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Abstract

This work presents methods for estimating genotype-specific distributions from genetic
epidemiology studies where the event times are subject to right censoring, the genotypes are
not directly observed, and the data arise from a mixture of scientifically meaningful subpop-
ulations. Examples of such studies include kin-cohort studies and quantitative trait locus
(QTL) studies. Current methods for analyzing censored mixture data include two types of
nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric
assumptions on the genotype-specific density functions. Although both NPMLEs are com-
monly used, we show that one is inefficient and the other inconsistent. To overcome these
deficiencies, we propose three classes of consistent nonparametric estimators which do not
assume parametric density models and are easy to implement. They are based on the in-
verse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation
(IMP). The AIPW achieves the efficiency bound without additional modeling assumptions.
Extensive simulation experiments demonstrate satisfactory performance of these estimators
even when the data are heavily censored. We apply these estimators to the Cooperative
Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates
of the effect of mutation in the Huntington gene on mortality using a sample of family mem-
bers. The close approximation of the estimated non-carrier survival rates to that of the U.S.
population indicates small ascertainment bias in the COHORT family sample. Our analyses
underscore an elevated risk of death in Huntington gene mutation carriers compared to non-
carriers for a wide age range, and suggest that the mutation equally affects survival rates
in both genders. The estimated survival rates are useful in genetic counseling for providing
guidelines on interpreting the risk of death associated with a positive genetic testing, and in
facilitating future subjects at risk to make informed decisions on whether to undergo genetic
mutation testings.
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1 Introduction

In some genetic epidemiology studies, a research goal is to estimate genotype-specific cu-

mulative distributions of an outcome from mixture data of scientifically meaningful sub-

populations where genotypes are not directly observed. Examples of such studies include

kin-cohort studies (Struewing et al. 1997; Wacholder et al. 1998; Wang et al. 2008; Mai

et al. 2009) and quantitative trait locus (QTL) studies (Lander and Botstein 1989; Wu et

al. 2007). In kin-cohort studies, scientists sample and genotype an initial cohort of subjects

(probands), possibly enriched with mutation carriers. They then collect family history of the

disease (phenotype) from family members of the probands through systematic and validated

interviews of the probands (Marder et al. 2003). While it is impractical and costly to in-

terview family members in-person to collect their blood samples and obtain genotypes, it is

possible to calculate the probability of each relative having a certain genotype based on the

relationship with the proband and the proband’s genotype. Thus, kin-cohort studies differ

from other types of case-control family studies (Li et al. 1998) in that genetic information

in family members is not readily available. Distributions of the observed phenotypes in the

relatives are therefore a mixture of genotype-specific distributions.

In the interval mapping of quantitative traits (Lander and Botstein 1989), the genotype

of a quantitative trait locus (QTL) is not observed, so trait distributions are mixtures of the

QTL genotype-specific distributions. The mixing proportions are computed based on the

observed flanking marker genotypes and recombination fractions between the marker and

the putative QTL. In many controlled QTL experiments such as backcross or intercross, the

mixing proportions can be easily obtained, and interest is in estimating the genotype-specific

distributions.

The unobserved genotype information in both kin-cohort and QTL studies makes infer-

ence of genotype-specific distributions difficult. Inference is further complicated by right

censoring as patients in the study may drop out or become lost to follow-up. The focus of

the current paper is to develop simple, robust, and efficient estimators to improve upon the

available methods in the literature for analyzing such censored mixture data.

Many statistical methods have been developed for modeling and analyzing censored mix-

ture data in QTL mappings and kin-cohort studies. Sometimes the biological underpinning

of the development of a disease trait suggests a suitable parametric function which offers
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meaningful interpretation of the biological structure (Wu et al. 2000). In these cases, it is

reasonable to use maximum likelihood based parametric methods (Lander and Botstein 1989;

Wu et al. 2002). In some QTL experiments, a semiparametric Cox proportional hazards

model may also be suitable (Diao and Lin 2005; Zeng and Lin 2007), but a proportional

hazards assumption is not always valid, such as in some applications with Huntington’s

disease (HD) data (Langbehn et al. 2004). In fact, in many situations, there may not be

sufficient biological knowledge to warrant particular parametric or semiparametric models,

hence concerns of model mis-specification naturally arise. To alleviate these issues, more

flexible nonparametric estimation of the distribution functions become essential (Zhao and

Wu 2008; Yu and Lin 2008). Throughout this work, the term “nonparametric” refers to

leaving the probability density (or hazard) functions completely unspecified.

For the QTL data, Fine et al. (2004) developed a nonparametric method which ex-

ploits the property of independence between the censoring and the event of interest. Wang

et al. (2007) proposed a nonparametric method for kin-cohort data when the censoring

times are observed for all subjects. When censoring times are random and not all observed,

Wacholder et al. (1998) proposed a nonparametric maximum likelihood estimator (type I

NPMLE) consisting of a combination of several NPMLEs and a linear transformation. Chat-

terjee and Wacholder (2001) proposed a direct maximization of the nonparametric likelihood

(type II NPMLE) with respect to the conditional distributions and used an Expectation-

Maximization (EM) algorithm to find the maximizer. Although in many situations NPMLEs

are consistent and even efficient, we demonstrate the surprising result that the type I is highly

inefficient and the type II is inconsistent.

To overcome the shortcomings of the aforementioned methods, we provide several consis-

tent and efficient nonparametric estimators by casting this problem in a missing data frame-

work. Given a complete data influence function when there is no censoring (see Appendix

and Ma and Wang 2012), we propose an inverse probability weighting (IPW) estimator, and

derive an optimal augmentation term to obtain the optimal estimator. We demonstrate that

the optimal augmented IPW (AIPW) estimator achieves the efficiency bound without extra

modeling assumptions or complicated computational procedures. We also propose an impu-

tation (IMP) estimator which is easy to implement and does not require additional modeling

assumptions for the imputation step.
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The rest of the paper is organized as follows. Section 1.1 presents a large collaborative

study of Huntington’s disease to which we apply our proposed estimators. Section 2 de-

scribes the inefficiency and inconsistency of the two existing NPMLE methods. To improve

upon these methods, we propose several nonparametric estimators in Section 3 which are

consistent, efficient, and easy to implement. We demonstrate the asymptotic properties of

these estimators and examine their finite sample performance through comprehensive simu-

lation studies in Section 4. The methods are applied to the Huntington’s disease study in

Section 5, and Section 6 concludes the paper with some discussions. The technical details

and additional numerical results are in an Appendix and an online Supplementary Material,

with tables, figures and section numbers in the Supplementary Material indicated with “S.”

proceeding a number.

1.1 The Cooperative Huntington’s Observational Research Trial

(COHORT)

Huntington’s disease is a degenerative, genetic disorder which targets nerve cells in the brain

and leads to cognitive decline, involuntary muscle spasms, and psychological problems. Af-

fected individuals typically begin to see neurological and physical symptoms around 30-50

years of age, and eventually die from pneumonia, heart failure or other complications 15-20

years after the disease onset (Foroud et al. 1999). The severity of the disease has prompted

the development of several organizations, like the Huntington Study Group (Huntington

Study Group 2011), which are devoted to studying the causes, effects, and possible treat-

ments for HD. A particular study organized by roughly 42 Huntington Study Group research

centers in North America and Australia is the Cooperative Huntington’s Observational Re-

search Trial (COHORT; Dorsey et al. 2008). Since 2005, the principal investigators of

COHORT have been collecting ongoing information from affected or at-risk adults and their

family members 15 years of age and older.

Huntington’s disease is caused by unstable CAG repeats expansion in the HD gene (Hunt-

ingtons Disease Collaborative Research Group, 1993). In a genetic counseling setting, CAG

repeats ě 36 is defined as positive for HD gene mutation, or carrier, and CAG ă 36 is

defined as negative, or non-carrier (Rubinsztein et al. 1996). Proband participants in CO-

HORT undergo a clinical evaluation where blood samples are genotyped for being a carrier
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or non-carrier of HD mutation. While the HD mutation status is ascertained in probands,

high costs of in-person interviews on family members prevents collection of their blood sam-

ples. Family members’ morbidity and mortality information such as age-at-death is obtained

through a systematic interview of the probands. Although a relative’s HD gene mutation

status is unavailable, the probability of carrying a mutation can still be obtained based on

the relative’s relationship with the proband and the proband’s mutation status (Khoury et

al. 1993, Section 8.4). The distribution of the relative’s age-at-death is therefore a mixture

of the genotype-specific distributions with known, subject-specific mixing proportions.

Despite the identification of the causative gene, there is currently no effective treatment

that modifies HD progression. One of the goals of COHORT is to estimate the risks of

adverse events, such as disease onset or death, associated with carrying a mutation, and

to use these parameters to design future clinical trials for intervention or treatment of HD.

For example, the power calculation of a trial with survival as the primary endpoint will

depend on parameters such as risk ratio in carriers and non-carriers. The proposed methods

here can aid in estimating these important parameters, and also has benefits in genetic

counseling for patients and their family members. The estimated survival function in HD

mutation carriers provides guidelines on interpreting the risk of death associated with a

positive genetic mutation test, and facilitate subjects at risk to make important life decisions

such as marriage or having children. We show some examples of the utilities of the survival

estimates in Section 5.

2 Some existing nonparametric estimators for cen-

sored mixture data

We consider censored mixture data denoted as triplets pQi “ qi, Xi “ xi,∆i “ δiq, which

are independent and identically distributed. For the ith subject, Qi is a p-dimensional

vector of the random mixture proportions computed from available genotype data on the

proband in kin-cohort studies or from flanking markers in QTL studies. In a kin-cohort

study, Qi may be a two-dimensional vector where Qi1 represents the probability of being a

mutation carrier, and Qi2 a non-carrier. To illustrate the computation of Qi, let Li denote

the unobserved genotype in a relative, and let Li0 denote the observed genotype in a proband.
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Let pA denote the population frequency of the mutation allele A and let a denote the wild

type. Consider a heterozygous carrier proband with genotype Aa. Assuming Mendelian

transmission, the probability of a parent of a proband being a carrier is Qi1 “ PrpLi “

AA or Aa|Li0 “ Aaq “ 1
2
p1` pAq. The probability for a sibling of a proband to be a carrier

is Qi1 “ PrpLi “ AA or Aa|Li0 “ Aaq “ ´1
4
p2A `

3
4
pA `

1
2
. When pA « 0, the two Qi1’s

are both 1
2
. The Qi for other types of relatives and other types of probands (homozygous

or non-carrier probands) are computed similarly; see Khoury et al. (1993) (Section 8.4) for

details.

In general, for both QTL and kin-cohort studies, Qi has a discrete distribution with a

finite support, say u1, . . . ,um. Its probability mass function, denoted as pQ, is determined

by the experimental design. For example, in a backcross QTL study, Qi is a two-dimensional

vector that will take four possible values p1, 0qT , pθ, 1´θqT , p1´θ, θqT , and p0, 1qT , where θ is

the known recombination fraction between the putative QTL and the flanking marker. The

probability of Qi taking these four values is determined by the marker genotype frequencies

computed from the observed marker data (e.g., Table 10.4 in Wu et al. 2007). In kin-cohort

studies, the distribution of Qi is determined by the type of relatives collected (e.g., parents,

siblings and children) and the distribution of the probands’ genotypes (e.g., number of non-

carriers probands, heterozygote probands and homozygous probands).

