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Semiparametric estimation of the within-subject vari-

ation

In this section, we present methods to estimate the population mean and the error

variance function in model (1) nonparmetrically by penalized splines. Assume that

the mean and the error variance function can be approximated by

�(t) = B�(t)��, log[�2(t)] = B�(t)�,

where B�(t) and B�(t) are row vectors of basis functions for the mean and the variance

function with possible different order p� and p�, different number of knots K� and

K�, and �� and � are the associated coefficients. The heteroscedastic variance of the

residual errors can be expressed as

Vi = diag[exp(B�(tij)�)]j=1,⋅⋅⋅ ,mi .

With the above notation, we can rewrite the model (1) as

Yi = Xi� + Zibi + �i,

where Yi = (yij)j=1,⋅⋅⋅ ,mi , Xi = (xi, B
i
�), Bi

� = (BT
� (ti1), ⋅ ⋅ ⋅ , BT

� (timi))
T , � = (�T0 , �

T
� )T ,

xi = (xi1, ⋅ ⋅ ⋅ , ximi)T , and Zi = (zi1, ⋅ ⋅ ⋅ , zimi)T . Denote Y ∗i = Yi − Xi� − Zibi, we

1



define the penalized log-likelihood as

lp =
n∑
i=1

{log∣V
1
2
i RiV

1
2
i ∣+ Y ∗i

T (V
1
2
i RiV

1
2
i )−1Y ∗i }+ ���

TP��+ ���
TP��, (A-1)

where �� and �� are smoothing parameters for the mean and the variance function and

P� and P� are penalty matrices depending on the chosen basis. For example, for the

p�-th order truncated polynomial basis with K� knots, P� = diag{0p�+1,1K�} which

implies that (A-1) only penalizes the spline coefficients. Throughout this section, we

use truncated polynomial basis.

For given variance components, we estimate the baseline function by minimizing

lp in (A-1) and the solution takes the form of a ridge estimator as

�̂ = (
n∑
i=1

XT
i Σ−1i Xi + ��diag{0px , P�})−1

n∑
i=1

XT
i Σ−1i Yi,

where Σi = ZiDZ
T
i + V

1
2
i RiV

1
2
i . To estimate the covariance matrix of the parametric

random effects D, we use the EM algorithm. To fit the variance function of the within-

subject residual measurement error, since no explicit solution exists for minimizing lp

with respect to �, we use the Newton-Raphson algorithm. To be specific, we obtain

�̂ iteratively by

�̂(k+1) = �̂(k) −
(

∂2lp
∂�∂�T

∣�̂(k)
)−1(

∂lp
∂�
∣ �̂(k)

)
,

where k index an iteration of the algorithm, and the first and the second derivatives

are easily obtained based on (A-1). The correlation parameters � are obtained by

minimizing lp also through a Newton-Raphson algorithm when no explicit solution

exists.

Choosing the smoothing parameters

The smoothing parameters play a crucial role in the estimation procedure. Too small

a penalty will lead to wiggly curves, while too large a penalty will result in flat
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polynomial curves which may lose the characteristic of the functions. Wand (2003)

showed that by specifying spline coefficients of truncated polynomial basis functions

as random effects in a linear mixed effects model, the penalized spline estimate with

the smoothing parameter taken as the ratio of two variance components is identical

to the best linear unbiased predictor (BLUP) obtained from a mixed effects model.

Krivobokova and Kauermann (2007) showed that using the restricted maximized like-

lihood (REML) to estimate smoothing parameter outperforms other methods such

as (generalized) cross-validation or the Akaike information criterion especially when

the error correlation structure is misspecified. Krivobokova et al. (2008) formulated a

hierarchical mixed model to estimate local smoothing parameter to achieve adaptive

penalized spline smoothing. Kauermann and Wegener (2009) proposed to view the

smoothing parameter of a variance function as a parameter and estimate it via max-

imizing the marginal log-likelihood. Here we use a similar likelihood-based strategy

to chose �� and ��.

Denote X = (XT
1 , ⋅ ⋅ ⋅ , XT

n )T = (X(1), X(2)) where X(1) is the first px + p� + 1

columns of X and X(2) is the remaining K� columns, where px is the length of the

vector xij. Denote � = (�T1 , �
T
2 )T as the associated parameter vector. Due to the

link of penalized spline likelihood and mixed effect models, we can treat the spline

coefficients �2 as random effects following N(0, �2
�2
I) (Wand 2003; Krivobokova and

Kauermann 2007). Integrating out the random components bi, i = 1, ⋅ ⋅ ⋅ , n, and �2

results in the marginal likelihood. The smoothing parameter can be obtained via

maximizing the marginal restricted log-likelihood

lm(��) = −1

2
log∣Σ∣ − 1

2
(Y −X(1)�1)

