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Flexible estimation of covariance function
by penalized spline with application
to longitudinal family data
Yuanjia Wang∗†

Longitudinal data are routinely collected in biomedical research studies. A natural model describing longi-
tudinal data decomposes an individual’s outcome as the sum of a population mean function and random
subject-specific deviations. When parametric assumptions are too restrictive, methods modeling the population
mean function and the random subject-specific functions nonparametrically are in demand. In some appli-
cations, it is desirable to estimate a covariance function of random subject-specific deviations. In this work,
flexible yet computationally efficient methods are developed for a general class of semiparametric mixed effects
models, where the functional forms of the population mean and the subject-specific curves are unspecified. We
estimate nonparametric components of the model by penalized spline (P-spline, Biometrics 2001; 57:253–259),
and reparameterize the random curve covariance function by a modified Cholesky decomposition (Biometrics
2002; 58:121–128) which allows for unconstrained estimation of a positive-semidefinite matrix. To provide
smooth estimates, we penalize roughness of fitted curves and derive closed-form solutions in the maximization
step of an EM algorithm. In addition, we present models and methods for longitudinal family data where
subjects in a family are correlated and we decompose the covariance function into a subject-level source
and observation-level source. We apply these methods to the multi-level Framingham Heart Study data to
estimate age-specific heritability of systolic blood pressure nonparametrically. Copyright © 2011 John Wiley
& Sons, Ltd.

Keywords: multi-level functional data; Cholesky decomposition; age-specific heritability; Framingham Heart
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1. Introduction

When longitudinal data are available, nonparametric statistical methods on modeling population mean
function and subject-specific functions have been proposed. In Rice and Wu [1], regression splines were
used to model random subject-specific curves in a mixed effects model framework. The performance
of regression spline is sensitive to the number and location of knots and having a good criterion to
choose the number of knots is critical. In Guo [2], functional mixed effects model was considered
and a computational intensive Kalman filtering algorithm was introduced to fit model by smoothing
splines. To alleviate computational burden, Durban et al. [3] pursued a simple and flexible approach to
fit subject-specific curves by penalized spline. Specifically, they expressed the subject-specific curves
as linear combinations of truncated polynomial spline basis with random coefficients and specified
an independent covariance matrix for the coefficients of knots. Owing to the simple form of the
covariance matrix, this method allows for fast computation of subject-specific curves. Nevertheless, the
independent constraint on the basis coefficient covariance causes the estimated covariance function to
be non-invariant to change of the chosen spline basis [4].

In some applications, modeling a covariance function of subject-specific curves is of scientific interest.
In other applications, although covariance function itself may not be of direct scientific interest, its
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accurate estimation leads to an efficiency gain in estimating population mean function and fixed effects
parameters. An example of the variance–covariance function being scientifically interesting is in genetic
studies where the covariance function of related subjects in a family represents genetic information as
in the motivating example of this work, the Framingham Heart Study (FHS, [5]). The FHS is a large
ongoing prospective longitudinal study of risk factors for cardiovascular disease (CVD) first originated
in 1948. Discovering genetic risk factors for CVD is one of the major goals in the FHS. The FHS
recruits several generations of subjects in families that provide a rich resource for genetic studies. The
study collects longitudinal phenotypes such as cholesterol level, blood pressure, and blood glucose.

The existing analysis of genetic studies with longitudinal phenotypes includes stratified analysis
which performs a separate genetic analysis for each age stratum [6, 7], two-step-based methods which
run genetic analysis on the summary statistics of longitudinal phenotypes [8], and parametric methods
which assume a parametric form of the unknown genetic effect [9]. A survey of related methods can
be found in Gauderman and Conti [10], Almasy et al. [11] and MacCluer et al. [12]. Stratified analysis
and two-step analysis do not optimally use information in the repeated phenotypes leading to loss of
power and parametric analysis being subject to misspecification of the unknown genetic effect. For
more flexible methods, Fang and Wang [13] provided the estimation of age-specific heritability using
regression splines.

The challenges inherent in analyzing longitudinal family data include dealing with multi-level of
correlations: subjects in the same families are correlated and repeated measures on the same subject
contribute a second level of correlation. Both levels of correlation need to be accounted for to achieve
accurate statistical estimation. In this work, we model the covariance function of genetic effect over time
as a Kronecker product of two sources: the between-subject genetic correlation source and the within-
subject serial correlation source. The subject-level covariance is predicted by relationship between
family members or observed genotypes at genetic markers, whereas the time-level covariance involves an
unknown covariance matrix to be estimated. Through penalized splines [14], we propose semiparametric
methods to fit both independent subject data and multi-level family data to obtain flexible covariance
function and age-dependent heritability without restrictive parametric assumptions.