Lastly, Xi “ minpTi, Ciq, where Ti is a subject’s event time and Ci is a random continuous

censoring time independent of Ti; and ∆i “ IpTi ď Ciq is the censoring indicator. We let

fp¨q denote the p-dimensional unspecified conditional probability density function of T given

genotypes in p genotype groups, and F p¨q denote the corresponding cumulative distribution

function. Interest lies in estimating F ptq for any fixed time t. In the COHORT study, we

have p “ 2 with F1ptq and F2ptq corresponding to the age-at-death distribution for HD gene

mutation carriers and non-carriers. Throughout, except when specifically pointed out, we

assume that the event times x1, . . . , xn have no ties, and that the censoring distribution is

common for all subjects. Then, letting Gp¨q denote the survival function of C and gp¨q its

corresponding density, the log-likelihood of n observations is

n
ÿ

i“1

log
´

pQpqiq
 

qTi fpxiqGpxiq
(δi “ 

1´ qTi F pxiqugpxiq
(‰1´δi

¯

, (1)
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where we use the fact that qTi 1p “ 1 with 1p a p-dimensional vector of ones.

2.1 The type I NPMLE and its inefficiency

The type I NPMLE was proposed in the literature to analyze kin-cohort data (Wacholder

et al. 1998). It first maximizes (1) with respect to qTi fpxiq’s, then recovers F ptq through a

linear transformation. Although an NPMLE based estimator is usually efficient, it is not so

for mixture data, and the magnitude of efficiency loss can be large.

To describe the type I NPMLE, we reformulate the maximization problem by evoking

the assumption that Q has finite support u1, . . . ,um and by letting sjpxkq “ u
T
j fpxkq and

Sjpxkq “ 1´uTj F pxkq. Throughout this work, we refer to the p different genotype populations

as p subpopulations, and the m different uj values as m subgroups. In the literature, the

type I NPMLE assumes random censoring, and hence the censoring distribution does not

contribute information to the parameter of interest. Therefore, ignoring Gp¨q and gp¨q in (1),

it maximizes the equivalent target function

m
ÿ

j“1

n
ÿ

i“1

log
 

sjpxiq
δiSjpxiq

1´δi
(

Ipqi “ ujq (2)

with respect to sjpxiq’s and subject to
řn
i“1 sjpxiqIpqi “ ujq ď 1, sjpxiq ě 0 for j “ 1, . . . ,m.

This is equivalent to m separate maximization problems, each concerning sjp¨q and Sjp¨q only,

so that the maximizers are the classical Kaplan-Meier estimators. That is,

pSjpaq “
ź

xiďa,qi“uj

#

1´
δi

ř

qk“uj
Ipxk ě xiq

+

and sjpaq “ Sjpa
´q ´ Sjpaq for all a. Using the linear relation uTj F ptq “ 1 ´ Sjptq for

j “ 1, . . . ,m, we then recover the type I NPMLE estimator as

rF ptq “
`

UTU
˘´1

UT
t1m ´ pSptqu,

where pSptq “ tpS1ptq, . . . , pSmptqu
T , and U “ pu1, . . . ,umq

T . In this notation, Sptq “

1m ´ UF ptq. The consistency of the Kaplan-Meier estimator of Sptq ensures the con-

sistency of rF ptq. The inefficiency of rF ptq, however, is evident considering that rF wptq “
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pUTΣ´1Uq´1UTΣ´1
t1m ´ pSptqu with Σ denoting the variance-covariance matrix of pSptq

yields a more efficient estimator. In this case, Σ is a diagonal matrix because each of the m

components of pSptq is estimated using a distinct subset of the observations. Hence, rF wptq

is a weighted version of the type I NPMLE, and this simple weighting scheme improves the

estimation efficiency.

2.2 The type II NPMLE and its inconsistency

The type II NPMLE is considered an improvement over the type I NPMLE (Chatterjee

and Wacholder 2001). It maximizes the same log likelihood (1), but with respect to fpxiq’s

subject to
řn
i“1 fpxiq ď 1p and fpxiq ě 0 component-wise. Like the type I NPMLE, the

type II NPMLE also assumes random censoring and ignores Gp¨q and gp¨q in (1). In general,

no closed form solution exists, and the EM algorithm is implemented to obtain the F pxiq’s.

Specifically, we regard the genotypes Li “ 1, . . . , p as missing data and derive the complete

data log likelihood of the observations oi “ pLi “ li, Xi “ xi,∆i “ δiq, i “ 1, . . . , n, as

Lcomp
type IIto1, . . . ,on;fpxiq,F pxiq, i “ 1, . . . , nu “

n
ÿ

i“1

p
ÿ

k“1

Ipli “ kqlog
“

fkpxiq
δit1´ Fkpxiqu

1´δi
‰

.

The EM algorithm is an iterative procedure. At the bth iteration, we take the conditional

expectation of the complete data log-likelihood given the observed data (e.g., tpXi “ xi,∆i “

δiq, i “ 1, . . . , nu), and update the E-step via

E
”

Lcomp
type IIto1, . . . ,on;fpxiq,F pxiq, i “ 1, . . . , nu|f pbqpxiq,F

pbq
pxiq, i “ 1 . . . , n

ı

“

p
ÿ

k“1

n
ÿ

i“1

«

δiqikf
pbq
k pxiq

řp
k“1 qikf

pbq
k pxiq

logfkpxiq `
p1´ δiqqikt1´ F

pbq
k pxiqu

řp
k“1 qikt1´ F

pbq
k pxiqu

logt1´ Fkpxiqu

ff

.

The M-step maximizes the above expression with respect to fpxiq and F pxiq’s subject to

fpxiq ě 0 and 1 ě F pxiq ě 0. To this end, let

c
pbq
ik “ δi

qikf
pbq
k pxiq

řp
k“1 qikf

pbq
k pxiq

` p1´ δiq
qikt1´ F

pbq
k pxiqu

řp
k“1 qikt1´ F

pbq
k pxiqu
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denote the known quantity based on the bth iteration. Then, the M-step reduces to p separate

maximization problems of the form

n
ÿ

i“1

c
pbq
ik rδilogfkpxiq ` p1´ δiqlogt1´ Fkpxiqus ,

for k “ 1, . . . , p. Viewing this as the log likelihood of weighted observations, where the

ith observation represents c
pbq
ik observations of the same value, the maximizer is a modified

Kaplan-Meier estimator:

1´ F̌
pb`1q
k ptq “

ź

xiďt,δi“1

#

1´

řn
j“1 Ipxj “ xi, δj “ 1qc

pbq
jk

řn
j“1 c

pbq
jk Ipxj ě xiq

+

“
ź

xiďt,δi“1

#

1´
c
pbq
ik

řn
j“1 c

pbq
jk Ipxj ě xiq

+

.

Iterating the E- and the M-step until convergence leads to the type II estimator.

As natural as the type II NPMLE appears, we show in Section S.1 of the Supplementary

Material the surprising result that it is an inconsistent estimator of F ptq.

3 Proposed nonparametric estimators for censored mix-

ture data

3.1 The IPW and the optimal augmented IPW estimators

To compensate for the deficiencies of the NPMLEs, we propose a class of nonparametric

estimators based on inverse probability weighting (IPW) and its augmented version which

are consistent and easy to implement. We describe these estimators in terms of their corre-

sponding influence functions.

3.1.1 Inverse probability weighting

The notion of IPW was first introduced by Horvitz and Thompson (1952) in the context of

survey sampling, and later by Robins, Rotnitzky, and Zhao (1994) in the context of missing

data as a means for upweighting subjects who are under-represented because of missingness.

Bang and Tsiatis (2000, 2002) used the IPW to estimate the mean and median medical costs

by capturing information from patients whose medical costs were subject to right censoring.

In this spirit, we elicit information from the censored observations in the mixture data with
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an IPW estimator. Specifically, our IPW estimator solves

n´1
n
ÿ

i“1

δiφpqi, xiq

pGpxiq
“ 0, (3)

where φ denotes a general influence function for non-censored mixture data corresponding

to δi “ 1 (i “ 1, . . . , n) in (1) (see Appendix for elaborations on φ), and pGptq is the Kaplan-

Meier estimator of Gptq:

pGptq “
ź

xiďt

#

1´
1´ δi

řn
j“1 Ipxj ě xiq

+

.

The intuition behind (3) is that for any subject randomly selected from the population with

Xi “ xi, the probability that such a subject will not be censored is Gpxiq. Therefore, any

uncensored subject with Xi “ xi can be regarded as representing 1{Gpxiq subjects from

the population. By inversely weighting all uncensored subjects with their corresponding

probabilities of not being censored, we obtain a consistent estimating equation in (3).

We now characterize the asymptotic behavior of the IPW estimator in terms of its influ-

ence function. Let Yipuq “ IpXi ě uq, Y puq “
řn
i“1 Yipuq, N

c
i puq “ IpXi ď u,∆i “ 0q, and

λcp¨q be the hazard function for the censoring distribution. Also, let

M c
i puq “ N c

i puq ´

ż u

0

IpXi ě sqλcpsqds

denote the censoring martingale; and define

Bph, uq “ E thp¨q|Ti ě uu “
Ethp¨qIpTi ě uqu

Spuq

where h is any p-length function. Then, as derived in Section S.2 of the Supplementary

Material, the ith influence function for the IPW estimator is

φipwpqi, xi, δiq “ φpqi, tiq ´

ż

dM c
i puq

Gpuq
tφpqi, tiq ´ B pφ, uqu .

The two terms in φipw are uncorrelated given that φpqi, xiq is Fp0q measurable where Fpuq

is a filtration defined by the set of σ-algebras generated by σtqi, IpCi ď rq, r ď u; IpTi ď
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xq, 0 ď x ă 8, i “ 1, . . . , nu. Hence, the estimation variance of the IPW estimator is

V ipw “ covtφpQi, Tiqu ` E

"
ż

Bpφb2, uq ´ Bpφ, uqb2

G2puq
λcpuqYipuqdu

*

,

and a consistent estimator is

pV ipw “ n´1
n
ÿ

i“1

δiφpqi, xiqφ
T
pqi, xiq

pGpxiq
` n´1

n
ÿ

i“1

ż

pB1pφ
b2, uq ´ pB1pφ, uq

b2

pG2puq
dN c

i puq,

where pB1ph, uq “
1

npSpuq

n
ÿ

i“1

δihpqi, xi, δiqIpxi ě uq

pGpxiq
for an arbitrary function hpqi, xi, δiq.

3.1.2 Augmented inverse probability weighting

Although intuitive and easy to implement, the IPW estimator is inefficient. Instead, using a

modification motivated by Robins and Rotnitzky (1992), one may adjust the IPW estimator

to improve its efficiency. With φ as the complete data influence function, Robins and

Rotnitzky (1992) provided the following general class of influence functions for censored

data:

φpqi, tiq ´

ż

dM c
i puq

Gpuq
tφpqi, tiq ´ Bpφ, uqu `

ż

dM c
i puq

Gpuq
rhtāipuq, uu ´ Bph, uqs . (4)

For our mixture data problem, aipuq “ tqi, Ipu ă Tiqu and āipuq contains the functions aipũq

for all ũ ď u. Compared to the influence function for the IPW estimator, the estimator from

(4) contains an augmentation term that may improve the estimation efficiency, and is thus

termed the augmented IPW (AIPW) estimator. Among all the choices for h, Robins et

al. (1994) and Van der Laan and Hubbard (1998) showed that

h˚efftāipuq, uu “ EtφpQi, Tiq|Ti ě u, āipuqu

“ tIpu ă Xiq ` Ipu “ Xi, δi “ 0quEtφpQi, Tiq|qi, Ti ě uu ` Ipu “ Xiqδiφpqi, uq

with u ď Xi yields the optimal efficiency. Denoting heff,ipuq “ EtφpQi, Tiq|qi, Ti ě uu, we

have that h˚efftāipuq, uu and heff,ipuq are identical except when u “ Xi and δi “ 1. The

functional h˚eff only appears in the censoring martingale integral, so using heff,ipuq instead of

h˚efftāipuq, uu yields the same influence function. This simplification is of great importance
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because otherwise the optimal h˚eff is only an interesting but impractical theoretical result.

For most problems, computing h˚eff is nearly impossible and would require extra modeling

assumptions which prevents the estimator from achieving the efficiency bound.

