Appendix.
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2 Methodology

2.1 Optimal individualiZed treatment rule with multicategory treatments

Assume data are collected from a randomized trial with n patients and k different treatment

options. For each patient i, we observe a d-dimensional vector of feature variables, denoted by Xi ∈ X ,

a treatment assignment Ai ∈ A = {1, 2, ..., k}, i = 1, ..., n, and the clinical outcome after treatment

denoted by Ri (also referred as the “reward”), with larger values of Ri being more desirable. A

multicategory ITR, denoted by D, is a mapping from the space of feature variables, X , to the domain

of treatments, A. An optimal ITR is a treatment assignment rule that maximizes the mean reward

E[R(D(X))|X], where R(a) is the potential outcome if treatment a is given. According to Qian and

Murphy (2011), under a randomization setting and assuming consistency of the potential outcomes,

the optimal ITR maximizes the following value function:

E

[
I(A = D(x))

πA(X)
R

]
, (1)

where πa(x) = P (A = a|X = x) is the randomization probability for treatment a, a = 1, ..., k,

so
∑k

a=1 πa(x) = 1. The goal is to learn the optimal treatment rule using empirical observations

(Ri, Ai,Xi), i = 1, ..., n.

Theoretically, it can be easily shown that the optimal ITR is given as

D∗(x) = argmaxaE[R|A = a,X = x].

Therefore, one approach to estimate the optimal ITR is using a regression model to estimate the

conditional means in the right-hand side. However, this approach heavily relies on the correctness of

the postulated model, and model misspecification can lead to substantially non-optimal ITR even for

a binary treatment situation (Zhao et al., 2012). Alternatively, (?) directly maximized the empirical

version of the value function but replaced I(A = D(x)) by 1−max(0, 1− Af(x)), where f(x) is the

decision function such that D(x) = sign(f(x). The latter corresponds to a weighted support vector

machine where the weight for each observation is proportional to Ri. Because of this, they called their

method outcome weighted learning (abbreviated as O-learning). They demonstrated that O-learning

outperformed the regression model based method. However, the proposed method can only be applied
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to a binary treatment, not for more than 2 treatment options. Therefore, we aim to develop a robust

method based on machine learning, which builds on O-learning for binary decision rule to learn optimal

multicategory treatment decision rules.

2.2 Main idea

The main idea of our method, named SOM learning, is to perform a sequence of binary treatment

rule learning, where each step in the sequence decides whether the optimal treatment for a patient

should be one candidate treatment category or the others. To illustrate this idea, we order the

candidate treatment categories based on the descending order of their prevalence so without loss of

generality, we assume that the order of the labels of treatments are k, k − 1, ..., 1.

We first aim to learn an optimal treatment rule that will decide whether one subject should be

optimally treated with treatment k. Equivalently, we partition the domain of X into Xk and X ck such

that for subject with feature values X in Xk, the optimal treatment is k; for subject with X in X ck , the

optimal treatment should not be k. To this end, we consider an ordered sequence of {1, 2, ..., k − 1},

denoted by {j1, ..., jk−1}, and let jk = k. A sequential ITR learning is then conducted in the following.

In the first step, starting with j1 versus {j2, ..., jk}, we determine whether a subject should be

treated optimally with treatment j1 or not. Since this is only a binary decision problem, we can use

existing methods for learning a binary treatment decision rule, for example, O-learning, with additional

modifications as explained in later section. With this binary rule, for a future patient with X, if he

or she is assigned to treatment j1, then clearly, X ∈ X ck . Otherwise, we cannot determine whether X

should be in Xk or X ck since his/her optimal treatment can be one of j2, ..., jk.

In the second step of this sequential learning, we only consider patients whose optimal treatments

are not determined as j1 in the previous step. We then aim to learn a binary treatment rule to decide

whether this subject should be optimally treated with j2 or the remaining treatments, {j3, ..., jk}.

Again, this is a problem of learning a binary treatment rule so we can perform estimation similar to

the first step. With the second decision rule, we can check whether the patient should be treated with

j2 or not. If yes, we conclude X ∈ X ck ; otherwise, we are still uncertain whether X ∈ Xk.

Continue this process sequentially in the third step till the kth step when there is only treatment

category k in consideration. Consequently, for this given sequence, {j1, ..., jk−1}, the optimal treatment

for this patient is k, i.e., X ∈ Xk, if and only if at each step, the binary decision learning concludes
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that the patient should not be treated by j1, j2, ..., jk−1 in turn. The choice of the ordered sequence

{j1, ..., jk−1} is arbitrary, so we propose to consider all possible permutations of {1, ..., k − 1}. Then

a patient with X should be treated with treatment k once he/she is determined to have optimal

treatment as k in at least one permuted sequence.

The above procedure only provides a treatment rule that decides whether a subject should be

treated with k or not. Thus, for a subject who is determined not to be treated with k, we need

to determine which treatment from the remaining {1, 2, ..., k − 1} options is optimal. This can be

carried out using the following procedure. We only consider patients whose optimal treatment is not

k based the previous procedure and whose actual treatments received are not k. For these patients,

the treatment options can only be one of {1, 2, ..., k − 1}, so the goal reduces to finding the optimal

treatment decision within (k − 1) categories. Therefore, we can repeat the previous procedure but

consider treatment (k − 1) as the target in treatment optimization. At the end, we should obtain a

treatment rule that determines whether a subject should be treated with (k − 1).

Finally, the same procedure can be carried out sequentially to decide which patients should be

treated optimally using (k−2), ..., 1 in turn. Clearly, an advantage of SOM learning is that at every step

of the sequential learning, we only need to learn a binary decision rule. Thus many learning algorithms

for binary decision are applicable. In particular, in our subsequent algorithm and implementation,

we adopt the method from O-learning (Zhao et al., 2012) to use a weighted support vector machine

(SVM) for this purpose. However, one significant difference is that due to multicategory nature,

weights in SOM learning should not only be proportional to the outcome R as in O-learning, but

should also reflect imbalanced comparison between one treatment category and the combination of

multiple treatment categories. The latter ensures that the derived optimal treatment rule is Fisher

consistent, as will be shown later.

2.3 Method and algorithm

Mathematically, we can express SOM learning algorithm as follows. Start from the target decision

for treatment k. Consider the jth permutation {j1, ..., jk−1}, and let jk = k.