In this section, we introduce functional mixed effects models for independent data and in the
subsequent section we introduce flexible models for family-based data. We present a class of models
where population-level curve, subject-level curves, and covariance function of the random subject-
specific curves have unspecified functional form. Let i be the index subject and j be the index
measurements within a subject. Consider a functional mixed effects model

yi j =�(ti j )+x ′
i j�+�i (ti j )+c′

i bi +εi j , (1)

where �(t) is a population mean function, xi j is a vector of covariates for the fixed effects, � is its
coefficients, �i (t) is a nonparametric random subject-specific curve, bi is a vector of parametric subject-
specific random effects, ci is its design vector, and εi j is a measurement error. Assume that �i (t), bi ,
and εi j are independent and follow

�i (t)∼GP(0,�), bi ∼N(0,�2 D), εi j ∼N(0,�2),

where GP(0,�) is a Gaussian process with covariance function �(s, t). For simplicity, here we assume �
does not depend on time. It is easy to extend the model to include varying-coefficient by penalized spline
(see, for example, Chen and Wang [15]). This model consists of four main components: the parametric
fixed effects x ′

i j�, the nonparametric population mean �(t), the parametric random effects c′
i bi , and the

functional random effects �i (t). We focus on estimating �(s, t) and predicting �i (t) nonparametrically.
We apply penalized spline [14] to estimate nonparametric components of the model. We consider

general unstructured covariance matrix for spline basis coefficients and apply a modified Cholesky
decomposition [2] to turn a constrained maximization problem to an unconstrained one, and obtain
explicit solutions in the maximization step of an EM algorithm. To provide smooth estimates, we
penalize the log likelihood by roughness of the fitted functions. The proposed approaches address
several limitations of existing methods including parameterizing covariance of random basis coefficients
of subject-specific curves [3], requiring small number of knots with regression splines [1], and intensive
computation (Kalman filtering) [2]. We also present methods to account for multi-level family data
where subjects are correlated, and apply these methods to analyze the FHS systolic blood pressure
(SBP) data which reveal the temporal pattern of heritability of SBP.
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2. Methods

2.1. Models for family-based genetic studies with longitudinal outcomes

Model (1) can be extended to accommodate multi-level family data. For a family study, such as FHS,
the data structure has three levels with subjects nested in a family and observations nested in a subject.
Let i be the index family, j be the index subjects within a family, k be the index observations within a
subject, ti jk represent the age of a subject at a visit, and ni denote the number of subjects in a family.
A functional mixed effects model for family data is

yi jk(ti jk)=�(ti jk)+�i +xT
i jk�+�i j (ti jk)+εi jk(ti jk), (2)

where �(t) is a population mean function, �i ∼N(0,�2
�) is a random family-specific shared environmental

effect, �i j (t) is a random subject-specific genetic effect (polygenic effect), xi jk is a vector of covariates
such as gender, and εi jk(t)∼N(0,�2

ε) is a residual measurement error. We assume that �i , �i j , and εi jk
are independent.

In model (2), the function �(t) represents how population mean SBP changes with age, xi jk can
be time-varying covariates such as whether a subject is receiving an anti-hypertensive treatment at a
visit which may change over the course of study, shared environmental effect �i can be diet shared
among family members, and �i j (t) represents the random polygenic effect of interest. The variance of
the polygenic effect and the total variance of the outcome can be age-dependent, and their ratio is the
age-specific heritability. In Section 4, we provide details on age-dependent heritability and illustrate
how to estimate it nonparametrically.

2.2. Basis expansion of nonparametric functions

For simplicity, we illustrate our methods through truncated polynomial basis. Extension to other basis
such as B-splines is discussed in Section 5. Let �pq (t) denote the vector of pth-order truncated
polynomial basis with q knots, that is, �pq (t)= (1, t, . . . , t p, (t −	1)p

+, . . . , (t −	q )p
+)′, where 	1, . . . ,	q

is a sequence of knots. Assume that the mean function can be approximated by a linear combination
of spline basis, that is

�(t)=�′
p1q1

(t)�,

where �= (�0, . . . ,�p1+q1
)′ are unknown basis coefficients. Similarly, assume that the random subject-

specific curves can be approximated as

�i (t)=�′
p2q2

(t)�i , (3)

where �i = (�i,0, . . . ,�i,p2+q2
)′ are random basis coefficients distributed as

�i,0, . . . ,�i,p2+q2
∼N(0,�2�).

Note that the basis for the population mean function and the subject-specific functions can be different.
By (3), the variance–covariance function of the subject-specific curves is then

�(s, t)=�2�′
p2q2

(s)��p2q2 (t). (4)

The dimension of the covariance matrix � increases with the dimension of the basis �p2q2 .
With the expansions (3), we may write the model (1) in matrix form as

Yi = Xi�+ Bi�+Ci bi + Zi�i +εi ,

bi ∼N(0,�2 D), �i ∼N(0,�2�), εi ∼N(0,�2 Ini ),
(5)

where Yi is a vector of the i th subject’s outcomes, Xi is this person’s design matrix of the parametric
fixed effects, � is a vector of basis coefficients for the mean function, Bi = (�p1q1 (ti1), . . . ,�p1q1 (tini ))

′
is its design matrix consists of the basis function for the population mean function, bi is a vector
of parametric random effects, Ci is its design matrix, �i is a vector of random basis coefficients for
the nonparametric random effects, and Zi = (�p2q2 (ti1), . . . ,�p2q2 (tini ))

′ is its design matrix. Here, the
estimation of the covariance matrix D for the parametric random effects is a low-dimensional problem,
but the estimation of the covariance matrix � for the random effects basis coefficients can be high
dimensional.
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2.3. Modified Cholesky decomposition

To provide positive-definite estimate of �, we transform a constraint maximization problem to an
unconstrained problem by a modified Cholesky decomposition [16]. In Chen and Dunson [16], a
positive-definite matrix � of a random effects covariance was decomposed as