In our case, however, h˚eff is simple to compute and the AIPW estimator achieves the

optimal efficiency. A consistent estimate uses a sample version of (4) with IPW:

pheff,ipuq “

řn
j“1 Ipqj “ qiqφpqj, xjqYjpuqδj{

pGpxjq
řn
j“1 Ipqj “ qiqYjpuqδj{

pGpxjq
. (5)

Because heff,ipuq is not a function of Ci, the independence between the censoring and survival

process gives

Bpheff, uq “

E
!

heff,ipuqIpTi ě uqIpCi ě uq
)

EtIpTi ě uqIpCi ě uqu
“

E
!

heff,ipuqYipuq
)

EtYipuqu
.

Therefore, we can approximate Bpheff, uq with

pBpheff, uq “

řn
i“1 heff,ipuqYipuq

Y puq
,

which satisfies

n
ÿ

i“1

ż

λcpuqYipuq

pGpuq

!

pheff,ipuq ´
pBppheff, uq

)

du “ 0.

This enables us to obtain the optimal AIPW estimator pF ptq by solving

n
ÿ

i“1

«

δiφpqi, xiq

pGpxiq
`

ż

dN c
i puq

pGpuq

!

pheff,ipuq ´
pB
´

pheff, u
¯)

ff

“ 0. (6)

The AIPW estimator is very easy to implement especially comparing to many other non-

parametric or semiparametric problems where the efficient estimator often involves additional

model assumptions (Tsiatis and Ma 2004), solving integral equations (Rabinowitz 2000) and

iterative procedures (Zhang et al. 2008).

In Section S.3 of the online Supplementary Material, we demonstrate that the AIPW

estimator indeed has the efficient influence function, which corresponds to replacing hp¨q
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with heff,ipuq in (4). The variance of the efficient estimator is

V eff “ covtφpQi, Tiqu ` E

ż Btpφ´ heffq
b2, uu

G2puq
λcpuqYipuqdu,

which is estimated consistently by

pV eff “ n´1
n
ÿ

i“1

δiφpqi, xiqφ
T
pqi, xiq

pGpxiq
` n´1

n
ÿ

i“1

ż

pB1tpφ´ pheffq
b2, uu

pG2puq
dN c

i puq.

3.1.3 Subgroup-specific censoring

The IPW estimator (3) and the AIPW estimator (6) are designed for the case when the

censoring distribution Gp¨q is common for all subjects in m subgroups. When this is not

the case, subgroup-specific censoring distributions, rGjptq, j “ 1, . . . ,m, should be used.

Specifically, pGptq is replaced by the subgroup-specific Kaplan-Meier estimators

rGjptq “
ź

xiďt
qi“uj

#

1´
1´ δi

ř

qk“uj
Ipxk ě xiq

+

for j “ 1, . . . ,m. Consequently, the IPW estimating equation (3) changes to

n´1
m
ÿ

j“1

ÿ

i:qi“uj

δiφpqi, xiq

rGjpxiq
“ 0,

and the corresponding estimated variance pVipw changes analogously with summation
řm
j“1

ř

i:qi“uj

replacing
řn
i“1, and a subgroup-specific

pB1jph, uq “
1

#ti : qi “ ujupSjpuq

ÿ

i:qi“uj

δihpqi, xi, δiqIpxi ě uq

rGjpxiq

replacing the pooled pB1ph, uq.

Similar changes apply to the AIPW estimator. Specifically, in (5), (6) and in the ex-

pression of pV eff, we replace
řn
i“1 with

řm
j“1

ř

i:qi“uj
, replace pGptq with rGjptq, and replace

pBpheff, uq with

pBjpheff, uq “

ř

i: qi“uj
heff,ipuqYipuq

ř

i: qi“uj
Yipuq

.
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It is worth noting that if we erroneously treat the censoring distribution as common

when in fact it is not, the IPW estimator will not be consistent any more because the

corresponding influence function no longer has mean zero. On the other hand, the AIPW

estimator will still be consistent, although less efficient. This is a direct consequence of

the double robustness property of the AIPW estimator, in that the validity of the full data

influence function φpq, tq alone guarantees consistency of the AIPW estimator. However,

since the efficiency of AIPW is achieved when the correct censoring model is used, treating

the censoring distribution as identical across subgroups when they are not leads to efficiency

loss. The issue of subgroup-specific censoring and the performance of IPW, AIPW and their

modified versions are illustrated in simulation studies in Section 4.3.

3.2 An imputation (IMP) estimator

Lipsitz et al. (1999) proposed a conditional estimating equation for regression with missing

covariates by conditioning the complete data estimating equation on the observed data. Sim-

ilarly, with censored observations, we replace the unknown complete data influence function

with its conditional expectation given that the event happens after the observed censoring

time. Doing so yields the following imputed estimating equation:

0 “
n
ÿ

i“1

rδiφpqi, xiq ` p1´ δiqE tφpQi, Tiq|Ti ą xi, qius “
n
ÿ

i“1

!

δiφpqi, xiq ` p1´ δiqheff,ipxiq
)

.

In practice, with pheff,ip¨q as in (5), we obtain the IMP estimator by solving

0 “
n
ÿ

i“1

!

δiφpqi, xiq ` p1´ δiqpheff,ipxiq
)

.

While in many cases the imputation method could lead to bias if the model of the

missingness is mis-specified, it is straightforward to see that our proposed imputation esti-

mator is always consistent. In practice, we often, but not always, observe that it performs

competitively in comparison with the optimal AIPW estimator. For inferences, we derive

the influence function of the IMP estimator in Section S.4 of the Supplementary Material

and show that it has a complex form containing nested conditional expectations and hence

is hardly useful practically. Asymptotic analysis for imputation based estimation is often
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complex and can be rather involved even in parametric imputation procedures (Wang and

Robins 1998; Robins and Wang 2000), which partially explains why the bootstrap method

is usually favored in its inference.

4 Simulations

4.1 Simulation design

We conducted comprehensive Monte Carlo simulation studies to illustrate the finite sample

performance of four groups of estimators, yielding a total of eleven different estimators. The

first three groups of estimators include the IPW, optimal AIPW and IMP estimators based

on (a) the complete data ordinary least square (OLS) influence function; (b) the complete

data weighted least square (WLS) influence function using the inverse of the variance as

weights; and (c) the efficient (EFF) influence function. See the Appendix for the exact

forms of the influence functions. The fourth group of estimators contains the two NPMLEs.

The primary goal of the simulation studies is to compare the bias and efficiency of the

eleven estimators of the distribution function of an outcome subject to censoring in each geno-

type population without directly observing the genotypes. In the first two simulation studies,

the distribution function F ptq is a two-dimensional vector (i.e., p “ 2 subpopulations). In the

first simulation experiment, we set F1ptq “ t1´ expp´t{4qu{t1´ expp´2.5qu on the interval

p0, 10q and F2ptq “ F1ptq
0.98 on the interval p0, 5q. In the second experiment, we set F1ptq “

rt1´ expp´t{4qu{t1´ expp´2.5qus0.5 on p0, 10q and F2ptq “ t1´ expp´t{2qu{t1´ expp´2.5qu

on p0, 5q. Thus, the distributions in the first experiment belong to the proportional hazards

model family, while they do not in the second. In both experiments, we let each random

mixture proportion qi be one of m “ 4 different possible vector values: p1, 0qT , p0.6, 0.4qT ,

p0.2, 0.8qT and p0.16, 0.84qT . Our sample size was 500 and we generated a uniform censoring

distribution to achieve moderate (20%) and high (50%) censoring rates.

Our third simulation experiment mimics the COHORT data. With p “ 2, we set

F1ptq “ r1 ` expt´pt ´ 63q{7us´0.9{0.995 on p0, 100q, and F2ptq “ 0.0007t on p0, 53s and

F2ptq “ 0.022` r1` expt´pt´ 68q{7.5us´2 on p53, 100q. These distributions roughly mimic

the estimated cumulative risk of death for HD gene mutation carriers and non-carriers, re-

spectively, in the COHORT study (Figure 1). Analogous to the COHORT study, we used
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sample size n “ 4500, generated m “ 6 different mixture proportions: p0, 1qT , p0.5, 0.5qT ,

p0.97, 0.03qT , p0.75, 0.25qT , p0.25, 0.75qT , and p1, 0qT ; and censored 65% of the observations

with a uniformly distributed censoring process.

For each of the three experiments under different censoring rates, we evaluated all eleven

estimators at different t values. First, we ran 1000 Monte Carlo simulations to evaluate the

pointwise bias, defined as pF ptq´F ptq, at t “ 2.5 in the first experiment (Table 1), at t “ 1.5

in the second experiment (Table S.1, Supplementary Material), and at t “ 70 in the third

experiment (Table S.2, Supplementary Material). The corresponding estimated standard

errors for the IPW and AIPW estimators were based on pV ipw and pV eff given in Section

3.1.1 and Section 3.1.2, respectively, whereas bootstrap estimates were used to quantify the

variability for the IMP estimator and the NPMLEs. Next, we evaluated the biases of the

estimators across the entire range of t values through an integrated absolute bias (IAB),

defined as
ş8

0
|F̄jptq ´ Fjptq|dt, j “ 1, 2, where F̄jptq is the average estimated curves over

multiple data sets. The results are in Table S.3 (upper half) and Tables S.2, S.3 (upper half)

of the Supplementary Material. In the first two experiments, the IAB was computed on a

grid set with an increment of ∆ “ 0.1 as
ř100
i“1 |F̄1pxiq´F1pxiq|∆ and

ř50
i“1 |F̄2pxiq´F2pxiq|∆,

where F̄jpxiq (j “ 1, 2) denotes the mean estimated distribution from 1000 data sets. In the

third experiment, it was computed on a grid set with an increment of ∆ “ 2 on (0,100)

as
ř50
i“1 |F̄jpxiq ´ Fjpxiq|∆ (j “ 1, 2), where F̄jpxiq denotes the mean estimated distribution

from 250 data sets.

4.2 Simulation results

The results in Table 1 and Tables S.1 and S.2 (Supplementary Material) indicate that all the

nonparametric estimators we propose have ignorable finite sample biases, while the type II

NPMLE has much larger bias. At high censoring rates, the bias for the type II NPMLE is

much greater and the coverage probability is much lower than the pre-specified nominal level.

Moreover, the bias is not a finite sample effect since even at a sample size of n “ 4500, the bias

persists. Despite its asymptotic consistency, the type I NPMLE also shows substantial bias

when the censoring rate increases. This is because in the estimation procedure of the type

I NPMLE, the mixture nature of the model is not taken advantage of at the maximization

step. The Kaplan-Meier estimation in some subgroups could be based on very small sample
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sizes which can make the overall estimation unreliable.

Compared to the proposed estimators, the type I NPMLE has, for the most part, larger

estimation variability, and the increased variability is rather substantial for the F2ptq esti-

mation. In particular, the WLS based estimators have much less variability than the type I

NPMLE. Ma and Wang (2012) showed that the type I NPMLE for uncensored data belongs

to the WLS family with weights wi “ 1{ni, where ni is the number of subjects who share the

same qi. In other words, the type I NPMLE essentially downweights individuals belonging

to large subgroups. Since such a weighting strategy is highly undesirable, it is not surprising

to see that the weights in the WLS provide an improvement over those in the type I NPMLE.

In contrast, the three proposed nonparametric estimators have satisfactorily small biases

and are more efficient compared to the type I NPMLE. The optimal AIPW and IMP esti-

mators both improve upon IPW in terms of estimation efficiency. When the censoring rate

is moderate, IMP and AIPW perform similarly, while when the censoring rate increases,

the superiority of the optimal AIPW over IMP becomes more notable. The similarity of

the results in the first three groups of estimators suggests that the estimation efficiency is

not sensitive to the choice of the non-censored data influence function φ. The same insen-

sitivity of estimation efficiency to the choice of influence function is also observed for the

non-censored data case (Ma and Wang 2012). This phenomenon proves beneficial especially

in the censored data analysis since Robins and Rotnitzky (1992) remarked that the best

complete data influence function does not necessarily yield an optimal censored data influ-

ence function, and finding the optimal member usually requires a computationally intensive

procedure. Finally, the estimated standard error matches reasonably well with the empirical

standard error, while the 95% coverage probability is close to the nominal level.