1. At step 1, recall from the previous section that our goal is to learn a binary rule to decide whether a

future patient should be treated by option j1. It is equivalent to estimate the optimal decision function
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f∗j1(X) such that the corresponding value for this decision, which is given by

E [RI(Zj1fj1(X) > 0)/πA(X)] ,

is maximized with Zj1 = 2I(Ai = j1)− 1. According to Liu et al. (2014), even if R may be negative,

this maximization is equivalent to

minE [|R|I(Zj1sign(R)fj1(X) ≤ 0)/πA(X)] .

Thus, using the empirical data, we minimize the following empirical risk for estimation:

n−1
n∑
i=1

|Ri|I(Zij1sign(Ri)fj1(Xi) ≤ 0)

πAi(Xi)
,

where Zijl = 2I{Ai = jl}−1. Since solving the above problem is NP-hard, we propose to use a weighted

support vector machine (SVM) which essentially replaces the above 0-1 loss with a continuous and

convex hinge-loss function. Furthermore, since this learning is comparing one treatment category

versus (k − 1) categories, it is necessary to weight observations with treatment j1 by (k − 1)/k and

the others by 1/k in order to balance the comparison.

Specifically, define πjl(x) = P (Ai = jl|Xi = x), where l = 1, ..., k. We estimate the optimal

decision rule as sign(f̂j1(x)), where f̂j1(x) minimizes the following empirical risk of a weighted hinge

loss:

Vnj1(f) = n−1
n∑
i=1

{
|Ri|

πj1(Xi)
I(Zij1sign(Ri) = 1)[1− f(Xi)]+

(
k − 1

k
I{Ri > 0}+

1

k
I{Ri ≤ 0}

)

+
|Ri|

π∗j1(Xi)
I(Zij1sign(Ri) = −1)[1 + f(Xi)]+

(
1

k
I{Ri > 0}+

k − 1

k
I{Ri ≤ 0}

)}
+λnj1‖f‖2,

where π∗j1(Xi) =
∑k

l=2 I{Ai = jl}πjl(Xi), x+ = max(x, 0) is the hinge loss, ‖ · ‖ denotes a semi-

norm for f and λnj1 is a tuning parameter. Particularly, if we consider a linear decision rule, i.e.,

f(x) = βTx + β0, ‖f‖ is chosen as the Euclidean norm of β; if a nonlinear decision rule is desired,

f will be chosen from a reproduced kernel Hilbert space and ‖f‖ is the corresponding norm in that

space.
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2. At step 2, recall from the previous section that this step aims to find the optimal decision to

be either treatment j2 or one of {j3, ..., jk} among those patients whose optimal treatments are not

determined as j1 from Step 1. Thus, restrict the training data to those samples whose labels are not

j1 and whose optimal treatments are not j1 as from the previous step. We then estimate a decision

rule sign(f̂j2(x)) using a weighted SVM by minimizing

Vnj2(f) = n−1
n∑
i=1

I
(
Ai 6= j1, f̂j1(Xi) < 0

)
×
{
|Ri|

πj2(Xi)
I(Zij2sign(Ri) = 1)[1− f(Xi)]+

(
k − 2

k − 1
I{Ri > 0}+

1

k − 1
I{Ri ≤ 0}

)
+
|Ri|

π∗j2(Xi)
I(Zij2sign(Ri) = −1)[1 + f(Xi)]+

(
1

k − 1
I{Ri > 0}+

k − 2

k − 1
I{Ri ≤ 0}

)}
+λnj2‖f‖2,

where π∗j2(Xi) =
∑k

l=3 I{Ai = jl}πjl(Xi), Zijl , πjl(Xi) are defined as same as in step 1, and λnj2 is a

tuning parameter. Note that in additional to weights based on the outcome values, we also weigh the

observations from treatment j2 by (k− 2)/(k− 1) and the others by 1/(k− 1) in order to account for

the fact that the decision rule is based on comparing one category versus (k − 2) categories.

3. In turn, at step h = 3, ..., k − 1, we obtain the rule sign(f̂jh(x)) by minimizing

Vnjh(f) = n−1
n∑
i=1

I
(
Ai 6= j1, ..., Ai 6= jh−1, f̂j1(Xi) < 0, ..., f̂jh−1

(Xi) < 0
)

×
{
|Ri|

πjh(Xi)
I(Zijhsign(Ri) = 1)[1− f(Xi)]+

×
(

k − h
k − h+ 1

I{Ri > 0}+
1

k − h+ 1
I{Ri ≤ 0}

)
+
|Ri|

π∗jh(Xi)
I(Zijhsign(Ri) = −1)[1 + f(Xi)]+

×
(

1

k − h+ 1
I{Ri > 0}+

k − h
k − h+ 1

I{Ri ≤ 0}
)}

+λnjh‖f‖
2,

where π∗jh(Xi) =
∑k

l=h+1 I{Ai = jl}πjl(Xi), Zijl , πjl(Xi) are defined as same as above steps. Again,

we use weight (k − 1)/(k − h + 1) for treatment jh versus 1/(k − h + 1) for the others to balance

comparison. At the end of this sequence, we conclude that the optimal treatment for a patient with

8



x will be treatment k, the pre-determined target treatment category, if

f̂j1(x) < 0, f̂j2(x) < 0, ... f̂j,k−1(x) < 0.

For notational simplification, we denote D̂k(j1,...,jk−1)
(x) = 1 if the above conditions hold and let

D̂k(j1,...,jk−1)
(x) = −1 otherwise.

The choice of this sequential decision rule is based on the permutation (j1, ..., jk−1), and thus may

not exhaust the correct classification with label k due to this specific choice. We repeat the above

sequential learning for any possible (k− 1)! permutations to obtain D̂k(j1,...,jk−1)
(x). Consequently, our

final decision rule to assign a patient with treatment k if and only if D̂k(j1,...,jk−1)
(x) = 1 for at least

one permutation (j1, ..., jk−1). That is, if we define

D̂k(x) = max
(j1,...,jk−1) is permutation of{1,..,k−1}

D̂k(j1,...,jk−1)
(x),

then the optimal treatment for patient with x is treatment k if and only if D̂k(x) = 1.