TΣ−1(Y −X(1)�1)−
1

2
log∣XT

(1)Σ
−1X(1)∣,
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where Σ is the marginal covariance of Y , i.e.,

Σ = E{V ar(Y ∣b, �2)}+ V ar{E(Y ∣b, �2)}

= V + Zdiag{D, ⋅ ⋅ ⋅ , D}ZT +
1

��
X(2)X

T
(2),

with V = diag{V
1
2
1 R1V

1
2
1 , ⋅ ⋅ ⋅ , V

1
2
n RnV

1
2
n }. Note that here the smoothing parameter

�� appears as a parameter in the covariance matrix Σ. Applying Newton-Raphson

algorithm, we have

�★(k+1)
� = �★(k)� −

(
∂2lm(��)

∂�★2�
∣�∗(k)�

)−1(
∂lm(��)

∂�★�
∣�∗(k)�

)
,

where �★� = 1/��. The first and the second derivatives are easy to obtain. Finally,

we obtain �̂� = 1/�̂★�.

We use a similar strategy to choose the smoothing parameter �� of the variance

function. To be specific, regard the spline coefficients in � as random effects and

integrate them out to obtain the marginal log-likelihood

lm(��) = log

∫
exp

{
− 1

2

n∑
i=1

(log∣V
1
2
i RiV

1
2
i ∣+ Y ∗i

T (V
1
2
i RiV

1
2
i )−1Y ∗i )

− 1

2
���

TP�� +
1

2
log∣��P�∣+

}
d�.

Since there is no explicit solution to such an integration, we apply Laplace approxi-

mation to obtain

lm(��) ≈ −1

2

n∑
i=1

(log∣V
1
2
i RiV

1
2
i ∣+ Y ∗i

T (V
1
2
i RiV

1
2
i )−1Y ∗i )

− 1

2
���

TP�� −
1

2
log∣H∣+ 1

2
log∣��P�∣+,

with H = −
∂2(−1

2
lp)

∂�∂�T
=

1

2

∂2lp
∂�∂�T

. Laplace approximation of a likelihood function has

been discussed in Wolfinger (1993) and Kauermann and Wegener (2009). Specifically,

we can approximate the marginal log-likelihood function

log

∫
exp(l(�))d� ≈ l(�̂)− 1

2
log∣ − l′′(�̂)∣+ const.

4



The above approximation has an error of order O(1/n). One important condition to

achieve this approximation rate is that the number of spline bases functions must be

small compared to the sample size n, that is, K ≪ n (Severini 2000; Kauermann et

al. 2009). This condition is satisfied by penalized spline smoothing since the number

of knots is much smaller than the sample size. Denote the right hand side of the

above display as l̃m(��) and set its first derivative with respect to �� to zero, i.e.,

∂l̃m(��)

∂��
= −1

2
�̂TP��̂ −

1

2
tr{H−1P�}+

K�

2��
= 0, yields

�̂� =
1

K�

(�̂TP��̂ + tr{H−1P�}).

The above formula is used iteratively in conjunction with the estimation of �.

Proofs of the Theorems 1 and 2

In this section, we prove the theorems stated in section 4. We first state the following

assumptions for the theorems to hold.

Define GK,n = 1
n
NTΣ−1N and HK,n = GK,n +

�

n
Dq. Applying the Demmler and

Reinsch (1975) decomposition, we have

(NTΣ−1N)−1/2Dq(N
TΣ−1N)−1/2 = UTdiag(S)U, (A-2)

where U is an orthogonal matrix.

Lemma 1. Under the assumption A2 and for the eigenvalues obtained in (A-2),

s1 = ⋅ ⋅ ⋅ = sq = 0, sj = n−1(j − q)2q ĉ1 for j = q + 1, ⋅ ⋅ ⋅ , K + p+ 1, (A-3)

where ĉ1 = c1(1 + o(1)) with c1 a constant depending only on q and the design density

and o(1) converges to 0 as n → ∞ uniformly for j1n ≤ j ≤ j2n for any sequences

j1n →∞ and j2n = o(n
2

2q+1 ).
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Since that the minimum and maximum eigenvalues of the matrix (NTΣ−1N)−1/2(NTN)1/2

are of the same order, the Theorem 2.2 (2.5d) in Speckman (1985) is applicable.

To prove the main results, we first show the following preliminary results.

Result R1 (Lemma A1 in Zhu et al. 2008)

∥ G−1K,n ∥∞= max
1≤i≤K+p+1

K+p+1∑
j=1

∣{G−1K,n}i,j∣ = O(�−1), (A-4)

K+p+1∑
i=1

K+p+1∑
j=1

∣{GK,n −G}i,j∣ = o(�2). (A-5)

Result (A-5) follows from the assumption A2 (A-15) and
∑K

j=−pNj(t) = 1.