In Figure 1, we examine the entire estimated survival curve 1´ pF ptq in experiment three

which mimics the COHORT study. In particular, we display results from the imputation

estimator (EFFIMP) and the AIPW estimator (EFFAIPW), both based on the full data

efficient influence function, as representatives of the proposed estimators, and compare them

with the two NPMLEs. To evaluate these estimators, we plotted the true survival curves

and the mean estimated survival curves from 250 simulated data sets along with the 95%

pointwise confidence bands. The EFFIMP and EFFAIPW estimators perform satisfactorily

throughout the entire range of t, while the type I NPMLE starts to exhibit large variability
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and small sample estimation bias as time progresses. This confirms our previous observation

that the type I NPMLE suffers from the small subgroup sample size difficulty and the

instability of the Kaplan-Meier estimation procedure near the maximum event time. The

type II NPMLE also shows a non-ignorable bias for a wide range of t’s.

To illustrate the overall bias of the eleven estimators across the entire range of t values,

we further provide the IAB for all three experiments in Table S.3 (upper half) and Tables S.2,

S.3 (upper half). Nearly all estimators have very small IAB, whereas the type II NPMLE

can yield a bias ten times larger than the other estimators. For the same estimator in each

experiment, the IAB also tends to increase with larger censoring rate.

4.3 Subgroup-specific censoring

We now examine the performance of the original IPW and AIPW estimators proposed in

Sections 3.1.1 and 3.1.2, as well as their modified versions in Section 3.1.3, when the true

censoring distribution is different across different subgroups. We extend the first simulation

by generating the censoring times from the proportional hazards distribution

Gpt | qiq “ 1´ expt´γ1t
γ2 exppγ3qu,

where we set γ3 “ 0 if qi “ p1, 0q
T or qi “ p0.6, 0.4q

T , and set γ3 “ 0.2 if qi “ p0.2, 0.8q
T

or qi “ p0.16, 0.84qT . Here, γ1, γ2 remain the same across the different subgroups and were

chosen to achieve respectively moderate (20%) and high (50%) censoring proportions. The

survival times and qi were generated as in the first simulation experiment in Section 4.1.

We first implemented the original IPW and AIPW estimators, which ignore the subgroup-

specific censoring pattern and simply use a pooled censoring distribution pGptq. We then

implemented the modified IPW and AIPW estimators, which incorporate the subgroup-

specific censoring distributions through obtaining rGjptq as described in Section 3.1.3. As in

our earlier analyses, we investigated the pointwise bias at t “ 2.5, as well as the IAB across

the entire range of t.

Table 3 shows the pointwise bias of the IPW and AIPW estimators when using a pooled

estimated censoring distribution, and a subgroup-specific censoring distribution. It is evident

that the IPW has substantial bias if the pooled censoring estimate is used, indicating that
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the original IPW is not applicable when the censoring is subgroup-specific. However, its bias

is substantially reduced as soon as the subgroup-specific censoring is taken into account.

The AIPW, on the other hand, is robust to mis-specification and has small bias regardless of

whether a pooled or subgroup-specific censoring estimate is used. For the AIPW, ignoring

the subgroup-specific censoring pattern only incurs a small efficiency loss, mostly for the

OLS-based and WLS-based estimators. For the EFF-based AIPW, the efficiency loss is

minimal.

The IAB (lower half of Table S.3) further indicates that when the pooled censoring

distribution is used, the IPW has much larger overall bias than the AIPW. However, after

incorporating the subgroup-specific censoring distribution, the modified IPW and AIPW

have similar magnitudes of the IAB. In a separate analysis where we extended the second

simulation experiment in Section 4.1, we also found similar behaviors for the pointwise bias

(Table S.4) and IAB (lower half of Tables S.3).

5 Analysis of COHORT data

Data from the COHORT study consist of 4587 relatives of the proband participants who

have different mixing proportions for being carriers or non-carriers of the HD gene mutation.

Computation of these mixing proportions is discussed in Section 2, Wacholder et al. (1998)

and Wang et al. (2008). The event time of interest is age of death, and roughly 68% of

the data is censored. A main research interest is estimating the age-at-death distribution or

the survival function for carriers and non-carriers to assess the effects of HD mutation on

survival. The severity of Huntington’s disease warrants that non-carriers tend to live longer,

so we expect to see lower survival rates for the carrier group.

Since it is well known that survival rates differ by gender, we stratified the COHORT data

by gender (2367 males and 2220 females), and analyzed the effects of HD gene mutation on

the male and female subpopulations. The quantity of interest, 1´F ptq, is a four-dimensional

vector (i.e., p “ 4) where 1´F1ptq and 1´F2ptq denote the survival functions for male non-

carriers and carriers respectively, and 1´F3ptq and 1´F4ptq denote analogous functions for

females. Furthermore, the mixture proportions Qi were four-dimensional vectors with the

first two components corresponding to mixture proportions for male non-carriers and carriers,
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and the last two components for female non-carriers and carriers. To estimate 1´ F ptq, we

implemented several theoretically consistent nonparametric estimators, including the type I

NPMLE and the full data efficient influence function based AIPW estimator (EFFAIPW)

as representatives of the already existing and newly proposed methods respectively.

To examine the performance of these estimators, we first compare the results for the

male and female non-carrier groups to the general male and female US populations in 2003

(Arias 2006). These survival rates should be similar since the risk in non-carriers for both

genders would reflect the general population if there is minimal ascertainment bias in family

members. Figure S.1 and Tables 4, 5 (lowest panel) indicate that the EFFAIPW outperforms

the type I NPMLE in capturing the behavior of the general male and female US popula-

tions. In fact, comparing the non-carrier female estimates and general female population,

the EFFAIPW has an IAB less than half of that of the type I NPMLE. Likewise, for the

non-carrier males, the EFFAIPW has an IAB about half of that of the type I NPMLE.

Hence, the EFFAIPW appears to be a more reasonable estimator for analysis.

The EFFAIPW depicted in Figure S.1 shows a steep difference between the estimated

survival rates of the carrier and non-carrier groups for both genders. In addition, the bottom

left figure suggests that male carriers tend to have only slightly lower survival rates than

female carriers. For example, at age 65, male carriers have a cumulative risk of death of

46.9% (95% CI: 40.9%, 53%) whereas female carriers have a cumulative risk of death of

43.0% (95% CI: 37.4%, 48.7%). This slight difference in combination with the overlapping

95% confidence band (not shown here) suggests that HD mutation affects males and females

equally. The observed lack of gender effects from EFFAIPW agrees with some earlier studies

which also did not find a gender effect in either the mean survival times of HD patients

(Harper 1996), or the progression of Huntington’s disease (Marder et al. 2000). In contrast,

the type I NPMLE suggests that male carriers have much better survival rates than female

carriers, and sometimes even slightly better survival rates than non-carriers, a behavior

contradictory to the existing clinical literature.

The upper panel of Table 5 further presents the area under the survival curves, which

can be interpreted as the expected years of life. Hence, the difference of areas under two

survival curves represents the expected years of life lost of one compared to the other. Based

on the EFFAIPW, the estimated expected years of life lost for mutation carriers compared
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to non-carriers is 9.06 years in males and 12.76 in females. In contrast, the type I NPMLE

estimates longer expected years of life for male carriers, which is unreasonable.

Our further investigation reveals that the poor performance of the type I NPMLE on

the COHORT data is partially due to small sample sizes in several Qi subgroups. When

we remove 211 subjects pertaining to three subgroups with sample sizes no more than 3%

of the data, the behavior of the type I NPMLE improves (Figure S.1 in Supplementary

Material). The improvement is reflected in both the IAB between non-carriers and the US

population and the survival rates for carriers in both genders. However, there is still a large

difference between the non-carrier female type I NPMLE estimate in terms of expected life

lost compared to the US population (Table 5, middle panel).

Lastly, in Table 6 we present the estimated conditional probabilities of surviving the next

several years in 5-year intervals for a subject alive at a given age. These probabilities are

based on the EFFAIPW and are stratified by gender and mutation status. For example, a

35-year old female carrier has a 94.71% chance of surviving the next 10 years, and 81.76%

chance of surviving the next 20 years, compared to 99.63% and 96.81% in a female non-

carrier. Such probabilities are useful for patients when interpreting mutation testing results,

and may help them make lifetime decisions such as having children.

In conclusion, using the more reliable EFFAIPW estimator, our analysis suggests that

mutation carriers tend to have much lower survival rates than non-carriers, and the mutation

equally affects survival rates in both genders. These survival rates are the first in the

literature obtained from a sample of family members, and they highlight the deleterious

effects of HD mutation on survival. The estimated survival rates in non-carriers closely

resemble that of the US population, which illustrates minimal ascertainment bias and reflects

the advantage of analyzing family members whose information is not used in the initial

recruitment of probands.

6 Discussion

We propose two IPW based estimators and an IMP estimator for censored mixture data,

among which the AIPW achieves the optimal efficiency based on a given complete data

influence function. These estimators are easy to compute and do not involve any iterative
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procedures. When the sample size is small and the censoring rate is moderate, the IMP

estimator can sometimes compete or even outperform the asymptotically optimal AIPW

estimator. We also point out the surprising results of the inefficiency of the type I NPMLE

and the inconsistency of the type II NPMLE proposed in the literature. Our finite sample

simulations suggest that the efficiency loss of the type I NPMLE and the bias of the type

II estimator can be quite substantial, and the finite sample bias of the type I NPMLE can

be non-ignorable when the subgroup sample size is small or the estimation region is close

to the upper end of the distribution support. Caution should be applied in interpreting

inconsistency of the type II NPMLE, which occurs when a pure nonparametric model is

used. Parametric models and semiparametric models such as the Cox proportional hazards

model with a nonparametric baseline or piecewise exponential model are expected to be

consistent (Zeng and Lin 2007).

In a special case when the data arise from a single distribution (i.e., p “ 1), the IPW,

AIPW, IMP and the two NPMLEs are all equivalent to the familiar Kaplan-Meier estimator.

This indicates the complexity arising from the mixture nature. Through extensive simulation

studies, we demonstrate that the proposed AIPW has satisfactory small bias and is more

efficient than the type I NPMLE even when the censoring rate is high.

The optimal AIPW estimator also provides reasonable survival rate estimates for both

genders and different mutation status in the COHORT study. Since genetic testing of HD

mutation is commercially available, the estimated survival rates are useful in genetic coun-

seling when a subject, with a family history of Huntington’s disease, needs to decide on

whether to undergo genetic testing. Understanding the mortality rates associated with a

positive testing result may make the subject more inclined to determine his/her mutation

status and seek treatments. In addition, in a future work it may be of interest to estimate

the survival rates as a function of the number of CAG repeats in carriers.

In some genetic studies, the relatives are included through their probands, and there

might be potential ascertainment bias. If the HD gene mutation carrier probands are ran-

domly sampled from the population of all carriers, then the estimation from the relatives can

be generalized to the population of all carriers. This corresponds to no ascertainment bias.

However, when there is heterogeneity in the survival function of HD gene mutation carriers

(e.g., there exists another gene influencing the survival function) and if the carrier probands
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are not a representative sample of the population of all HD mutation carriers, then estima-

tion based on their relatives may be biased (Begg 2002). For example, if there is a second

gene that decreases survival in HD mutation carriers, then over-sampling of probands with

the second gene may lead to an upward bias of the risk of death, and under-sampling would

lead to a downward bias. However, in the analysis of the COHORT data, the estimated

survival function in non-carriers is reasonably close to the general population estimates ob-

tained from the census data. This is an indication that the COHORT sample is not likely to

be subject to severe ascertainment bias. Otherwise, the non-carrier distribution estimated

from the COHORT relative data would be very different from the general population due to

the distorted distribution of additional risk factors.