4. We aim to construct a decision rule to decide whether a patient should be optimally treated

with treatment (k − 1). We adopt a backward elimination procedure. We delete the patients whose

treatment labels are k or whose optimal treatments are k from in the previous step. In other words, we

restrict the training dataset to samples with Ai 6= k and D̂k(xi) = −1. Because the data consist of only

(k−1) class labels, we use the same SOM learning procedure as before but now set label (k−1) as the

target treatment, i.e., the last category in consideration in the above sequential learning algorithm. By

this procedure, we obtain a decision rule at each step for each permutation of {1, 2, .., k− 2}, denoted

by D̂(k−1)
(j1,...,jk−2)

(x) for permutation (j1, ..., jk−2). Let

D̂(k−1)(x) = max
(j1,...,jk−2) is permutation of{1,..,k−2}

D̂(k−1)
(j1,...,jk−2)

(x).

Consequently, the optimal treatment for a patient with x is (k − 1) if and only if D̂(k−1)(x) = 1 and

D̂(k)(x) = −1.

We continue this backward elimination and sequential learning in turn for treatment (k − 2), ..., 1

9



so as to obtain D̂(k−2)(x), ..., D̂1(x). Our final estimated optimal ITR is

D̂(x) =



k D̂(k)(x) = 1

k − 1 D̂(k)(x) = −1, D̂(k−1)(x) = 1

...
...

2 D̂(k)(x) = −1, . . . , D̂(3)(x) = −1, D̂(2)(x) = 1

1 D̂(k)(x) = −1, . . . , D̂(3)(x) = −1, D̂(2)(x) = −1

Our algorithm for k-category SOM learning can be summariZed as follows:

Backward loop with target class s ∈ {k, ..., 1}:

Inner loop: for each permutation of the remaining treatment assignments except the

previously classified ones and target treatment label s , perform a sequence of weighted

O-learning to learn D̂(j1,...,js−1)(x) for each permutation (j1, ..., js) of {1, 2, .., s}.

Collect all rules to obtain D̂s(x) = max(j1,...,js−1) is a permutation of {1, .., s} D̂s(j1,...,js−1)
(x).

After eliminating all samples with actual treatment labels are previously considered treat-

ment or whose optimal treatments are within any of the previous labels, go to the backward

loop step.

We note that SOM learning requires a total of

k∑
l=1

(l − 1)× (l − 1)! = k!− 1

weighted binary SVM classifications. However, because of the sequential data elimination, the size

of the input dataset keeps decreasing in a proportional fashion. Therefore, SOM learning can be

computationally efficient due to the fast implementation of SVM and reduced data sizes. In our

numeric examples, SVM at each step is implemented in MATLAB with quadratic programming.
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3 Theoretical Justification

In this section, we establish Fisher consistency of the optimal ITR estimated using SOM learning.

We further obtain a risk bound for the estimated ITR and show how the bound can be improved for

certain situations.

3.1 Fisher consistency

We provide the theoretical property of Fisher consistency for the proposed SOM learning. Specif-

ically, when the sample size is infinity, we show that the derived ITR is the same as the true optimal

ITR given as

argmaxkl=1E[R|X = x, A = l].

Let f∗jl(x) be the counterpart of f̂jl(x) in the SOM learning procedure when n = ∞ and the tuning

parameters vanishes. Let D∗l(j1,...,js)(x) and D∗l(x) be the corresponding limits of D̂l(j1,...,js)(x) and

D̂l(x), respectively, when n =∞. Then the limit of the ITR from SOM learning is given by

D∗(x) =



k D∗(k)(x) = 1

k − 1 D∗(k)(x) = −1,D∗(k−1)(x) = 1

...
...

2 D∗(k)(x) = −1, . . . ,D∗(3)(x) = −1,D∗(2)(x) = 1

1 D∗(k)(x) = −1, . . . ,D∗(3)(x) = −1,D∗(2)(x) = −1.

(2)

The following result holds.

Theorem 1. SOM learning rule D∗(X) is Fisher consistent. That is, D∗(x) = l if and only if

E[R|X = x, A = l] = maxkh=1E[R|X = x, A = h] for l = 1, ..., k.

Theorem 1 provides a theoretical justification that the proposed SOM learning yields the true

optimal ITR asymptotically. The proof of Theorem 1 is given in the appendix. The key result is to

show that at each step of SMO learning, we compare the conditional mean E[R|X, A = j1] with the

average value of E[R|X, A = j2], where j1 is the treatment category in consideration at this step while

j2 is any treatment category among the remaining options.
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3.2 Risk bounds

For any ITR D(x) associated with decision function D(x), define

R(D) = E

[
R

πA(x)
I(A 6= D(X)

]

where j = 1, ..., k, πA(x) =
∑k

j=1 I(A = j)P (A = j|x); and let R∗ = R(D∗). Clearly, R(D) and R∗

correspond to E[R] subtracting the value for D and D∗, respectively. In the section, we will derive

the convergence rate of the estimated value function from the optimal value, which is equivalent

to R(D̂) − R∗, under some regularity conditions and assuming that the functional spaces for fjl in

our SOM learning are from a reproducing kernel Hilbert space (RKHS) with Gaussian kernel and

bandwidth 1/σn.

For any l and subset, S, in {1, 2, ..., k} where l /∈ S, we define

ηl,S(x) =
E[R|X = x, A = l]

|S|−1
∑

h∈S E[R|X = x, A = h]
,

where |S| denotes the cardinality of S. That is, ηl,S(x) is the ratio between the mean outcome in

treatment arm l and the average mean outcome in treatment options from S. We assume that the

following conditions hold:

(C.1) (Geometric noise conditions) There exist q, β > 0, and a constant c such that for any l and set

S with l /∈ S, it holds that

P
{∣∣∣ηl,S(X)− 1

∣∣∣ < t
}
≤ (ct)q,

and moreover,

E

[
exp

(
−∆(X)2

t

) ∣∣∣ηl,S(X)− 1
∣∣∣] ≤ ctβ,

where ∆(X) denotes the distance from X to the boundary defined as {x : ηl,S(x) = 1} .

(C.2) The distribution of X satisfies tail component condition P (|X| ≥ r) ≤ cr−τ for some τ ∈ (0,∞]

and E[|R||A = a,X = x] is uniformly bounded away from zero and infinity.

(C.3) There exists λn such that λn → 0 and nλn →∞. Moreover, all tuning parameters λnj ’s in SOM

satisfy M−1λn ≤ λnj ≤Mλn for a positive constant M . We further assume σn →∞.