�=���′�, (6)

where �=diag(
1, . . . ,
M ) is a diagonal matrix and �= (�st ) is a lower triangular matrix with diagonal
elements one. It can be shown that 
2

s are the prediction variances of random basis coefficients and �st
are related to the correlation between the basis coefficients. Specifically [17]


2
s =var(�is) and corr(�is,�i t )=

∑s∧t
k=1 �sk�tk√∑s

k=1 �2
sk

∑t
k=1 �2

tk

. (7)

With decomposition (6), we further reparameterize our model by letting

�i =���i (8)

so that the model (5) becomes

Yi = Xi�+ Bi�+Ci bi + Zi���i +εi

and bi ∼N(0,�2 D), �i ∼N(0,�2 IM ), εi ∼N(0,�2 Ini ).
(9)

Note that in (9), the covariance parameters � and � in � have been turned into ‘mean’ parameters,
allowing for easy computation of the closed-form solutions in the maximization step of the EM algorithm
introduced in the following section. Let 
= (
1, . . . ,
M )′ and �= (�ls, l =1, . . . , M −1; s =1, . . . , l −1)
denote the M(M −1)/2 free parameters in �. With the modified Cholesky decomposition (6), the
covariance matrix of the random basis coefficients � is now expressed by free parameters 
 and �
without the positive-semidefinite constraint.

2.4. Estimation through penalized splines

For illustrative purpose, we focus on discussing the methods where the parametric random effects are
absent, that is, the model

yi (ti j )=�(ti j )+ Xi j�+�i (ti j )+εi j . (10)

Extension to including the parametric random effects is deferred to Section 5. There is a large body
of literature on fitting mixed effects models by EM algorithm [18]. In this work, to estimate the large
numbers of parameters involved in � while avoiding overfitting and providing smooth fit, we penalized
the likelihood by the roughness of the fitted curves.

First we discuss estimation of the population mean function. Let �= (�,�,
,�,�2) denote all param-
eters. Dropping constant terms and for given variance component parameters, the penalized marginal
log likelihood of Y under the model (10) is

l(Y ;�)=−1

2

∑
i

[log |Vi |+(Yi − Bi�− Xi�)′V −1
i (Yi − Bi�− Xi�)]− 1

2
�′L1�, (11)

where Vi =�2(Zi���′�Z ′
i + Ini ), 1 is the smoothing parameter for the mean function, and L1 is a

known penalty matrix related to the basis chosen for the mean function. For truncated polynomial
basis �p1q1, L1 is a diagonal matrix, diag(0p1+1,1q1), which implies that only the spline coefficients
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of the knots {�p1+1, . . . ,�p1+q1
} are penalized. The solution to this problem takes the form of a ridge

regression estimator

(�̂
′
, �̂′)′ =

(∑
i

B̃ ′
i V −1

i B̃i +1 L̃1

)−1 ∑
i

B̃i V −1
i Yi , (12)

where B̃i = (Xi , Bi ), L̃1 =diag(0m+p1+1,1q1 ), and m is the dimension of the fixed effects parameter �.
To fit the covariance function, we can treat the random effects �i as unobserved missing data and

employ EM algorithm. Ignoring constant terms, the joint complete data likelihood of Y and � is

l(Y,�;�)=−n

2
log�2 − 1

2�2

∑
i

[||Yi − Bi�− Xi�− Zi���i ||2 +�′
i�i ]. (13)

In [19], L1 or L2 penalty was added to the log likelihood to estimate a large covariance matrix for
balanced data. Here, we penalize roughness of the random subject-specific curves (3) to provide smooth
fitting. This penalization is motivated from the idea that the deviations of the subject-specific trajectories
from the population mean are realizations of a Gaussian process with a smooth covariance function.
The penalized likelihood for estimating variance components is

l p(Y,�;�)= l(Y,�;�)− 2

2

′L2
− 3

2
�′L3�, (14)

where 2 and 3 are smoothing parameters, and L2 and L3 are penalty matrices. By straightforward
matrix algebra, from (8) we obtain the basis coefficients of the fitted subject-specific curves as �il =∑

k<l 
l�kl�k +
l�l , l = p2 +2, . . . , p2 +q2 +1, where p2 is the order of the spline basis used to fit
�i (t) and q2 is the number of knots. For truncated polynomial basis, the roughness of the random
subject-specific curve is measured by the sum of the squared knots coefficients,

∑q2
l=1 �2

i,p2+l . Therefore,
the first p2 +1 elements in 
 are not involved in measuring the roughness of the fitted curves, which
suggests L2 to be a diagonal matrix diag(0p2+1,1q2 ). Similarly, the first p2(p2 −1)/2 elements in �
(when � is arranged by columns of �) are not involved in the roughness of �′

p2q2
(t)�̂i , so that the

matrix L3 is a diagonal matrix with the first p2(p2 −1)/2 diagonal elements zero and the remaining
diagonal elements one.