Finally, since the survival distribution is well known to be different between two genders

in the general population, we carried out the COHORT analysis separately for each gender.

It may be desirable to test the gender difference among the HD gene mutation carriers/non-

carriers. This amounts to testing H0 : F 1
ptq “ F 2

ptq at all t versus H1 : F 1
ptq ‰ F 2

ptq

for at least one t, where F 1
p¨q is the vector of CDFs for male and F 2

p¨q for female. Among

various methods of performing the test, a convenient choice is permutation. Specifically, we

compute the test statistic v0 “ supt ||pF
1
ptq ´ pF

2
ptq|| from the observed data, where || ¨ || is

the L2-norm. Since under the null hypothesis, the two genders have identical distributions,

we can randomly permute the gender variable to obtain a permuted sample. Perform such

permutation B times for some large B, and recompute the test statistic vb based on the

bth permuted sample, b “ 1, . . . B. The p-value is then
řB
b“1 Ipvb ě v0q{B. If interest only

lies in the gender difference in the carrier population, one may extract the corresponding

component in F 1
ptq and F 2

ptq to perform the test.

Appendix: Influence function of consistent estimators

with complete data

When there is no censoring (i.e., δi “ 1 for all i in (1)), Ma and Wang (2012) adopted a pure

nonparametric model of the genotype-specific distributions without assuming any parametric

form of the density function. They proposed a general class of consistent estimators and

identified the efficient member of the class. The complete set of all influence functions of the
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consistent estimators for F ptq can be characterized as (Ma and Wang 2012)

"

φpq, sq : φpq, sq “ dpq, sq ´ F ptq ´B1p,

ż

dpQ, sqQTpQpQqdµpQq “ Ips ď tqIp `B

*

,

where Ip is a p-dimensional identity matrix, dpq, sq is a vector of real functions (for qualified

choices of dpq, sq see Ma and Wang 2012), B is an arbitrary pˆ p constant matrix, and 1p

is a p-dimensional vector with all elements being one.

It is useful to identify several typical members in this class, such as the ordinary least-

square estimator (OLS) and the weighted least-square estimator (WLS). Ma and Wang

(2012) showed that for uncensored data, the OLS is derived by viewing the qi’s as covariates

and IpTi ď tq as response variables where the covariates and the responses are linked by

F ptq via a linear regression model

Yi ” IpTi ď tq “ qTi F ptq ` ei,

with Epei|qiq “ 0, i “ 1, . . . , n. It is straightforward that the ei’s are independent conditional

on qi’s, and have variances vi “ q
T
i F ptqt1´q

T
i F ptqu. The WLS is then defined by using the

inverse of the variances vi as weights in a weighted least square.

Both the OLS and the WLS correspond to special members of the family of all influence

functions. Specifically, the OLS has the influence function

φOLSpq, sq “ tEpQQ
T
qu
´1q

 

Ips ă tq ´ qTF ptq
(

,

and WLS has the influence function

φWLSpq, sq “ tEpWQQ
T
qu
´1wq

 

Ips ă tqqTF ptq
(

.

where W is a random weight variable. Furthermore, by projecting an influence function onto

the tangent space, Ma and Wang (2012) derived the efficient influence function corresponding

to a semiparametric efficient estimator:

φEFFpq, sq “
tIps ă tqIp ´KuA

´1
psqq

qTfpsq
,

23



where Apsq “

ż

QQTpQpQq

QTfpsq
dµpQq, and K “

ż T2

T1

Ips ă tqA´1psqds

"
ż T2

T1

A´1psqds

*´1

.

The form φEFF is known, but may contain unknown nuisance parameters such as the

density fp¨q. As before, we assume fp¨q is completely unspecified (nonparametric), and thus

is an infinite dimensional nuisance parameter. Ma and Wang (2012) showed that substituting

consistent estimators for the nuisance parameters in φEFF and solving for F ptq leads to a

semiparametric efficient estimator which reaches the semiparametric efficiency bound in the

sense of Bickel et al. (1993).

Supplementary Material

There is an online Supplementary Material available at the Journal website.
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Table 1: Simulation 1. Bias, empirical standard deviation (emp sd), average estimated
standard deviation (est sd), 95% coverage (95% cov) of 11 estimators. Sample size n “ 500,
20% and 50% censoring rate, 1000 simulations.

F1ptq “ 0.5063 F2ptq “ 0.5132
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW 0.0013 0.0424 0.0427 0.9460 -0.0026 0.0408 0.0418 0.9590
AIPW 0.0003 0.0396 0.0402 0.9450 -0.0021 0.0390 0.0393 0.9520
IMP 0.0004 0.0396 0.0401 0.9460 -0.0022 0.0389 0.0392 0.9500

Group 2: WLS based, censoring rate =20%
IPW 0.0013 0.0424 0.0427 0.9450 -0.0026 0.0408 0.0418 0.9590
AIPW 0.0003 0.0396 0.0402 0.9440 -0.0021 0.0390 0.0393 0.9520
IMP 0.0004 0.0396 0.0401 0.9460 -0.0022 0.0389 0.0392 0.9500

Group 3: EFF based, censoring rate =20%
IPW 0.0011 0.0427 0.0431 0.9520 -0.0029 0.0418 0.0433 0.9630
AIPW 0.0004 0.0399 0.0404 0.9480 -0.0022 0.0393 0.0399 0.9540
IMP 0.0004 0.0398 0.0403 0.9430 -0.0022 0.0391 0.0394 0.9500

Group 4: NPMLE, censoring rate =20%
type I 0.0000 0.0462 0.0466 0.9470 0.0007 0.0881 0.0897 0.9230
type II -0.0135 0.0364 0.0364 0.9300 0.0075 0.0308 0.0313 0.9390

Group 1: OLS based, censoring rate =50%
IPW 0.0043 0.0733 0.0683 0.9290 0.0004 0.0722 0.0668 0.9290
AIPW 0.0010 0.0452 0.0459 0.9530 -0.0026 0.0452 0.0448 0.9450
IMP 0.0043 0.0486 0.0496 0.9580 0.0012 0.0484 0.0480 0.9480

Group 2: WLS based, censoring rate =50%
IPW 0.0044 0.0732 0.0683 0.9290 0.0004 0.0722 0.0668 0.9280
AIPW 0.0010 0.0452 0.0459 0.9520 -0.0026 0.0451 0.0448 0.9460
IMP 0.0043 0.0486 0.0496 0.9590 0.0012 0.0484 0.0480 0.9470

Group 3: EFF based, censoring rate =50%
IPW -0.0021 0.0740 0.0702 0.9290 0.0005 0.0799 0.0744 0.9300
AIPW -0.0006 0.0465 0.0464 0.9500 -0.0008 0.0470 0.0455 0.9480
IMP 0.0031 0.0493 0.0508 0.9610 0.0026 0.0495 0.0489 0.9480

Group 4: NPMLE, censoring rate =50%
type I 0.0011 0.0531 0.0537 0.9410 0.0001 0.1058 0.1030 0.9190
type II -0.0405 0.0407 0.0417 0.8350 0.0312 0.0381 0.0382 0.8750
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Table 2: Simulation 1. Integrated absolute bias (IAB) Upper half of table: the true censoring
distribution is independent ofQi, Gptq is estiimated using a common Kaplan-Meier estimator
of the censoring distribution. Lower half of table: the true censoring distribution is subgroup-
specific, Gptq is estimated using a common Kaplan-Meier estimator (denoted by :), or a
subgroup-specific Kaplan-Meier estimator (denoted by ˚).

Censoring rate
20% 50%

Estimator F1ptq F2ptq F1ptq F2ptq

Group 1: OLS based
IPW 0.0103 0.0060 0.0332 0.0096
AIPW 0.0091 0.0055 0.0305 0.0077
IMP 0.092 0.0056 0.0348 0.0146

Group 2: WLS based
IPW 0.0102 0.0060 0.0345 0.0095
AIPW 0.0370 0.0055 0.1062 0.0092
IMP 0.0092 0.0056 0.0357 0.0145

Group 3: EFF based
IPW 0.0095 0.0062 0.0170 0.0106
AIPW 0.0090 0.0053 0.0462 0.0070
IMP 0.0090 0.0055 0.0325 0.0195

Group 4: NPMLE
type I 0.0104 0.0116 0.0174 0.0337
type II 0.0996 0.0374 0.2483 0.1367

Group 1: OLS based
IPW: 0.0922 0.0632 0.0651 0.0412
AIPW: 0.0110 0.0045 0.0317 0.0101
IPW˚ 0.0159 0.0052 0.0181 0.0073
AIPW˚ 0.0148 0.0052 0.0240 0.0079

Group 2: WLS based
IPW: 0.0923 0.0632 0.0658 0.0413
AIPW: 0.0517 0.0045 0.1024 0.0111
IPW˚ 0.0169 0.0051 0.0218 0.0074
AIPW˚ 0.0591 0.0051 0.1031 0.0092

Group 3: EFF based
IPW: 0.1104 0.0791 0.0642 0.0495
AIPW: 0.0122 0.0054 0.0392 0.0094
IPW˚ 0.0151 0.0053 0.0149 0.0071
AIPW˚ 0.0112 0.0073 0.0351 0.0068
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Table 3: Simulation 1. Bias, empirical standard deviation (emp sd), average estimated stan-
dard deviation (est sd), 95% coverage (95% cov) of 11 estimators. The censoring distribution
is subgroup-specific, and Gptq is estimated using a common Kaplan-Meier estimator (denoted
by :), or a subgroup-specific Kaplan-Meier estimator (denoted by ˚). Sample size n “ 500,
20% and 50% censoring rate, 1000 simulations.

F1ptq “ 0.5063 F2ptq “ 0.5132
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW: -0.0132 0.0439 0.0443 0.9440 0.0131 0.0433 0.0428 0.9360
AIPW: 0.0007 0.0386 0.0399 0.9520 -0.0018 0.0380 0.0381 0.9490
IPW˚ 0.0019 0.0395 0.0395 0.9370 -0.0012 0.0384 0.0389 0.9530
AIPW˚ 0.0018 0.0391 0.0391 0.9430 -0.0012 0.0383 0.0384 0.9490

Group 2: WLS based, censoring rate =20%
IPW: -0.0132 0.0439 0.0443 0.9440 0.0131 0.0433 0.0428 0.9360
AIPW: 0.0007 0.0386 0.0399 0.9520 -0.0018 0.0380 0.0381 0.9490
IPW˚ 0.0019 0.0395 0.0395 0.9400 -0.0012 0.0384 0.0389 0.9530
AIPW˚ 0.0018 0.0390 0.0391 0.9430 -0.0012 0.0383 0.0384 0.9500

Group 3: EFF based, censoring rate =20%
IPW: -0.0153 0.0459 0.0452 0.9350 0.0163 0.0446 0.0450 0.9360
AIPW: 0.0004 0.0392 0.0401 0.9470 -0.0014 0.0387 0.0386 0.9470
IPW˚ 0.0020 0.0392 0.0396 0.9390 -0.0014 0.0384 0.0393 0.9550
AIPW˚ 0.0013 0.0393 0.0393 0.9390 -0.0007 0.0387 0.0390 0.9500

Group 1: OLS based, censoring rate =50%
IPW: -0.0077 0.0708 0.0682 0.9320 0.0130 0.0729 0.0663 0.9230
AIPW: 0.0014 0.0448 0.0472 0.9570 -0.0027 0.0463 0.0442 0.9380
IPW˚ 0.0032 0.0502 0.0474 0.9410 -0.0028 0.0492 0.0477 0.9380
AIPW˚ 0.0021 0.0473 0.0449 0.9410 -0.0021 0.0471 0.0455 0.9330

Group 2: WLS based, censoring rate =50%
IPW: -0.0076 0.0707 0.0682 0.9310 0.0130 0.0729 0.0663 0.9220
AIPW: 0.0014 0.0448 0.0472 0.9550 -0.0027 0.0462 0.0442 0.9380
IPW˚ 0.0033 0.0504 0.0474 0.9390 -0.0028 0.0492 0.0477 0.9370
AIPW˚ 0.0022 0.0473 0.0449 0.9420 -0.0021 0.0471 0.0455 0.9330

Group 3: EFF based, censoring rate =50%
IPW: -0.0148 0.0753 0.0707 0.9250 0.0169 0.0794 0.0736 0.9240
AIPW: 0.0008 0.0463 0.0477 0.9570 -0.0021 0.0487 0.0449 0.9350
IPW˚ 0.0020 0.0481 0.0466 0.9480 -0.0024 0.0485 0.0477 0.9400
AIPW˚ 0.0003 0.0472 0.0454 0.9470 -0.0003 0.0483 0.0462 0.9390s
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Table 4: Estimated survival rates and 95% confidence intervals (in parentheses) based on
EFFAIPW and type I NPMLE for carrier and non-carrier groups in the COHORT data
stratified by gender. Survival rates are compared to Kaplan-Meier estimated survival rates
for the general male and female US populations (USpop) in 2003.