Remark 1. In condition (C.1), the constants q and β are called noise exponent and marginal noise

exponent, respectively. They are used to characteriZe the data distribution near the decision boundary
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at each step of SOM where we compare treatment jl versus any subset of {jl+1, ..., jk}. In particular,

when the boundary is fully separable, that is, |ηl,S − 1| > δ0 for a constant δ0, these conditions hold

for q = β = ∞. In condition (C.2), τ describes the decay of the distribution of X. Obviously, when

X is bounded, τ = ∞. Condition (C.3) assumes the choice of tuning parameter and bandwidth in

RKHS. We choose this simplification for convenience, although we can allow the tuning parameter

and bandwidth to be different for each treatment decision in the proposed method. Under conditions

(C.1)-(C.3), the following theorem holds.

Theorem 2. Under conditions (C.1)-(C.3), for any ε0 > 0, d/(d+ τ) < p ≤ 2, there exists a constant

C such that for any ε > 1 and σn = λ
−q/(2β(1+q))
n , with probability at least 1− e−ε,

R(D̂) ≤R∗ + C

{
λ
− 2

2+p
+

(2−p)(1+ε0)
(2+p)(1+q)

n n
− 2

2+p +
ε

nλn
+ λ

q
1+q
n

} q
1+q

.

Remark 2. Suppose that X is bounded such that τ =∞ in condition (C.2). By choosing the optimal

λn for the last two term in the right-hand side, i.e., λn = n−(1+q)/(1+2q), we find that the convergence

rate is a polynomial order of n, where the order is given by q/(1 + 2q). If furthermore, the separating

boundaries are all completely separable such that q = ∞, then the convergence rate is close to the

square-root rate.

4 Simulation Studies

We conducted extensive simulation studies from four different settings to examine the small-sample

performance of SOM learning. In the first three settings, 20 feature variables were simulated from

multivariate normal distribution, where the first 10 variables X1, X2, ..., X10 had a pairwise correlation

of 0.8, the remaining 10 variables were uncorrelated, and the marginal distribution for each variable

was N(0, 1). We generated 3-category random treatment assignments with equal probability, i.e.

P (A = 1|X) = P (A = 2|X) = P (A = 3|X) = 1/3. The reward functions were generated as follows:

Setting 1. R = X4 + (X1 +X2)I{A = 2}+ (−X1 +X3)I{A = 3}+ 0.5×N(0, 1)

Setting 2. R = X4 + (X2
2 −X2

1 )I{A = 2}+X3
3I{A = 3}+ 0.5×N(0, 1)

Setting 3. R = (X1 − 0.2)× (I{A = 1} − I{X1 > 0.3})2 + (X2 + 0.3)× (I{A = 2}

−I{X2 > −0.5})2 + (X3 + 0.5)× (I{A = 3} − I{X3 > 0})2 + 0.5×N(0, 1).

In the last setting (Setting 4 ), we imitated a situation where the entire population consisted of
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a finite number of latent subgroups for which the optimal treatment rule was the same within each

subgroup. Specifically, we considered 10 latent groups and the true optimal treatment category of

each groups was in turn A∗ = 3, 3, 1, 2, 2, 1, 2, 3, 3, 1 in turn. To generate data mimicking a randomized

trial, for each subject, a 3-category treatment A, was randomly assigned with equal probability. The

reward outcome was generated as R = 3 × I{A = A∗} − I{A 6= A∗} + 0.5 × N(0, 1). Furthermore,

instead of observing the group labels, we generated feature variables that were informative of the latent

group membership: we simulated 30 feature variables from a multivariate normal distribution, where

the first 10 variables X1, X2, ..., X10 had a pairwise correlation of 0.8, the remaining 20 variables were

uncorrelated, and the variance for each variable was 1. Moreover, X1, X2, ..., X10 had mean values

of µl for the latent group l, which were generated from N(0, 5), while the means of X11, ..., X30 were

all 0. Therefore, only X1, X2, ..., X10 were informative of the group labels due to different µl. The

empirical observation for each subject consisted of the treatment assignment A, the feature variables

X1, ..., X30, and the outcome R.

For each simulated data, we applied SOM learning to estimate the optimal ITR. At each step, we

fitted a weighted SVM with a linear kernel by solving the corresponding dual problem via quadratic

programming. The tuning parameter was chosen using cross-validation. Furthermore, we compared

SOM learning with regression-based Q-learning, one-vs-all (OVA) and one-vs-one (OVO) based on the

value function (reward) of the estimated optimal treatment rules. Q-learning was obtained by fitting

a linear model, regressing R on X, A and their interactions, in which A was replaced by dummy

variables created for each category of A. For OVA and OVO, how were they exactly done? For each

setting, we compared the four methods for different sample sizes: n =300, 600, and 900.

Figure 1 to 4 present the results of the optimal treatment mis-allocation rates and the estimated

value functions from 100 replicates and difference sample sizes, which were computed in an indepen-

dently generated test data of size 3 million. Furthermore, Table 1 to 4 summariZe the average of the

marginal mis-allocation rates of each category.

In the first setting, we observe that Q-learning gains higher values and lower mis-allocation rates

of the optimal ITR compared to SOM under all sample sizes because the regression model used in

Q-learning is correctly specified. The estimated values of SOM learning become closer to those of

Q-learning as the sample size increases. In the latter three non-linear settings, the regression model

in Q-learning is misspecified, so it performs poorly under all sample sizes. Instead, SOM learning
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outperforms all comparators including OVA and OVO in all the simulation settings. For SOM learning,

we also used Gaussian kernel in our method and found negligible difference from using linear kernel.

However, since computation using the former is much more intensive, we recommend to use linear

kernel in practice.

Figure 1: Box plots of the optimal treatment mis-allocation rates and estimated value functions of SOM,
Q-learning, OVA and OVO for setting 1 with sample size of 300, 600 and 900. The optimal value is 0.9245.

Table 1: Category Mis-allocation Rates (%) of Setting 1

Category
n=300 n=600 n=900

SOM Qlearn OVA OVO SOM Qlearn OVA OVO SOM Qlearn OVA OVO

1 19.6 10.9 41.3 23.3 14.6 7.4 40.1 17.8 12.7 6.0 39.6 15.3

2 12.6 5.4 19.3 14.5 10.5 3.6 16.8 11.6 9.8 2.9 16.0 10.5

3 23.2 10.7 31.7 25.3 16.5 7.2 30.6 18.9 14.4 5.9 29.4 16.0
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Figure 2: See Table 1. The optimal value is 1.0585.