Specifying different smoothing parameters for 
 and � allows for flexibility in modeling the covariance
matrix. Recall that 
 are proportional to the prediction variances of the random basis coefficients and
� are related to the correlations as shown in (7). It is not guaranteed that the variance and correlation
elements of a covariance matrix will have the same smoothness. For example, when 3 approaches
infinity, the covariance matrix for the spline basis coefficients approaches a diagonal matrix so the
spline coefficients are independent. When both parameters go to infinity, the random subject-specific
curves are approximated by a random polynomial basis. We penalize 
 with 2 to control the effective
degrees of freedom of variance parameters and penalize � with 3 to control the effective degrees of
freedom of correlation parameters. Both 
 and � contribute to fitting subject-specific curves. Huang
et al. [20] used a similar strategy to smooth the elements in the diagonal matrix and the lower triangular
matrix of a Cholesky decomposition separately.

2.5. The EM algorithm

To apply EM algorithm [18] to fit covariance parameters, we first take the conditional expectation of the
log likelihood (14) treating random effects as unobserved (E-step) and then maximize this conditional
log likelihood to obtain updated parameters (M-step). Note that the conditional mean and variance of
the reparameterized random effects are

�(u+1)
i = E(�i |Y,�(u))

= (�
′(u)�(u) Z ′

i Zi�
(u)�(u))−1�

′(u)�(u) Z ′
i (Yi − Bi�

(u) − Xi�
(u)), (15)

G(u+1)
i = Var(�i |Y,�(u))=�2(u)(�

′(u)�(u) Z ′
i Zi�

(u)�(u) + Ini )
−1, (16)

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1883--1897
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where u is the index iteration. The conditional expectation of the second term in (13) is then given by
(E-step)

E�|Y,�(u)

{
�−2 ∑

i
||Yi − Bi�− Xi�− Zi���i ||2 +�′

i�i

}
, (17)

which can be computed based on (15) and (16).
For the M-step, we show in the appendix that by some matrix manipulations, the penalized likelihood

(14) can be written as quadratic forms of parameters 
 and �. Therefore, explicit solutions of the
maximization step can be obtained. We show the details of the algorithm in the appendix.

2.6. Confidence bands

The point-wise confidence band for the population mean function can be computed based on (12) (see
for example, 7.61 in [21]). The variability band of the covariance function is less straightforward. In
traditional mixed effects models, standard errors of the estimated variance components 
̂ and �̂ can be
obtained from the observed information matrix (see, for example [22]). However, the fitted covariance
is a function of 
̂ and �̂ through (4) and (6). To compute standard errors based on observed information
matrix, delta method would be used. Here instead, we use straightforward parametric bootstrap to obtain
confidence band for the estimated covariance function directly. We resample subject-specific random
effects from a Gaussian process with fitted covariance function and resample residuals based on (A6).

2.7. Choosing tuning parameters

The tuning parameters for penalized spline include the number and location of knots and smoothing
parameters 1,2, and 3. In Ruppert [23], it was shown that when the number of knots is adequately
large, further increasing it does not improve fit, and the smoothing parameter plays a critical role. Yu
and Ruppert [24] reported using 5–10 knots to be sufficient for smooth functions. In this work, we use a
sufficient number of knots (10) and place the knots at equal sample quantiles of ti j as suggested in [24].
There is a large body of literature on how to choose smoothing parameter in smoothing splines and
penalized spline. Popular methods include cross-validation, generalized cross-validation, information
criterion-based approaches, such as AIC and BIC, and estimating by maximizing a restricted likelihood
[25]. To avoid complications, here we select 1 by treating it as an extra variance component and
estimating through restricted maximum likelihood which was shown in Krivobokova and Kauermann
[26] to outperform AIC-based choice with correlated data. We select 2 and 3 by cross-validation
because the link between these smoothing parameters of the random subject-specific curves and variance
components in a linear mixed model is not clear.

3. Simulated examples

In this section, we perform two sets of simulation studies to evaluate the performance of the proposed
methods. We simulate 200 subjects in each setting and each subject has four observations. The time
interval between observations range from 1 to 4 years. We repeat each experiment 200 times. We use
10 knots for the mean function and 10 knots for the functional random effect.

We simulate data from model (10). The population mean function is a sine function, �(t)=
30sin(2�t/30). We simulate a binary covariate with an effect of five, and the residual random error has
a variance of one. We consider the following two functional random effects:

(1) Example 1: The random effects are simulated from

�i (t)=bi1 +bi2�(t), bi1 ∼N(0,�2
1), bi2 ∼N(0,�2

2),

where �(t)={0.15exp(0.05t)}1/2, �2
1 =4, �2

2 =2.25, and bi1 and bi2 are independent. The residual
random error is simulated from a standard normal distribution. In this example, the variance function
of the random effect �i (t) is 4+0.34exp(0.05t), which increases over time.

(2) Example 2: In this example, we keep everything the same as in example 1 except that
�(t)={exp(−0.08t +3)}1/2. The variance function of �i (t) is 4+2.25exp(−0.08t +3), which decreases
over time.
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Table I. Bias and MASE of estimated functions.

Example 1 Example 2

Function max bias∗ MASE( f̂ ) max bias MASE( f̂ )

�̂(t) Unweighted† 0.213 0.224 0.307 0.164
�̂(t) Proposed‡ 0.141 0.102 0.257 0.094
�̂(t) Alternative§ 0.114 0.130 0.101 0.130
�̂2

� (t) Proposed¶ 0.275 0.937 0.417 0.901

�̂2
� (t) Alternative‖ 1.414 0.942 2.334 1.393

Estimator Mean SE Mean SE

�̂ 4.95 0.353 4.95 0.406
�̂2 0.996 0.021 1.001 0.021

∗max bias is defined as maxt |mean( f̂ (t))− f (t)|.
†�̂(t) estimated by (10) with Vi assumed to be an independent matrix.
‡�̂(t) estimated by (10) with Vi estimated by the proposed �̂(s, t) with Cholesky decomposition.
§ �̂(t) estimated by (10) with Vi estimated directly without Cholesky decomposition.
¶ �̂2

� (t) with � estimated by the proposed modified Cholesky decomposition.
‖�̂2

� (t) with � estimated directly without decomposition (6).