Non-Carrier Carrier

Age USpop EFFAIPW type I NPMLE EFFAIPW type I NPMLE

Males

30 97.2 (97.1, 97.3) 97.5 (96.6, 98.3) 98.1 (96.8, 99.4) 98.7 (98.2, 99.3) 99.7 (99.4, 99.9)
35 96.5 (96.4, 96.6) 97.4 (96.6, 98.3) 97.9 (96.8, 99.0) 97.2 (96.2, 98.2) 99.4 (98.9, 99.9)
40 95.6 (95.5, 95.7) 96.8 (95.7, 98.0) 96.5 (94.2, 98.7) 94.1 (92.4, 95.8) 98.4 (97.6, 99.2)
45 94.3 (94.1, 94.4) 95.5 (94.0, 97.1) 95.1 (92.1, 98.1) 91.2 (89.0, 93.4) 97.4 (96.1, 98.7)
50 92.3 (92.1, 92.4) 93.9 (92.0, 95.8) 93.8 (90.0, 97.5) 86.4 (83.6, 89.3) 93.4 (88.8, 98.1)
55 89.4 (89.2, 89.6) 89.7 (86.9, 92.5) 88.9 (83.5, 94.3) 77.9 (74.0, 81.9) 86.5 (78.8, 94.3)
60 85.5 (85.3, 85.7) 83.2 (79.5, 87.0) 82.4 (76.1, 88.7) 66.5 (61.4, 71.5) 82.4 (72.4, 92.5)
65 79.9 (79.6, 80.1) 77.4 (72.9, 81.9) 72.6 (65.8, 79.3) 53.1 (47.0, 59.1) 76.9 (65.8, 88.0)
70 72.0 (71.7, 72.3) 68.1 (62.7, 73.5) 65.4 (56.3, 74.5) 40.3 (33.6, 47.0) 64.4 (43.5, 85.3)
75 61.3 (61.0, 61.6) 59.4 (53.3, 65.6) 54.8 (45.5, 64.2) 27.3 (20.5, 34.0) 58.9 (39.3, 78.5)

Females

30 98.4 (98.4, 98.5) 98.0 (97.1, 98.9) 98.7 (98.1, 99.3) 98.9 (98.1, 99.7) 99.5 (99.1, 99.9)
35 98.1 (98.0, 98.2) 97.8 (96.8, 98.7) 97.5 (95.6, 99.4) 97.7 (96.6, 98.9) 99.0 (98.4, 99.5)
40 97.6 (97.5, 97.7) 97.7 (96.7, 98.8) 96.5 (93.6, 99.4) 96.3 (94.8, 97.8) 98.2 (97.5, 98.9)
45 96.7 (96.6, 96.9) 97.4 (96.2, 98.6) 94.3 (89.8, 98.7) 92.6 (90.5, 94.7) 96.2 (95.3, 97.1)
50 95.5 (95.4, 95.7) 96.1 (94.4, 97.8) 90.3 (85.0, 95.7) 88.9 (86.2, 91.7) 93.8 (92.4, 95.3)
55 93.8 (93.6, 94.0) 94.7 (92.7, 96.7) 89.5 (84.1, 94.9) 79.9 (76.3, 83.5) 89.9 (88.2, 91.6)
60 91.2 (91.1, 91.4) 93.0 (90.3, 95.6) 86.6 (80.5, 92.7) 69.1 (64.5, 73.8) 83.7 (81.6, 85.8)
65 87.3 (87.1, 87.5) 91.0 (87.6, 94.4) 84.9 (79.2, 90.7) 57.0 (51.3, 62.6) 75.9 (73.3, 78.5)
70 81.6 (81.3, 81.8) 84.0 (79.3, 88.6) 74.5 (67.3, 81.6) 42.8 (36.5, 49.2) 68.7 (66.2, 71.1)
75 73.3 (73.0, 73.6) 73.9 (68.0, 79.8) 62.8 (55.0, 70.6) 33.2 (26.6, 39.9) 63.6 (60.7, 66.5)
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Table 5: Summary statistics for the COHORT data and the general male and female US
populations (USpop) in 2003 from ages 20-90 years.

Males Females
Non-Carrier Carrier Non-Carrier Carrier

Expected years of life (area under the survival curves)
USpop 55.5559 59.8726
EFFAIPW 54.8759 45.8229 59.6289 46.8695
type I NPMLE 53.6082 57.7125 57.0451 52.1563
type I NPMLE˚ 56.5764 47.3792 61.1127 47.2930

Expected years of life lost compared to the US population
EFFAIPW 0.6800 9.7330 0.2436 13.0031
type I NPMLE 1.9477 -2.1566 2.8275 7.7162
type I NPMLE˚ -1.0205 8.1767 -1.2401 12.5796

IAB between an estimator and the US population
EFFAIPW 1.4026 10.0315 1.2957 13.1922
type I NPMLE 2.6079 3.9104 2.9016 8.1144
type I NPMLE ˚ 1.1071 8.7317 1.8435 12.7560

˚: Computed under a sub-sample by removing subjects in Qi groups with small sample sizes.

Table 6: Estimated conditional probabilities of survival for the COHORT data based on the
EFFAIPW estimator.

Conditional probability individual alive in the next # of years
Current 5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years
age Male Carriers Male Non-Carriers

30 0.9843 0.9533 0.9239 0.8753 0.9996 0.9937 0.9803 0.9636
35 0.9686 0.9387 0.8893 0.8017 0.9941 0.9808 0.9640 0.9206
40 0.9692 0.9182 0.8277 0.7061 0.9866 0.9698 0.9261 0.8594
45 0.9474 0.8540 0.7285 0.5818 0.9830 0.9387 0.8711 0.8099
50 0.9015 0.7690 0.6142 0.4666 0.9550 0.8862 0.8239 0.7251
55 0.8530 0.6813 0.5176 0.3498 0.9280 0.8628 0.7593 0.6628
60 0.7987 0.6068 0.4101 0.2122 0.9297 0.8182 0.7142 0.4984

Female Carriers Female Non-Carriers
30 0.9887 0.9744 0.9363 0.8997 0.9977 0.9975 0.9940 0.9806
35 0.9855 0.9471 0.9100 0.8176 0.9998 0.9963 0.9829 0.9689
40 0.9610 0.9233 0.8296 0.7177 0.9965 0.9831 0.9691 0.9511
45 0.9608 0.8633 0.7469 0.6153 0.9865 0.9725 0.9544 0.9346
50 0.8985 0.7773 0.6404 0.4814 0.9858 0.9674 0.9473 0.8737
55 0.8651 0.7127 0.5358 0.4156 0.9814 0.9610 0.8863 0.7802
60 0.8239 0.6194 0.4804 0.1971 0.9792 0.9031 0.7950 0.6116
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Figure 1: Simulation 3. True survival curve (solid) and the mean of 250 simulations at
each time point (short-dashed for carrier group, long-dashed for non-carrier group), 95%
pointwise confidence band (upper band dotted, lower band dash-dotted) of the estimated
survival curves. The mean and true survival curves are indistinguishable in EFFIMP and
EFFAIPW estimators. Sample size is 4500, censoring rate is 65%.

34



20 30 40 50 60 70 80 90

EFFAIPW: Females

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Female
Carrier Female
Non−Carrier Female

20 30 40 50 60 70 80 90

type I NPMLE: Females

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Female
Carrier Female
Non−Carrier Female

20 30 40 50 60 70 80 90

EFFAIPW: Males

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Male
Carrier Male
Non−Carrier Male

20 30 40 50 60 70 80 90

type I NPMLE: Males

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Male
Carrier Male
Non−Carrier Male

20 30 40 50 60 70 80 90

EFFAIPW: Males and Females (Carriers)

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Male
Carrier Male
USpop Female
Carrier Female

20 30 40 50 60 70 80 90

type I NPMLE: Males and Females (Carriers)

Age

S
ur

vi
va

l r
at

es

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

USpop Male
Carrier Male
USpop Female
Carrier Female

Figure 2: Estimated survival curves for the COHORT data stratified by gender using the
EFFAIPW estimator (left) and the type I NPMLE (right). The curves “USpop Male” and
“USpop Female” correspond to Kaplan-Meier estimated survival rates for the general male
and female US populations in 2003. Bottom two figures compare the estimated survival
curves for the male and female HD gene mutation carriers to that of the general male and
female US populations.
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Supplementary Material for “Nonparametric estima-

tion for censored mixture data with application to the

Cooperative Huntington’s Observational Research Trial”

Yuanjia Wang, Tanya P. Garcia and Yanyuan Ma

S.1 Inconsistency of the type II NPMLE

From Section 2.2, it is easy to see that the type II optimization should only assign positive

weights to the observed event times, and the estimating procedure proceeds to form

qF ptq “
n
ÿ

i“1

δiIpxi ă tqqfpxiq.

If a set of fpxiq’s is the maximizer of (1) under the type II NPMLE constraints, then

qTi fpxiq’s are all non-negative and satisfy 0 ď qTi F pxiq ď 1. Thus, if we denote

Hpxi; q1, . . . , qnq “ qTi F pxiq and hpxi; q1, . . . , qnq “ qTi fpxiq for all i “ 1, . . . , n, then the

maximization is obtained at the MLE estimator of the hypothetical H. Note that H depends

on qi’s which take m different values, and we view these m values as known parameters. For

notational simplicity, we write Hpx; q1, . . . , qnq as Hpxq. Thus, if one thinks of uTj F pxq as a

particular mixture of F pxq, then H contains all m mixtures. In addition, H is not necessarily

a valid distribution function since it may not be monotone. With the maximum of H as Ȟ,

one can then recover the F pxiq’s through qF pxiq “ pq
T
i riq

´1riȞi for some length p vector ri

(i.e., ri “ F pxiq). If a suitable selection of ri’s exists to ensure 0 ď pqTi riq
´1riȞi ď 1 and

monotonicity, then we have a solution of the type II optimization problem.

Assuming to the contrary this solution is consistent, then the resulting qF ptq would satisfy

uTj
qF ptq “ 1´ Šjptq

for all j “ 1, . . . ,m, where Šjptq is a consistent estimator of Sjptq. Here Sjptq has the same

definition as in the type I NPMLE and is the survival function of the observations that have

the common mixing proportion, uj. Obviously, qF ptq “ qF pxiq, where xi is the largest x value
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that satisfies xi ď t and δi “ 1. Without confusion, we assume the corresponding qi “ uj,

thus we have

uTj
qF ptq “ Ȟi “ 1´ Šjptq.

Because Šj is a consistent estimator of Sj, we must have Ȟi converging to 1´Sjptq. However,

this leads to a contradiction since 1´Sjptq “ u
T
j F ptq is the distribution function correspond-

ing to the jth mixing vector uj, while Ȟptq aims at estimating the hypothetic H function

which contains all m different mixtures.