Table 2: Category Mis-allocation Rates (%) of Setting 2

Category
n=300 n=600 n=900

SOM Qlearn OVA OVO SOM Qlearn OVA OVO SOM Qlearn OVA OVO

1 23.8 27.7 41.4 31.2 20.9 27.1 42.1 31.0 19.0 26.7 40.4 30.3

2 34.4 38.8 39.3 39.8 30.7 38.8 38.9 39.4 29.0 38.5 38.9 39.0

3 23.1 19.0 22.4 21.1 21.3 17.0 20.7 19.5 20.3 16.3 18.7 18.3
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Figure 3: See Table 1. The optimal value is 1.1438.

Table 3: Category Mis-allocation Rates (%) of Setting 3

Category
n=300 n=600 n=900

SOM Qlearn OVA OVO SOM Qlearn OVA OVO SOM Qlearn OVA OVO

1 28.1 31.0 35.1 35.8 25.4 27.7 34.6 31.7 23.7 25.7 36.6 29.9

2 33.0 39.1 36.7 40.0 31.5 38.2 36.9 38.6 30.3 37.5 36.2 37.6

3 38.5 38.8 37.2 40.7 36.6 36.6 37.0 38.7 36.0 36.1 36.9 39.5
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Figure 4: See Table 1. The optimal value is 2.9999.

Table 4: Category Mis-allocation Rates (%) of Setting 4

Category
n=300 n=600 n=900

SOM Qlearn OVA OVO SOM Qlearn OVA OVO SOM Qlearn OVA OVO

1 14.7 35.7 43.3 30.6 13.1 33.0 43.6 30.2 13.2 31.2 44.3 28.6

2 27.5 37.5 30.9 32.0 25.7 34.8 29.4 31.2 25.1 33.4 29.0 30.8

3 33.9 37.1 33.4 32.0 32.6 34.8 32.8 31.8 31.9 34.0 32.3 31.4

5 Application to REVAMP Study

We applied the proposed method to real data collected from the Research Evaluating the Value

of Augmenting Medication with Psychotherapy (REVAMP) trial (Kocsis et al., 2009). The study
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aimed to evaluate the efficacy of adjunctive psychotherapy in the treatment of patients with chronic

depression who have failed to fully respond to initial treatment with an antidepressant medication.

Among the 808 participants in phase I, 491 were classified as nonresponders (NRs) or partial respon-

ders (PRs) and entered phase II. The 491 participants were then randomized to receive (1) continued

pharmacotherapy and augmentation with brief supportive psychotherapy (MEDS+BSP), (2) contin-

ued pharmacotherapy and augmentation with cognitive behavioral analysis system of psychotherapy

(MEDS+CBASP), or (3) continued optimized pharmacotherapy (MEDS) alone, and followed for 12

weeks. The primary outcome is the Hamilton Scale for Depression (HAM-D) scores at the end of

12-week follow-up. There were 17 feature variables including participants’ demographics, patient’s

treatment efficacy expectation, social adjustment scale, mood and anxiety symptom, and depression

experience, as well as phase I depressive symptom measures such as rate of change in HAM-D score

over phase I, HAM-D score at the end of phase I, and Quick Inventory of Depression Symptoms (QIDS)

scores during phase I. After eliminating participants with missing data, the final dataset contained

348 participants, among which 147, 135, and 66 were assigned in MEDS+BSP, MEDS+CBASP, and

MEDS only group, respectively. The mean HAM-D at the end of Phase II study in each treatment arm

is summariZed in Table 6. MEDS+CBASP had the lowest post-treatment HAM-D score, but there

was that no statistically significant differences in changes on HAM-D scores during phase II detected

among the 3 treatment groups (Kocsis et al., 2009).

Table 5: Mean and standard deviation of the value function (HAM-D scores) from 2-fold cross-
validation procedure with 500 repetitions.

Method SOM learning Q-learning OVA OVO

Value in test sample∗ 9.95 (2.085) 12.64 (2.009) 11.97 (1.150) 11.15 (1.458)

One-fits-all MEDS+BSP MEDS+CBASP MEDS

Value in test sample 12.90 10.62 12.53

∗: Value function is the average HAM-D score at end of phase II for patients following an estimated optimal treatment

(a smaller HAM-D score indicates a better outcome).

Our analysis goal is to use 17 feature variables to estimate the optimal individualiZed treatment

strategy among three different options. The feature variables include participants’ value function (av-

erage HAM-D scores) under the ITR can be as low as possible. All feature variables were standardiZed
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before the analyses. We applied SOM learning and compared with Q-learning that uses (1,X, A,XA)

in the regression model, where X represents feature variables and A is the randomized treatment

assignments, as well as OVA and OVO. The expected HAM-D for an ITR was calculated from 2-fold

cross validation of the data with 500 replicates: at each replicate, we randomly split the data into one

training sample and testing sample; we then applied SOM learning to learn the optimal ITR using the

training data and computed the expected value in the testing sample under this estimate rule. The

averages of the cross-validated value functions from the two methods are presented in Table 5 and

their distributions over cross-validations are plotted in Figure 5. The last 3 columns in Table 5 are the

values from non-personaliZed rules where the same treatment is recommended for all patients. With

a value function of 9.95, the SOM learning achieved a lower HAM-D compared to Q-learning and any

of the non-personaliZed rule.

Figure 5: Box plot of the value function for the optimal ITR estimated by various methods from 2-fold cross-
validation with 500 repetitions using REVAMP data: HAM-D score after phase II treatment (a smaller score
indicates a better outcome).

There were 122, 114, and 112 patients predicted to have MEDS+BSP, MEDS+CBASP, and MEDS

alone as optimal treatment, respectively. Table 6 presents the coefficients of the 3! − 1 = 5 models

derived from SOM learning rule in REVAMP study. Model 1 and model 2 corresponds to the 2

permutations of inner loop, determining whether a subject should be assigned to MEDS only group

or not. After eliminating the possibility of being assigned to MEDS only group, model 3 classifies

20



a subject into MEDS+BSP or MEDS+CBASP treatment group. Let β̂11, β̂12, β̂21, β̂22, β̂3 be the

estimated coefficients of model 1(1), 1(2), 2(1), 2(2) and 3, respectively. A patient will be assigned

with: MEDS if he has {XT β̂11 < 0,XT β̂12 < 0}, or {XT β̂21 < 0,XT β̂22 < 0}; MEDS+CBASP if he

has not been assigned to MEDS and XT β̂3 < 0; MEDS+BSP if he has not been assigned to MEDS

and XT β̂3 > 0. The column “Norm” reports the overall effect of feature variables on the optimal

treatment decision rule as the L2 norm of all coefficients for predicting each model.