We compute the mean average-squared error (MASE) of the estimated mean function defined as the
mean across the 200 simulations of the average-squared error

ASE(�̂)= 1∑
i ni

∑
i j

{�̂(ti j )−�(ti j )}2.

Define the MASE for the estimated variance function in a similar fashion. Table I summarizes the
maximal bias and the MASE of all the estimated functions. We compare the MASE of �̂(t) assuming an
independent covariance for the outcomes (i.e. assuming Vi =�2 Ini in (12); label as ‘�̂(t) unweighted’
in Table I) with (a): �̂(t) obtained with the covariance matrix � estimated from the proposed Cholesky
decomposition (i.e. Vi in (12) estimated as proposed in Section 2.4; labeled as ‘�̂(t) proposed’ in
Table I); and (b): �̂(t) obtained with covariance function matrix � estimated directly without applying
the Cholesky decomposition (labeled as ‘�̂(t) alternative’ in Table I). The improvements in MASE of the
proposed method over the unweighted estimates are 54 and 43 per cent, respectively for each example,
which are substantial. Compared to estimating � directly without applying the modified Cholesky
decomposition (5), the MASE of �̂(t) reduced by 30 and 38 per cent, respectively. The mean and
standard error of the estimated covariate effects and the residual variance with the proposed methods
are shown in Table I. To investigate the performance of the estimated variability band for the mean
function, we compare it with the empirical variability band in the left panel of Figure 1. In general,
the estimated standard error is close to the empirical standard error. The variability is largest at the
extreme values of t . The standard error estimator is slightly conservative at around age 45.

We use two ways to evaluate the performance of the estimated covariance functions. First, we evaluate
the estimated variance function since in many applications variance function is of scientific interest. For
example, in our real-data example in Section 4, the variance function is used to construct heritability.
For a typical run, the smoothing parameter 2 is chosen by cross-validation as zero and 3 as 105 in the
first example, and they are chosen as 104 and zero for the second example again by cross-validation.
These simulations show the different roles of the two smoothing parameters. Smoothing parameter 2
controls the effective degrees of freedom of variance parameters and 3 controls the effective degrees
of freedom of correlation parameters. The two smoothing parameters may take different values for an
application. The MASE of the variance function is small in both examples (Table I). When compared
to estimating � without the Cholesky decomposition, the reduction in MASE is 55 per cent for the
second example. We compare the bootstrap standard error of the estimated variance function with the
empirical standard error in the right panel of Figure 1. We see that the bootstrap standard error is close
to the empirical one and the standard error was largest at the extreme values of t .

Second, as suggested in [1], we consider a summary measure in terms of the increase in prediction
error. We use the estimated covariance estimator to construct BLUPs of the random effects at the

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1883--1897
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Figure 1. Bootstrap and empirical standard error of the estimated population mean function (left panel) and
estimated variance function (right panel).

observed time points and computed the average-squared prediction error across 200 simulation runs as

1

L

∑
l

∑
i, j

{yi j − �̂(l)(ti j )− Xi j �̂
(l) − �̂(l)

i (ti j )}2,

where l is the index each repetition of the simulation and �̂i is the BLUP using estimated covariance
matrix. We then compare this prediction error with the best estimate, which uses the true covariance
function in predicting random effects BLUPs. The increase in the root mean squared prediction error
using the estimated covariance function are 3 and 1.3 per cent for the two settings, respectively, which
is minimal.

4. A real-data example

In this section, we apply proposed methods to the longitudinal data collected in the Framingham Heart
Study (FHS, [23]) to estimate age-specific heritability of a phenotype nonparametrically. The objective
of the FHS is to identify common risk factors or characteristics that contribute to CVD. The study
follows development of CVD over a long period of time in a large cohort without overt symptoms of
CVD or disease at the time of enrollment. Longitudinal measurements are collected on subjects’ clinical
characteristics such as cholesterol level, blood pressure, and blood glucose. The FHS recruited several
generations of subjects in families: The Original Framingham Cohort (Cohort 1) was first examined in
1948 and has been examined every two years thereafter; The Offspring Cohort (Cohort 2), composed
primarily of offspring of the original cohort and the spouses of these offspring, was examined first in
1971 and has been examined approximately every four years.

Among phenotypes collected at the FHS, high blood pressure is a major risk factor for stroke and
heart disease and it affects about one-third of the adult population in the U.S. [5]. Systolic and diastolic
blood pressure (SBP and DBP) are complex traits that may be influenced by both environmental and
genetic factors. The long-term average heritability of systolic blood pressure is estimated to be high
(30–60 per cent, [27]), which suggests a substantial genetic contribution.