It is not always possible or easy to find the Ȟi’s or to identify the ri’s. For this reason,

the type II NPMLE is hardly ever solved through obtaining Ȟi’s and ri’s. Instead, the

EM algorithm introduced in Section 2.2 is used to obtain the fpxiq’s. However, the above

explanation reveals the underlying reason why the type II NPMLE fails. Conceptually,

identifying the F1, . . . , Fp functions is equivalent to identifying the S1, . . . , Sm functions. The

type II NPMLE maximizes the product of m different likelihoods, S1, . . . , Sm, formed by all

observations with respect to a collection of parameters, while in fact each of these parameters

should concern only one of these likelihoods formed by a subset of the observations. The type

II NPMLE cannot identify correct parameters and observations for each kind of likelihood.

For example, consider an uncensored observation where Qi “ p0.5, 0.5q and Ti “ ti.

The event time ti will carry an equal weight with the type II estimator for each of the two

subpopulations. However, if this observation belongs to the first subpopulation, then the

nonparametric estimator of the CDF of the first population, pF1, should have a jump at ti

but not the pF2. In other words, ti should not be included in the support when estimating F2

nonparametrically. The type II NPMLE will let both pF1 and pF2 have a jump at ti. Likewise,

if this observation belongs to the second subpopulation, then ti should not be included in the

support when estimating F1 nonparametrically. Since we do not observe which subpopulation

an observation comes from, it is difficult for the type II NPMLE to correctly identify the

support for each subpopulation. In contrast, the type I NPMLE does not suffer from this

difficulty: when regarding Sj “ u
T
j F as an unknown parameter, the type I correctly assigns

37



the support of Sj to include all observations with qi “ uj. Such a computation is feasible

as all qi are observed.

To help further understand the mistreatment of different conditional likelihoods of

the type II NPMLE, one may consider maximizing a marginal likelihood. Denoting

nj “
řn
i“1 Ipqi “ ujq, j “ 1, . . . ,m, this would correspond to maximizing

n
ÿ

i“1

log
m
ÿ

j“1

nj
 

uTj fpxiq
(δi
t1´ uTj F pxiqu

1´δi

with respect to fpxiq’s. This estimator uses all observed xi’s to form a common marginal

likelihood, hence is consistent. However it completely ignores the pair information provided

in the data hence could be highly inefficient.

S.2 Influence function of the IPW estimator

To derive the influence function of the IPW estimator, we first note the following several

useful facts (Bang and Tsiatis 2000; Robins and Rotnitzky 1992)

Y ptq “ n pGpt´qpSpt´q

pGptq ´Gptq

Gptq
“ ´

ż t

0

pGpu´q

Gpuq

dM cpuq

Y puq

δi
Gpxiq

“ 1´

ż

dM c
i puq

Gpuq
.

Using the above relations, we expand the IPW estimator as

n´1{2
n
ÿ

i“1

δiφpqi, xiq

pGpxiq
“ n´1{2

n
ÿ

i“1

δiφpqi, tiq

Gpxiq
` n´1{2

n
ÿ

i“1

δiφpqi, tiq

pGpxiq

ż xi

0

pGpu´q

Gpuq

dM cpuq

Y puq

“ n´1{2
n
ÿ

i“1

δiφpqi, tiq

Gpxiq
` n´1{2

n
ÿ

i“1

ż

pB1tφ, uupSpuqdM
c
i puq

GpuqpSpu´q

“ n´1{2
n
ÿ

i“1

φpqi, tiq ´ n
´1{2

n
ÿ

i“1

ż

tφpqi, tiq ´ Bpφ, uqu dM c
i puq

Gpuq
` opp1q.

Because the complete data influence function φpqi, tiq has the general form of dpqi, tiq ´

F ptq (Ma and Wang 2012), we have that Bφ{BF T
ptq “ ´Ip. This, in combination with
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exchanging integration and differentiation of the above expansion, implies that the ith in-

fluence function for the IPW is φipw as stated. The two terms in φipw are uncorrelated

because φpqi, tiq are Fp0q measurable. Therefore we can compute the variance of the IPW

estimator as

V ipw “ covtφpQi, Tiqu ` E

«

ż

tφpQi, Tiq ´ Bpφ, uqub2

G2puq
λcpuqYipuqdu

ff

“ covtφpQi, Tiqu ` E

"
ż

Bpφ, uqb2

G2puq
λcpuqYipuqdu

*

`

«

E

ż

E
“ 

φpQi, Tiq
b2 ´ 2φpQi, TiqBpφ, uqT

(

IpTi ě uq|Ci
‰

IpCi ě uq

G2puq
λcpuqdu

ff

“ covtφpQi, Tiqu ` E

"
ż

Bpφb2, uq ´ Bpφ, uqb2

G2puq
λcpuqYipuqdu

*

.

S.3 Influence function of the AIPW estimator

From (6) we have

0 “ n´1{2
n
ÿ

i“1

δiφpqi, xiq

pGpxiq
` n´1{2

n
ÿ

i“1

ż

dN c
i puq

pGpuq

!

pheff,ipuq ´
pB
´

pheff, u
¯)

“ n´1{2
n
ÿ

i“1

δiφpqi, xiq

pGpxiq
` n´1{2

n
ÿ

i“1

ż

dM c
i puq

pGpuq

!

pheff,ipuq ´
pB
´

pheff, u
¯)

“ n´1{2
n
ÿ

i“1

φpqi, tiq ´ n
´1{2

n
ÿ

i“1

ż

!

φpqi, tiq ´ heff,ipuq
)

dM c
i puq

Gpuq
` opp1q,

where the last equality follows from Bpφ ´ heff, uq “ 0. Similar to the IPW case, the two

terms in the influence function are uncorrelated which suggests that we can compute the

variance of the efficient estimator as

V eff “ covtφpQi, Tiqu ` E

»

—

–

ż

!

φpQi, Tiq ´ heff,ipuq
)b2

G2puq
λcpuqYipuqdu

fi

ffi

fl

“ covtφpQi, Tiqu ` E

ż Btpφ´ heffq
b2, uu

G2puq
λcpuqYipuqdu.
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S.4 Influence function of the imputation estimator

We now analyze the asymptotic properties of the imputation estimator.

0 “ n´1{2
n
ÿ

i“1

!

δiφpqi, xiq ` p1´ δiqpheff,ipxiq
)

“ n´1{2
n
ÿ

i“1

!

δiφpqi, xiq ` p1´ δiqheff,ipxiq
)

` n´1{2
n
ÿ

i“1

p1´ δiq
!

pheff,ipxiq ´ heff,ipxiq
)

.

We now inspect the last term. In our approximation in (5), pheff,ipuq is estimated using

weighted sample averages, with the subset of data that have a common qi value. We now

analyze pheff,ipuq in the kth subsample. For notational simplicity, we assume the first nk

observations have the common q value. We have

pheff,ipxiq ´ heff,ipxiq

“
n´1k

řnk

j“1φpqj, xjqIpxj ě xiqδj{ pGpxjq

n´1k
řnk

j“1 Ipxj ě xiqδj{ pGpxjq
´
Etφpqi, T qIpT ą xiq}qi, xiu

EtIpT ą xiq}qi, xiu

“
n´1k

řnk

j“1φpqj, xjqIpxj ě xiqδj{ pGpxjq ´ Etφpqi, T qIpT ą xiq}qi, xiu

EtIpT ą xiq}qi, xiu

´heff,ipxiq
n´1k

řnk

j“1 Ipxj ě xiqδj{ pGpxjq ´ EtIpT ą xiq}qi, xiu

EtIpT ą xiq}qi, xiu
` oppn

´1{2
k q.

Using derivations similar to the IPW analysis, we first get some basic facts. For any function

fpqi, xiq, we have

nk
ÿ

j“1

δjfpqj, xjq

pGpxjq
“

nk
ÿ

j“1

δjfpqj, tjq

Gpxjq
` n´1

nk
ÿ

j“1

δjfpqj, xjq

pGpxjq

ż

Yjpuq

Gpuq

dM cpuq

pSpu´q

“

nk
ÿ

j“1

δjfpqj, tjq

Gpxjq
`
nk
n

ż

Etfprqk, T qIpT ě uq}rqkudM
cpuq

GpuqSpuq
` oppn

1{2
k q.
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Here we use rqk to represent the common qi value in the kth group. Using the above result,

we have

n´1k

nk
ÿ

j“1

φpqj, xjqIpxj ě xiqδj{ pGpxjq ´ Etφpqi, T qIpT ą xiq}qi, xiu

“ n´1k

nk
ÿ

j“1

δjφpqj, tjqIptj ě xiq

Gpxjq
´ Etφpqi, T qIpT ą xiq}qi, xiu

`
1

n

ż

Etφpqi, T qIpT ě xiqIpT ě uq}qi, xiudM
cpuq

GpuqSpuq
` oppn

´1{2
k q,

n´1k

nk
ÿ

j“1

Ipxj ě xiqδj{ pGpxjq ´ EtIpT ą xiq}qi, xiu

“ n´1k

nk
ÿ

j“1

δjIptj ě xiq

Gpxjq
´ EtIpT ą xiq}qi, xiu

`
1

n

ż

EtIpT ě xiqIpT ě uq}qi, xiudM
cpuq

GpuqSpuq
` oppn

´1{2
k q.

Inserting these forms, we have

pheff,ipxiq ´ heff,ipxiq

“
n´1k

řnk

j“1 δjφpqj, tjqIptj ě xiq{Gpxjq

EtIpT ą xiq}qi, xiu
´
n´1k

řnk

j“1 heff,ipxiqδjIptj ě xiq{Gpxjq

EtIpT ą xiq}qi, xiu

`
1

EtIpT ą xiq}qi, xiu

1

n

ż

Etφpqi, T qIpT ě xiqIpT ě uq}qi, xiudM
cpuq

GpuqSpuq

´
heff,ipxiq

EtIpT ą xiq}qi, xiu

1

n

ż

EtIpT ě xiqIpT ě uq}qi, xiudM
cpuq

GpuqSpuq
` oppn

´1{2
k q.

Summing up the nk such terms in the kth group, exchanging the summation on i and j, and

writing apqi, tiq “ Etheff,ipCqIpC ď tiq}qiu, we obtain

nk
ÿ

i“1

p1´ δiq
!

pheff,ipxiq ´ heff,ipxiq
)

“

nk
ÿ

i“1

δiφpqi, tiq

Gpxiq
t1´Gptiqu ´

nk
ÿ

i“1

δi
Gpxiq

apqi, tiq

`
nk
n

ż

Erφpqi, T qt1´GpT quIpT ě uq}rqks
dM cpuq

GpuqSpuq

´
nk
n

ż

E taprqk, T qIpT ě uq}rqku
dM cpuq

GpuqSpuq
` oppn

1{2
k q.
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In the above derivation, we used the fact that the censoring survival function in the group is

the same as the global survival function Gptq. Now summing up all the m groups, we have

n´1{2
n
ÿ

i“1

p1´ δiq
!

pheff,ipxiq ´ heff,ipxiq
)

“ n´1{2
n
ÿ

i“1

δiφpqi, tiq

Gpxiq
´ n´1{2

n
ÿ

i“1

δiφpqi, tiq ´ n
´1{2

n
ÿ

i“1

δi
Gpxiq

apqi, tiq

`n´1{2
n
ÿ

i“1

ż

B pφ, uq
Gpuq

dM c
i puq ´ n

´1{2
n
ÿ

i“1

ż

B tφpq, tqGptq, uu
Gpuq

dM c
i puq

´n´1{2
n
ÿ

i“1

ż

B tapq, tq, uu
Gpuq

dM c
i puq ` opp1q.