Table 6: Coefficients estimated from SOM learning in REVAMP study (ranked by the overall effect
of a feature variable).

Feature Variable Model 1(1) Model 1(2) Model 2(1) Model 2(2) Model 3 Norm∗

HAM-D phase I change 0.1604 -0.0558 1.5224 3.4055 -0.0120 3.7342

QISD phase I change -0.1809 0.1523 0.4728 0.8132 -0.0585 1.8896

Gender (Male) -0.4162 -0.5120 -0.1823 -1.0248 -0.0101 1.2325

Drug abuse 0.7450 0.0934 0.1487 0.9402 0.0221 1.2125

Tx efficacy expectation 0.5920 0.2344 0.2541 0.8006 0.0115 1.0541

Social adjustment -0.3592 0.4067 0.6779 -0.0529 0.0014 0.8699

CBASP expectation -0.3941 0.1358 0.1948 -0.5616 -0.0649 0.7289

Current alcohol use 0.1987 0.0608 -0.4850 -0.2004 0.0515 0.5664

Anxious Arousal 0.0170 0.5054 0.1416 0.1307 -0.0066 0.5412

Phase I response -0.1683 -0.2817 0.1355 0.2846 -0.0282 0.4559

BSP expectation 0.2014 -0.1000 -0.1100 0.3462 0.0455 0.4296

General Distress Anxious -0.0512 -0.3460 -0.0804 -0.0555 0.0111 0.3633

Freq of side effects 0.0459 0.1544 0.0879 0.0694 -0.0436 0.2010

QISD end of phase I 0.1524 -0.0524 -0.0897 -0.0311 0.0587 0.1961

HAMD end of phase I -0.0634 0.0035 -0.0710 -0.1520 -0.0206 0.1806

Dysfunctional Attitudes -0.0077 0.0119 0.0007 -0.0111 -0.0190 0.0262

Age 0.0022 -0.0013 -0.0009 0.0008 0.0006 0.0029

∗: “Norm” measures the overall effect of a variable on the optimal treatment assignment rule as the L2 norm of all

coefficients for predicting each model.

The overall most predictive variable as determined by the norm of the coefficients in estimating
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the optimal ITR is the phase I HAM-D rate of change, followed by phase I QIDS rate of change. Both

variables are most predictive of patients with MEDS alone as the optimal choice compared to two other

combined pharmacotherapy and psychotherapy. Gender, history of drug use, and patients expectancy

of treatment efficacy are also informative with an overall effect size greater than 1. Gender is also

most predictive of MEDS alone versus two combined therapies alternatives with females preferring

the latter. Other predictive variables include social adjustment scale and CBASP expectation, and

current alcohol use. No feature variable has a substantially large effect in model 3, implies that

potentially many variables are in play to distinguish MEDS+BSP versus MEDS+CBASP. In a recent

analysis of another randomized trial on major depressive disorder comparing NefaZodone, CBASP or

the combination of the two treatments, obsessive compulsive and past history of alcohol dependence

(Gunter et al., 2011), race, and education level (Klein et al., 2011) were identified as predictive by

Q-learning. Our analyses identified several additional feature variables as informative.

Figure 6: Heatmap of 17 standardiZed feature variables on all patients. Row corresponds to feature variable
and column corresponds to patients stratified by predicted optimal treatment.
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To further visualiZe the relationship between feature variables and the optimal treatment for

each individual, in figure 6, we present the heatmap of 17 standardiZed feature variables by predicted

optimal treatment on all subjects. We can see that history of drug abuse has a different pattern between

patients with MEDS alone as optimal choice and the other two groups and thus may be informative

of distinguishing MEDS alone versus others; dysfunctional attitudes, and patient’s treatment efficacy

expectation, frequency of sides effects, HAM-D rate of change during phase I, QIDS and HAM-D end

of phase I score are informative for distinguishing all three treatments. It is clear that no single variable

has a dominating effect on estimating the optimal ITR, and all feature variables in combination may

be more effective.

6 Conclusions

We have proposed a sequential outcome weighted learning, SOM learning, to estimate the optimal

ITRs with multicategory treatment studies, where each step solves a weighted binary classification

problem via support vector machines (SVMs). By carefully choosing weights in each SVM step and

combining the treatment decision functions from all steps, we showed that the derived rule from the

proposed learning algorithm is Fisher consistent. In the numeric studies, SOM learning yielded more

desirable expected value functions as compared to the method based on a standard regression model.

The proposed method can be extended in several directions. First, for some chronic diseases with

multi-stage therapy, dynamic treatment regimens (DTRs) can be more powerful in obtaining favorable

outcomes than a simple combination of single-stage treatment rules. Various approaches have been

developed to estimate optimal DTR, such as Murphy (2003); Robins (2004); Moodie et al. (2007);

Zhao et al. (2011); Zhang et al. (2012, 2013); Liu et al. (2014). While our method has focused on

single-stage studies only, the proposed procedure can be easily generaliZed to handle multicategory

DTR for multiple stage trials. Second, although the proposed method was only applied to a finite

number of categories, it can be naturally extended to find optimal personaliZed dose, where treatment

is in a continuous scale, after discretiZing the dose variable into a number of categories. However, one

challenge is to determine the number of the categories and the way of discretiZation. One possibility

is to include these uncertainty as parameters to learn in SOM learning. Further research is worth

pursuing.

A major computational cost for SOM learning is to go through all possible permutations of the
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treatment categories. Since the sequential learning for each permutation can be carried out inde-

pendent of one another, one potential improvement in implementation is to incorporate distributed

computing to use this parallel computation structure.