Although genetic contribution to blood pressure is noted by researchers, age-dependent genetic effect
is routinely ignored in genetic analysis, making discovery of individual genes with moderate effects more
difficult, potentially leading to inconsistent replication of gene-association findings [28]. Here, we apply
proposed methods to estimate age-specific heritability of SBP nonparametrically. Simply speaking, in
statistical genetics variability in the outcome is decomposed into a random genetic component and
residual environmental component. The heritability is defined as the ratio of the variance of the two
components [29]. We attempt to obtain nonparametric estimation of heritability.
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A semiparametric model for family-based genetic study with longitudinal outcomes is presented
in (2). The nonparametric random polygenic effect �i j (t) represents the overall genetic information.
This effect is characterized by its covariance function which is related to the relationship between
relatives in a family. To be specific, express �i j (t) in terms of spline basis as

�i j (t)=�′(t)�i j ,

where �(t) is a q-dimensional vector of truncated polynomial basis and �i j is the corresponding vector
of subject-specific polygenic coefficients. The covariance matrix of �i j can be specified as Meyer [30]

Cov(�(l)
i j ,�(l ′)

i j ′ )= K i
j j ′�

2
ll ′ for j, j ′ =1, . . . ,ni , l, l ′ =1, . . . , p2 +q2 +1, (18)

where �(l)
i j is the lth component of the vector �i j , and Cov(�(l)

i j ,�(l ′)
i ′ j ′)=0 for i �= i ′. Here, K i

j j ′ denotes the

known kinship coefficient between two subjects in a family, and �={(�2
ll ′), l, l ′ =1, . . . , p2 +q2 +1} is

the unknown covariance matrix of the polygenic effects basis. The kinship coefficient is defined as the
probability of randomly drawing an allele in subject j that is identical by descent (IBD) to an allele at
the same locus randomly drawn from subject j ′ [29]. For example, twice the kinship coefficient for a
full sibling pair is 1/2 and for a half-sibling pair is 1/4. These coefficients are calculated based on the
relationship between subjects in a family.

The specification (18) essentially models the covariance function of random genetic effect over
time as a Kronecker product of two sources: the subject-level source and the observation-level source.
The subject-level covariance is predicted by the kinship coefficients based on relationship between
relatives in a family, while the observation-level covariance is specified by basis vector �(t) and the
unknown covariance matrix �. For example, for a family with two siblings and each sibling with two
measurements, for instance, the covariance matrix is

Z ′
i (Ki ⊗�)Zi , (19)

where

Ki =
( 1 1/2

1/2 1

)
, Zi =diag(Zi1, Zi2)

and Zi j = (�(ti j1), . . . ,�(ti jni j ))
′.

The main goal in this analysis is to estimate population mean function and heritability defined as
the ratio of the genetic variance and the total trait variance. By model (2) and expression (18), the
age-specific heritability is

h2(t)=�2
�(t)/�2

T (t), (20)

where

�2
�(t)=�′(t)��(t) (21)

is the genetic variance, and �2
T (t)=Var(Y (t)) is the total outcome variance (see also [25, 28]). We use

the reparameterization in [31] to express the polygenic effect into a few family-specific and subject-
specific random effects to analyze the FHS data and we split large pedigrees into sib-ships for fast
computation.

We restrict our attention to observations between age 30 and 60 and subjects who did not take
anti-hypertensive treatment. There are 2100 observations from 419 subjects and 192 sib-pairs from 147
families. On average, there are 5.01 observations per subject and 2.18 subjects per sib-pair. Figure 2
shows a scatter plot of the SBP against age for all subjects.

We fit model (2) with sex as a fixed effect, and a sib-ship-specific random genetic effect �i j (t). There
are 10 knots for the mean function and 10 knots for the random genetic function. The number of knots
was chosen following Ruppert [23] and Yu and Ruppert [24]. The fitted functions do not differ when
increasing the number of knots from 10 to 20 (maximal difference in �̂(t) across time is less than 0.1).
Figure 3 shows the population mean curve along with its confidence interval. It can be seen that the
mean SBP stays rather flat at around 126.8 mm Hg (CI: 123.6, 129.9) from age 30 to around 37 and
starts to increase from age 37. The mean SBP reaches 138.6 mm Hg (CI: 134.8, 142.4) at age 60. The
gender effect is estimated as 4.98 (CI: 3.59, 6.37) with men having higher SBP, on average.
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Figure 2. Scatter plot of SBP versus age in the Framingham Heart Study.

Figure 3. Estimated population mean function of SBP versus age in the Framingham Study.

Figure 4. Estimated age-specific genetic variance (left panel) and age-specific heritability (right panel) in
the Framingham Heart Study. Smoothed variance and heritability are obtained by penalized splines; discrete
variance and heritability are obtained by dividing observations into 12 2.5-year intervals, averaging all repeated
measurements in that interval collected on the same subject, and fitting one polygenic model on the averaged

observations in each interval.

The left panel in Figure 4 shows the estimated genetic variance function �2
�(t) as defined in (21)

along with its bootstrap confidence interval. The genetic variance increases slowly from age 30 to 57,
and the rate of increase is much higher from age 57 to 60. We compare it with a stratified estimate
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Figure 5. Estimated genetic covariance (left panel) and correlation (right panel) of systolic blood
pressure in the Framingham Heart Study.