Thus, we have obtained

0 “ n´1{2
n
ÿ

i“1

tφpqi, tiq ´ apqi, tiqu ´ n
´1{2

n
ÿ

i“1

ż

tφpqi, tiq ´ apqi, tiq ´ Bpφ´ a, uqu dM c
i puq

Gpuq

`n´1{2
n
ÿ

i“1

p1´ δiqheff,ipxiq ´ n
´1{2

n
ÿ

i“1

ż

B tφpq, tqGptq, uu
Gpuq

dM c
i puq ` opp1q.

Using similar arguments as in the IPW and AIPW cases,

tφpqi, tiq ´ apqi, tiqu ´

ż

tφpqi, tiq ´ apqi, tiq ´ Bpφ´ a, uqu dM c
i puq

Gpuq

`p1´ δiqheff,ipxiq ´

ż

B tφpq, tqGptq, uu
Gpuq

dM c
i puq

is the ith influence function of the imputation estimator.
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Table S.1: Simulation 2. Bias, empirical standard deviation (emp sd), average estimated
standard deviation (est sd), 95% coverage (95% cov) of 11 estimators. Sample size n “ 500,
20% and 50% censoring rate, 1000 simulations.

F1ptq “ 0.5837 F2ptq “ 0.5748
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW 0.0080 0.0475 0.0433 0.9130 -0.0022 0.0449 0.0425 0.9300
AIPW 0.0063 0.0418 0.0390 0.9210 -0.0014 0.0399 0.0389 0.9390
IMP 0.0010 0.0390 0.0393 0.9470 -0.0014 0.0392 0.0387 0.9360

Group 2: WLS based, censoring rate =20%
IPW 0.0080 0.0475 0.0433 0.9130 -0.0023 0.0449 0.0425 0.9300
AIPW 0.0063 0.0418 0.0390 0.9210 -0.0014 0.0399 0.0389 0.9390
IMP 0.0010 0.0390 0.0393 0.9460 -0.0014 0.0392 0.0387 0.9370

Group 3: EFF based, censoring rate =20%
IPW 0.0068 0.0469 0.0431 0.9150 -0.0021 0.0448 0.0423 0.9290
AIPW 0.0066 0.0419 0.0391 0.9260 -0.0019 0.0404 0.0388 0.9360
IMP 0.0021 0.0395 0.0394 0.9380 -0.0024 0.0395 0.0388 0.9350

Group 4: NPMLE, censoring rate =20%
type I 0.0003 0.0451 0.0459 0.9470 -0.0017 0.0883 0.0890 0.9170
type II -0.0220 0.0353 0.0361 0.9110 0.0160 0.0317 0.0312 0.9070

Group 1: OLS based, censoring rate =50%
IPW 0.0036 0.0845 0.0779 0.9230 0.0026 0.0817 0.0766 0.9280
AIPW 0.0006 0.0479 0.0477 0.9440 -0.0019 0.0499 0.0486 0.9330
IMP 0.0059 0.0541 0.0561 0.9600 0.0048 0.0557 0.0554 0.9450

Group 2: WLS based, censoring rate =50%
IPW 0.0037 0.0846 0.0778 0.9220 0.0025 0.0817 0.0765 0.9260
AIPW 0.0006 0.0481 0.0477 0.9440 -0.0020 0.0499 0.0486 0.9320
IMP 0.0059 0.0541 0.0561 0.9590 0.0048 0.0556 0.0554 0.9450

Group 3: EFF based, censoring rate =50%
IPW -0.0040 0.0837 0.0780 0.9180 0.0016 0.0805 0.0762 0.9300
AIPW -0.0023 0.0485 0.0479 0.9470 0.0009 0.0501 0.0488 0.9320
IMP 0.0040 0.0546 0.0573 0.9630 0.0067 0.0560 0.0560 0.9430

Group 4: NPMLE, censoring rate =50%
type I 0.0006 0.0558 0.0569 0.9540 -0.0038 0.1162 0.1097 0.8990
type II -0.0488 0.0433 0.0446 0.8040 0.0375 0.0417 0.0417 0.8720
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Table S.2: Simulation 3. Bias, empirical standard deviation (emp sd), average estimated
standard deviation (est std), 95% coverage (95% cov), and IAB of 11 estimators. Sample
size n “ 4500, 65% censoring rate, 1000 simulations. (IAB based on 250 simulations.)

F1ptq “ 0.7580 F2ptq “ 0.3446 IAB
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov F1ptq F2ptq

Group 1: OLS based
IPW 0.0004 0.0155 0.0151 0.9400 0.0031 0.0272 0.0267 0.9430 0.0911 0.2757
AIPW 0.0005 0.0136 0.0131 0.9380 0.0027 0.0253 0.0245 0.9500 0.0899 0.2356
IMP 0.0004 0.0142 0.0139 0.9410 0.0024 0.0256 0.0256 0.9500 0.0930 0.2664

Group 2: WLS based
IPW 0.0004 0.0155 0.0151 0.9420 0.0030 0.0273 0.0267 0.9440 0.0903 0.2781
AIPW 0.0004 0.0135 0.0131 0.9400 0.0026 0.0254 0.0244 0.9480 0.0951 0.2572
IMP 0.0003 0.0142 0.0139 0.9410 0.0023 0.0257 0.0256 0.9480 0.0879 0.2765

Group 3: EFF based
IPW 0.0003 0.0156 0.0151 0.9490 0.0026 0.0269 0.0263 0.9490 0.0900 0.2678
AIPW -0.0005 0.0138 0.0131 0.9360 0.0036 0.0252 0.0243 0.9460 0.0841 0.3086
IMP 0.0000 0.0142 0.0139 0.9380 0.0025 0.0257 0.0254 0.9510 0.0839 0.2905

Group 4: NPMLE
type I 0.0015 0.0242 0.0241 0.9490 -0.0028 0.0410 0.0414 0.9500 0.1710 0.2788
type II -0.0141 0.0133 0.0133 0.8170 0.0892 0.0211 0.0213 0.0120 0.5061 2.6427
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Table S.3: Simulation 2. Integrated absolute bias (IAB). Upper half of table: the true
censoring distribution is independent of q, Gptq is estimated using a common Kaplan-Meier
estimator of the censoring distribution. Lower half of table: the true censoring distribution
is subgroup-specific, Gptq is estimated using a common Kaplan-Meier estimator (denoted by
:), or a subgroup-specific Kaplan-Meier estimator (denoted by ˚).

Censoring rate
20% 50%

Estimator F1ptq F2ptq F1ptq F2ptq

Group 1: OLS based
IPW 0.0746 0.0043 0.0334 0.0094
AIPW 0.0666 0.0044 0.0336 0.0307
IMP 0.0375 0.0040 0.0310 0.0195

Group 2: WLS based
IPW 0.0740 0.0085 0.0333 0.0226
AIPW 0.0797 0.0047 0.0364 0.0402
IMP 0.0416 0.0043 0.0483 0.0212

Group 3: EFF based
IPW 0.0669 0.0044 0.0172 0.0090
AIPW 0.0692 0.0060 0.0622 0.0229
IMP 0.0474 0.0073 0.0325 0.0191

Group 4: NPMLE
type I 0.0373 0.0194 0.0333 0.2461
type II 0.1308 0.0644 0.1475 0.1173

Group 1: OLS based
IPW: 0.0505 0.0543 0.0447 0.0321
AIPW: 0.0470 0.0073 0.0433 0.0321
IPW˚ 0.0654 0.0153 0.0137 0.0094
AIPW˚ 0.0586 0.0132 0.0317 0.0280

Group 2: WLS based
IPW: 0.0501 0.0534 0.0454 0.0467
AIPW: 0.0620 0.0080 0.0400 0.0415
IPW˚ 0.0656 0.0135 0.0146 0.0215
AIPW˚ 0.0689 0.0126 0.0335 0.0354

Group 3: EFF based
IPW: 0.0546 0.0535 0.0370 0.0320
AIPW: 0.0474 0.0084 0.0651 0.0245
IPW˚ 0.0608 0.0161 0.0137 0.0085
AIPW˚ 0.0631 0.0096 0.0596 0.0188
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Table S.4: Simulation 2. Bias, empirical standard deviation (emp sd), average estimated
standard deviation (est sd), 95% coverage (95% cov) of 11 estimators. The censoring distri-
bution is subgroup-specific, and Gptq is estimated using a common Kaplan-Meier estimator
(denoted by :), or a subgroup-specific Kaplan-Meier estimator (denoted by ˚). Sample size
n “ 500, 20% and 50% censoring rate, 1000 simulations.

F1ptq “ 0.5837 F2ptq “ 0.5748
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW: -0.0092 0.0494 0.0459 0.9260 0.0132 0.0479 0.0441 0.9080

AIPW: 0.0053 0.0413 0.0390 0.9280 -0.0020 0.0394 0.0376 0.9350
IPW˚ 0.0072 0.0429 0.0394 0.9180 0.0008 0.0405 0.0388 0.9360

AIPW˚ 0.0065 0.0418 0.0381 0.9180 0.0013 0.0397 0.0379 0.9360

Group 2: WLS based, censoring rate =20%
IPW: -0.0092 0.0495 0.0458 0.9250 0.0132 0.0479 0.0441 0.9080

AIPW: 0.0054 0.0413 0.0390 0.9260 -0.0020 0.0394 0.0376 0.9350
IPW˚ 0.0073 0.0430 0.0394 0.9180 0.0007 0.0406 0.0389 0.9340

AIPW˚ 0.0065 0.0418 0.0381 0.9180 0.0012 0.0397 0.0379 0.9360

Group 3: EFF based, censoring rate =20%
IPW: -0.0112 0.0502 0.0459 0.9240 0.0133 0.0470 0.0438 0.9110

AIPW: 0.0055 0.0415 0.0391 0.9260 -0.0023 0.0404 0.0376 0.9300
IPW˚ 0.0063 0.0419 0.0391 0.9270 0.0013 0.0399 0.0386 0.9420

AIPW˚ 0.0070 0.0413 0.0382 0.9220 0.0006 0.0398 0.0379 0.9360

Group 1: OLS based, censoring rate =50%
IPW: -0.0028 0.0805 0.0764 0.9270 0.0063 0.0814 0.0744 0.9240

AIPW: 0.0009 0.0464 0.0488 0.9560 -0.0024 0.0510 0.0480 0.9260
IPW˚ 0.0028 0.0530 0.0496 0.9440 -0.0022 0.0545 0.0528 0.9440

AIPW˚ 0.0016 0.0490 0.0462 0.9460 -0.0016 0.0520 0.0499 0.9360

Group 2: WLS based, censoring rate =50%
IPW: -0.0027 0.0805 0.0764 0.9280 0.0063 0.0815 0.0744 0.9220

AIPW: 0.0009 0.0465 0.0488 0.9570 -0.0025 0.0510 0.0480 0.9260
IPW˚ 0.0031 0.0535 0.0498 0.9430 -0.0025 0.0545 0.0529 0.9430

AIPW˚ 0.0017 0.0493 0.0461 0.9480 -0.0017 0.0520 0.0499 0.9360

Group 3: EFF based, censoring rate =50%
IPW: -0.0098 0.0829 0.0769 0.9140 0.0050 0.0792 0.0742 0.9210

AIPW: -0.0012 0.0471 0.0491 0.9580 -0.0004 0.0516 0.0482 0.9270
IPW˚ 0.0013 0.0522 0.0495 0.9390 -0.0016 0.0542 0.0527 0.9460

AIPW˚ -0.0011 0.0484 0.0464 0.9470 0.0008 0.0519 0.0499 0.9370
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Figure S.1: Estimated type I NPMLE survival curves for the COHORT data stratified by
gender using the full sample (left panels) and sub-sample (right panels; removing subjects
in Qi groups with small sample sizes). The curves “USpop Male” and “USpop Female”
correspond to Kaplan-Meier estimated survival rates for the general male and female US
populations in 2003. Bottom two figures compare the estimated survival curves for the male
and female HD gene mutation carrier groups to that of the general male and female US
populations.
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