Finally, although we suggested to treat the most prevalent treatment as the first target optimal

treatment in the SOM learning procedure, this may result in few cases for later treatments in consider-

ation and cause large misallocation rates for patients whose optimal treatments are less prevalent. In

practice, when different treatments have different importance, for instance, due to the need to balance

efficacy and risk, the order of the targeted treatments should be taken into account of the practical

importance.
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Appendix

A.1 Proof of Theorem 1

We start from class label k following the order in SOM. First, we show D∗(x) = k if and only if

E[R|X = x, A = k] = maxkl=1E[R|X = x, A = l]. For any x with D∗(x) = k, by the definition of D∗,

there exists a permutation (j1, ..., jk−1) of {1, ..., k − 1} such that D∗(k)l (x) = −1 for l = j1, ..., jk−1.

That is,

f∗j1(x) < 0, f∗j2(x) < 0, . . . , f∗jk−1
(x) < 0, (3)
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where f∗jl is the counterpart of f̂j1 when n =∞.

On the other hand, from the estimation of f̂j1 , it is clear that f∗j1 is the minimizer of the expectation

of a weighted hinge loss corresponding to Vn,j1, which is given by

E

[
k − 1

k

R+

πj1(x)
I(A = j1)[1− f(X)]+

∣∣∣∣X = x

]
+ E

[
1

k

k∑
l=2

R−

πjl(x)
I(A = jl)[1− f(X)]+

∣∣∣∣∣X = x

]

+ E

[
1

k

k∑
l=2

R+

πjl(x)
I(A = jl)[1 + f(X)]+
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+ E

[
k − 1
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]
[1− f(X)]+
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[
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[1 + f(X)]+ + E

[
k − 1

k
R−
∣∣∣∣X = x, A = j1

]
[1 + f(X)]+

where R+ = RI{R > 0}, R− = −RI{R ≤ 0}, and R = R+ −R−.

We first consider the case when f(x) ∈ (−∞,−1], the equation above can be reduced to

(
E

[
k − 1

k
R+

∣∣∣∣X = x, A = j1

]
+

k∑
l=2

E

[
R−

k

∣∣∣∣X = x, A = jl

])
(−f(X)) + constant (4)

It’s clear that we cannot find a minimizer for (2). Similarly, the minimizer cannot be in the interval

f(x) ∈ [1,∞). Therefore, we only consider f(X) ∈ (−1, 1). Then the expectation of a weighted hinge

loss corresponding to Vn,j1 above is:
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That is, f∗j1(X) < 0 is equivalent to
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,
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which is equivalent to

E [R|X = x, A = j1] <
1

k − 1

k∑
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Next, we restrict to data with A 6= j1 and f∗j1(X) < 0, it is clear that f∗j2 minimizes
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Thus, we conclude that

sign(f∗j2(X)) =sign(E [ (k − 2)R|X = x, A = j2]−
k∑
l=3

E [R|X = x, A = jl])I{f∗j1(X) < 0}.

That is, f∗j2(x) < 0 if and only if

E [R|X = x, A = j2] <
1

k − 2

k∑
l=3

E [R|X = x, A = jl]

Continue the same arguments so we establish the relationship between f∗jl and E[R|X = x, A = jl]
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as

sign(f∗jl(x)) = sign

(
E [R|X = x, A = jl]−

1
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In other words, we obtain that for this subject with f∗j1(x) < 0, ..., f∗jk−1
(x) < 0, it holds
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Starting from the last inequality in the above, in turn, we have
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E[R|X = x, A = j1] < E [R|X = x, A = k] .

Therefore,

E[R|X = x, A = k] =
k

max
l=1

E[R|X = x, A = l].

For the other direction, we suppose that

E [R|X = x, A = k] =
k

max
l=1

E [R|X = x, A = l] .

We order the expectations to obtain

E [R|X = x, A = j1] ≤ E [R|X = x, A = j2] ≤ ... ≤ E [R|X = x, A = k]
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Thus all the inequalities in (5)-(10) hold, from equivalence between f∗jl and E [R|X = x, A = jl]’s, it

is straightforward to see that

f∗j1(x) < 0, ..., f∗jk−1
(x) < 0.

In other words, D∗(x) = k. Hence, we have proved that SOM learning correctly assigns subjects whose

conditional mean outcomes are maximal in treatment k into the optimal treatment k.

To prove the consistency of the remaining classes, obtains the rule for class (k − 1) conditional on

A 6= k and D∗(X) 6= k. Using the same proof as above, we conclude

D∗(x) = (k − 1) if and only if (k − 1) = argmaxk−1l=1 Ẽ[R|X = x, A = l],

where Ẽ [R|X = x, A = jl] is the conditional expectation of R given X = x, A 6= k and D∗(X) 6= k.

Moreover, D∗(x) 6= k implies that E[R|X = x, A = k] cannot be the maximum. Therefore,

(k − 1) = argmaxk−1l=1 E[R|X = x, A = l] = argmaxkl=1E[R|X = x, A = l].

That is,

D∗(x) = (k − 1) if and only if (k − 1) = argmaxkl=1E[R|X = x, A = l].

We continue this proof for the remaining classes and finally obtain Fisher consistency.
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A.2 Proof of Theorem 2

We first note

R(D̂)−R(D∗)

=
k∑
l=1

{
E

[
R

πl(X)
I(A = l, D̂(X) 6= l)

]
− E

[
R

πl(X)
I(A = l,D∗(X) 6= l)

]}

=
k∑
l=1

{
E

[
R

πl(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

]
−E

[
R

πl(X)
I(A = l,D∗(X) 6= l, D̂(X) = l)

]}
=

k∑
l=1

{
E

[
R

πl(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

]
−E

[
R

πA(X)
I(A 6= l, D̂(X) 6= l,D∗(X) = l)

]}
.

≤
k∑
l=1

{
E

[
R+

πA(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

]
+E

[
R−

πA(X)
I(A 6= l, D̂(X) 6= l,D∗(X) = l)

]}
.

We let ∆l to denote each term on the right-hand side of the above equation. That is,

∆l = E

[
R+

πA(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

]
+ E

[
R−

πA(X)
I(A 6= l, D̂(X) 6= l,D∗(X) = l)

]

= E

[
|R|

πA(X)
I(Zlsign(R) = 1, D̂(X) 6= l,D∗(X) = l)

]
,

where we recall Zl = 2I(A = l)− 1.

We first examine ∆k. For any x in the domain of X, we let j1, j2, ..., jk−1 be the permutation of

{1, ..., k − 1} such that

E[R|A = j1,X = x] < ... < E[R|A = jk−1,X = x].