(discrete estimate) obtained by dividing observations into 12 intervals with 2.5-year width, averaging
all repeated measurements in each interval collected on the same subject, and fitting a model on the
averaged observations in each interval. It can be seen that the genetic variance estimated by penalized
spline serves as a smoothed version of the stratified estimate. The right panel in Figure 4 shows the
estimated heritability as defined in (20), where we estimate the total trait variance by a penalized spline
smoothing of squared residuals, [yi jk −xi jk �̂− �̂(ti jk)]2. The heritability increases from 0.21 (CI: 0.07,
0.35) at age 30 to 0.37 (CI: 0.18, 0.49) at age 47. It stays rather flat from age 47 to 54 and then
enters a period of fast increase before reaching 0.74 (CI: 0.27, 1.00) at age 60. Again we compare it
with the stratified estimate obtained by averaging repeated measurements on the same subject in an
age stratum. The stratified estimate is rough and highly variable while the penalized spline estimate
is smooth. We show the fitted genetic covariance and correlation function for SBP in Figure 5. The
correlation between time points decreases as the time separation increases.

As a sensitivity analysis, we fit a parametric quadratic function for the polygenic covariance to
examine its effect on estimating heritability. The heritability was estimated as 0.202, 0.311, 0.413, and
0.504 at age 30, 40, 50, and 60, respectively, compared to the nonparametric estimates obtained at the
same ages as 0.207, 0.300, 0.377, and 0.744. The parametric estimates captured the general increasing
trend, but was not flexible enough to capture the trajectory of the heritability estimates for older ages
where there are less observations available.

In Shi et al. [32], a parametric model was applied to incorporate age trend to a variance components
model in a genetic linkage study with cross-sectional data. The authors assumed a Gaussian function
of age for polygenic variance. In their analysis, the polygenic heritability of systolic blood pressure
was estimated to peak at age 74.4 with an estimate of 0.69 in Caucasians and peak at age 58.5 with an
estimate of 0.68 in African Americans [32]. Here, we take a nonparametric approach without assuming
the shape of polygenic variance. The estimated heritability at the older ages in [32] were similar to the
estimates obtained in our analysis although the shape of age-specific heritability can differ.

5. Discussion

In this work we propose nonparametric methods to estimate time-varying population mean and covari-
ance function from a collection of random curves by penalized spline. The penalized spline method uses
a moderate number of knots without sacrificing quality of fit [23]. The proposed methods are applicable
to unbalanced longitudinal data and are easy to implement. We use a Cholesky decomposition of the
covariance function to provide unconstrained estimates. Similar Cholesky decomposition for random
effect covariance was used in [16, 33] to perform variable selection in linear mixed effects models. The
developed methods are applied to estimate age-dependent heritability in the Framingham study where
subjects collected in a family are correlated. The heritability estimates are useful for planning a future
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study and developing treatment for a disease: sampling subjects at the age where heritability is at its
peak would enhance power of an association study; interventions may target different environmental
or genetic factors at different ages depending on which factor dominates.

In Section 2, we illustrate our methods assuming the parametric random effects Ci bi are absent. To
extend our methods to handle these effects, in the E-step, in addition to (15) and (16) we update bi by

b(u+1)
i = D(u)C ′

i (V
(u)
i )−1(Yi − Bi�

(u) − Xi�
(u))

and in the M-step, in addition to update (A2) and (A4) we update D by

D(u+1) = 1

n

∑
i

{
b(u+1)

i b
′(u+1)
i +[D(u) − D(u) Z ′

i (V
(u)
i )−1 Zi D(u)]

}
,

where V (u)
i =�2(u)(Ci D(u)C ′

i + Zi�(u)�(u)�
′(u)�(u) Z ′

i + Ini ).
Although the proposed methods are illustrated through truncated polynomial basis, other basis such

as B-splines can also be used. The penalty matrix involved in the log likelihood should be adapted
accordingly when using other basis functions. For B-splines, Eilers and Marx [14] proposed a difference-
based penalty. In [34], a direct generalization of smoothing splines penalty was considered (O’Sullivan
penalized spline) and mixed model representation was provided. These works allow our methods to be
easily extended to B-splines.

In some applications, investigators may be interested in testing whether the between-subject covari-
ance function differs between two groups. For instance, in the Framingham example, one may be
interested in testing whether the genetic variance differs by gender. A model allowing for group-specific
covariance function would then be

yi j (ti j )=�(ti j )+ Xi j�+�wi
i (ti j )+εi j ,

where wi =0, or 1 is a group indicator, and �wi
i ∼GP(0,�wi ) is a Gaussian process with covariance

function �wi . The between group difference in covariance function is tested by �1 =�0. A similar
extension can be applied to the mean function to accommodate group-specific �(t).

Note that in model (1), the residuals are assumed to have a constant variance over time given the
random subject-specific curves. A more general model would allow εi (t) to follow a non-stationary
Gaussian process [15]. In addition, the proposed methods assume normality of the random effects and
the residuals. This assumption can be assessed by Q–Q plots. When the assumption does not hold,
robust regression methods such as quantile regression or M-estimators may be considered.

In this work, we split the pedigrees into sib-ships when analyzing the FHS data to speed up
computation. The dimension of matrix Ki ⊗� in (19) gets larger when the number of subjects in a
family increases and the computation burden becomes heavier especially when using cross-validation
to select smoothing parameters. A more efficient algorithm with full pedigree linkage analysis is being
developed elsewhere.

Other alternative decompositions of a covariance matrix have been proposed in the literature. For
example, authors in Fan et al. [35] decomposed the covariance matrix into a variance–correlation form
and estimate the variance function nonparametrically but the correlation function parametrically. For
this factorization, it is difficult to estimate correlation nonparametrically while satisfying the positive-
semidefinite constraint. In [19], a modification of Cholesky decomposition, T �T ′ = D, was used. The
components in T are obtained by regressing Yt on its predecessors, Y1, . . . ,Yt−1, and the components
in D are innovation variances of the regression. However, since the random effects in our model are not
observed, no straightforward computation of T and D is available. Spectral decomposition and principal
components analysis are other popular methods applied to estimate covariance function [36, 37]. This
decomposition does not permit a simple conditional linear form and may require applying a surface
smoother to estimate the functional covariance [36] or orthogonalization of an estimated covariance
[37]. In addition, the estimated covariance function is not guaranteed to be positive semidefinite [38].

Appendix A

For the M-step in the EM algorithm, for given variance components parameters 
(u),�(u), and �(u),
we can solve for coefficients for nonparametric population mean � by maximizing (17). Setting the
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derivative of (17) to be zero to obtain estimating equation for � as

�̂(u+1) =
{∑

i
[�′

i�i +1L1]

}−1 ∑
i

�′
i (Yi − Zi�

(u)�(u)�(u+1)
i ). (A1)

We then develop the closed-form solution for the variance components parameters 
. Since � is a
diagonal matrix, it can be shown that Zi���i = Zi Diag(��i )
. Expanding the first term in (17) and
dropping terms without 
, we obtain


′
[∑

i
Diag(��i )Z ′

i Zi Diag(��i )

]

−2

[∑
i

(Yi −�′
i�)′Zi Diag(��i )

]

+2


′L2
, (A2)

which is a quadratic form in 
. By straightforward but tedious matrix algebra, one can show that

Diag(��i )Z ′
i Zi Diag(��i )= Z ′

i Zi ◦�Diag(�i )11′Diag(�i )�= Z ′
i Zi ◦��i�

′
i�

′,

where ‘◦’ denotes Hadamard (element by element) product (see also [18]). Further observe that

E�i |Yi ,�
(u) (�i�

′
i )=G(u)

i +�(u)
i �

′(u)
i

we can then take the conditional expectation of (A2) and set its derivative to zero to obtain the update
function for 
. That is


(u+1)

=
{∑

i
Z ′

i Zi ◦�(u)�(u+1)
i �

′(u+1)
i �

′(u)+2L2

}−1 ∑
i

{Zi Diag(�(u)�(u+1)
i )}′(Yi−Bi�

(u)−Xi�
(u)). (A3)

Next, we turn to deal with the covariance parameters � which are related to the correlation between
basis coefficients. When �=0, the basis coefficients are independent and � reduces to a diagonal
matrix. To write (17) in a quadratic form of �, observe that the first term of (17) can be re-expressed
as [2] ∑

i j
(Yi j − B ′

i j�−w′
i j (�i )�− Z ′

i j��i )
2,

where we define the M(M −1)/2-dimensional vector wi j (�i )= (�il
m Zi jm : l =1, . . . , M, m =
l +1, . . . , M)′. By this expression, we can write the conditional expectation of (17) as a quadratic form
in �, that is

�′ ∑
i j

E�|Y,�(u) (wi jw
′
i j )�−2

∑
i j

E�|Y,�(u) [(Yi j − B ′
i j�− Z ′

i j��i )w
′
i j ]+3�

′L3�.

Solve the above equation to obtain the update function for � as

�(u+1)

=
{∑

i j
E�|Y,�(u)w

(u)
i j w

′(u)
i j +3L3

}−1 ∑
i j

E�|Y,�(u){w(u)
i j (Yi j − Bi j�− Xi�

(u) − Z ′
i j�

(u)�(u+1)
i )}. (A4)

Note that wi j is a function of �i so that the conditional expectation in (A4) involves the first and the
second conditional moment of �i which are computed from (15) and (16).

Lastly, the residual variance �2 is updated by

�2(u+1) = 1

N

∑
i

{ε̂′(u)
i ε̂

(u)
i +�2(u)[ni −�2(u)Tr(PV (u)

i
)]}, (A5)

where

ε̂
(u)
i =Yi − Bi�

(u) − Xi�
(u) − Zi�

(u)�(u)�(u)
i (A6)

and Tr(PV (u)
i

) is the trace of the projection matrix, PV (u)
i

.
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To summarize, our EM algorithm is

(1) Obtain starting value for �0 by assuming a working independent correlation matrix for random
basis coefficients �i .

(2) For given �(u), �(u), and �2(u), update � and � by (A1).
(3) For given �(u+1), �(u+1), �(u), and �2(u), update �i and Gi by (15) and (16) and then update �

by (A3).
(4) For given �(u+1), �(u+1), �(u+1) and �2(u), update �i and Gi by (15) and (16) and then update

� by (A4).
(5) For given �(u+1), �(u+1), �(u+1), and �(u+1), update �2 by (A5).
(6) Iterate steps 2 through 5 until the final convergence is reached.

We implement the algorithm as in R programming language (http://cran.r-project.org/). The core
codes can be downloaded from www.columbia.edu/∼yw2016/CovSel.R.
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