Then according to SOM learning, D∗(x) = k implies that f∗jl(x)(x) < 0 for any l = 1, .., k − 1, while

D̂(X) 6= k implies that for this particular permutation, there exists some l = 1, ..., k − 1 such that

f̂jl(x) > 0 so f̂jl(x)f∗jl(x) < 0. Recall that f∗jl(x) = ηjl,S with S = {jl+1, ..., k} and it is the limit of
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f̂jl from Theorem 1. Therefore, we obtain

∆k ≤ E

 |R|
πA(X)

 ∑
(j1,...,jk−1)

I(Zksign(R) = 1, there exists l ≤ k − 1 such that f̂jl(X)f∗jl(X) < 0)




≤
∑

(j1,...,jk−1)

E

[
|R|

πA(X)
I
(
Zj1sign(R) = −1, ..., Zjl−1

sign(R) = −1, f̂jl(X)f∗jl(X) < 0
)]

≤
∑

(j1,...,jk−1)

E

[
|R|

πA(X)
{I(A = jl)(k − l + 1) + I(A 6= jl)}

×I
(
Zj1sign(R) = −1, ..., Zjl−1

sign(R) = −1, f̂jl(X)f∗jl(X) < 0
)]
.

Hence, it suffices to bound each term on the right-hand side of the above inequality.

When l = 1, under conditions (C.1)-(C.4), we use the same proof of Theorem 3.2 in Zhao et al.

(2012), which extends the result in Stienwart and Christmann (2008) to a weighted support vector

machine. Particularly, in their proof, we let the weight for subject i be

|Ri|/πAi(Xi) {(k − 1)I(Ai = j1) + I(Ai 6= j1)}

and the class label be Zj1sign(Ri). Furthermore, from the proof of Theorem 1, f∗j1(x) has the same

sign as ηj1,{j2,...,jk}(x). Thus, from condition (C.1), we conclude that there exists at least probability

1− 3e−ε and a constant C1 such that it holds

E

[
|R|

πA(X)
{(k − 1)I(A = j1) + I(A 6= j1)} I(Zj1sign(R)f̂j1(X) < 0)

]

−E
[
|R|

πA(X)
{(k − 1)I(A = j1) + I(A 6= j1)} I(Zj1sign(R)f∗j1(X) < 0)

]
≤ C1Qn(ε),

where

Qn(ε) =

{
λ

τ
2+τ
n σ

− dτ
d+τ

n + σβn + ε

(
nλpnσ

1−p
1+ε0d
n

)− q+1
q+2−p

}

with any constant ε0 > 0 and d/(d+ τ) < p < 2. Then according to the proof of Lemma 5 in Barlette

et al. (2006) and conditions (C.1) and (C.2), this gives

P (f̂j1(X)f∗j1(X) < 0) ≤ [C ′1Qn(ε)]α,
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where α = q/(1 + q) and C ′1 is a constant.

When l = 2, the step at j2 in SOM is to minimize

n−1
n∑
i=1

I(Zij1 = −1, Zij1sign(Ri)f̂j1(Xi) < 0)wi(1− Zij2sign(Ri)f(Xi))+ + λn,j2‖f‖2,

where wi = |Ri|/πAi(Xi) {(k − 2)I(Ai = j2) + I(Ai 6= j2)} . Thus, we can proceed the same proof of

Theorem 3.2 in Zhao et al. (2012) except that only subjects in the random set

{
i : Zij1 = −1, Zij1sign(Ri)f̂j1(Xi) < 0

}

are used in the derivation. We obtain that

E

[
|R|

πA(X)
{(k − 2)I(A = j2) + I(A 6= j2)} I(Zj1 = −1, Zj2sign(R)f̂j2(X) < 0)

]
−E

[
|R|

πA(X)
{(k − 2)I(A = j2) + I(A 6= j2)} I(Zj1 = −1, Zj2sign(R)f∗j2(X) < 0)

]
≤ C2

{
Qn(ε) + |P (Zj1sign(R)f̂j1(X) > 0)− P (Zj1sign(R)f∗j1(X) > 0)|

}
≤ C2 {Qn(ε) +Qn(ε)α}

with a probability at least 1 − 3e−ε for a constant C2. Note that the second term on the right-hand

side is due to the estimated random set in this step. Again, the proof of Lemma 5 in Barlette et al.

(2006) gives

P (Zj1 = −1, f̂j2(X)f∗j2(X) < 0) ≤ [C ′2Qn(ε)]α.

We continue the same arguments for l = 3, ..., k − 1 to obtain

E

[
|R|

πA(X)
{(k − l + 1)I(A = jl) + I(A 6= jl)} I

{
Zjlsign(R)f̂jl(X) < 0, Zjl−1

= −1, ..., Zj1 = −1
}]

−E
[
|R|

πA(X)
{(k − l + 1)I(A = jl) + I(A 6= jl)} I

{
Zjlf

∗
jl

(X) < 0, Zjl−1
= −1, ..., Zj1 = −1

}]
≤ Cl {Qn(ε) +Qn(ε)α}
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with a probability at least 1− 3le−ε for some constant Cl, and

P (Zj1 = −1, ..., Zjl−1
= −1, f̂jl(X)f∗jl(X) < 0) ≤ [C ′lQn(ε)]α

for a constant C ′l . Hence, with a probability 1− [3k(k − 1)/2]e−ε, ∆k ≤ CQn(ε)α for a constant C.

Similarly, we can examine the difference for ∆k−1. We follow exactly the same arguments as before

by considering all possible permutations from {1, ..., k− 2} and l = 1, ..., k− 2. The only difference in

the argument is that the random set is restricted to subjects with A 6= k and D̂(k)(X) = −1. However,

the probability of the latter differs from the probability A 6= k and D∗(k)(X) = −1 by CQn(ε)α

from the previous conclusion. Therefore, we obtain that with probability at least 1 − [3k(k − 1)/2 +

3(k − 1)(k − 2)/2]e−ε, ∆k−1 ≤ CQn(ε)α for another constant C. Continue the same arguments for

∆l, l = k − 2, ..., 1 so we finally conclude

R(D̂)−R∗ ≤ CQn(ε)α

with probability at least 1− C ′e−ε where C ′ is a constant depending on k. Thus Theorem 2 holds.
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