Result R2

∥ 1

n
NTΣ−1(�− s�) ∥∞ = o(�p+2) (A-6)

∣E(�̂reg(t))− s�(t)∣ = o(�p+1). (A-7)

Result (A-7) follows from Lemma A3 in Zhu et al. (2008) and ∥ G−1K,n ∥= O(�−1).

Result R3 (Lemma 6.1 in Cardot 2000)

∥ Dq ∥∞= O(�1−2q). (A-8)

Lemma 2. Under the assumption A2 (A-15), we have

max
1≤i,j≤K+p+1

∣{H−1K,n}i,j∣ = O(�−1) (A-9)

∥ H−1K,n −H
−1 ∥∞= o(�−1) (A-10)

max
1≤i,j≤K+p+1

∣{H−1}i,j∣ = O(�−1). (A-11)

Proof. From

H−1K,n = G
− 1

2
K,n(I +

�

n
G
− 1

2
K,nDqG

− 1
2

K,n)−1G
− 1

2
K,n = G

− 1
2

K,nU(I + �diag(S))−1UTG
− 1

2
K,n

= G∗(I + �diag(S))−1GT
∗ ,
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where G∗ = G
− 1

2
K,nU = (g∗ij)1≤i,j≤K+p+1 and G∗G

T
∗ = G−1K,n, we have

∣{H−1K,n}i,j∣ = ∣
K+p+1∑
l=1

g∗ilg
∗
jl

1 + �sl
∣ ≤

√√√⎷K+p+1∑
l=1

g∗2il
1 + �sl

K+p+1∑
l=1

g∗2jl
1 + �sl

≤ max
1≤i≤K+p+1

K+p+1∑
l=1

g∗2il ≤∥ G−1K,n ∥∞= O(�−1). (A-12)

The first inequality in (A-12) follows from Cauchy-Schwarz inequality, and second in-

equality follows from sl ≥ 0 for l = 1, ⋅ ⋅ ⋅ , K+p+1. Therefore, max1≤i,j≤K+p+1 ∣{H−1K,n}i,j∣ =

O(�−1). Applying similar arguments as in Lemma A2 of Claeskens et al. (2009), leads

to

H−1 −H−1K,n = H−1K,n(GK,n −G){I −H−1K,n(GK,n −G)}−1H−1K,n. (A-13)

Combing (A-5) with (A-13), yields (A-11). Result (A-11) follows from (A-10) and

(A-11).

Note for Kq = o(1),

∥ (I +G−1K,n
�

n
Dq)

−1 ∥∞=∥
∞∑
i=0

(−G−1K,n
�

n
Dq)

i ∥∞≤
∞∑
i=0

∥ G−1K,n
�

n
Dq ∥i∞=

1

1 + o(1)
,

since ∥ G−1K,n �nDq ∥∞≤∥ G−1K,n ∥∞∥ �
n
Dq ∥∞= O(�−1�1−2q �

n
) = O(Kq) = o(1). Follow-

ing that ∥ H−1K,n ∥∞=∥ G−1K,n(I +G−1K,n
�
n
Dq)

−1 ∥∞≤∥ G−1K,n ∥∞∥ (I +G−1K,n
�
n
Dq)

−1 ∥∞=

O(�−1). Thus we can obtain ∥ H−1K,n − H−1 ∥∞= o(�−1) with the assumption A2

(A-14). □

Let s�(⋅) = N(⋅)� be the best L∞ approximation to the function �.

Proof of Theorem 1.

First, we can rewrite

�̂(t) = �̂reg(t)− �

n
N(t)H−1K,nDqG

−1
K,n

1

n
NTΣ−1Y,

with �̂reg(t) = 1
n
N(t)G−1K,nN

TΣ−1Y . Then we have

E�̂(t)− �(t) = {s�(t)− �(t)}+ {E�̂reg(t)− s�(t)} − �

n
N(t)H−1K,nDqG

−1
K,n

1

n
NTΣ−1(�− s� + s�).
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Barrow and Smith (1978) showed that s�(t)− �(t) = ba(x, p+ 1) + o(�p+1). Here the

order of the second term is found in R2 (A-7).

Applying the definition gives s
(q)
� (t) = {N(t)�}(q) = Nq(t)Δq�, with

Nq(t) = {N−p+q,p+1−q(t), ⋅ ⋅ ⋅ , NK,p+1−q(t)}. Noting � = G−1K,n( 1
n
NTΣ−1N)� = 1

n
G−1K,nN

TΣ−1s�

and Dq = ΔT
q RΔq, we can obtain

�

n
N(t)H−1K,nDqG

−1
K,nN

TΣ−1s�/n =
�

n
N(t)H−1K,nDq�

=
�

n
N(t)H−1K,nΔT

q

∫ b

a

NT
q (t)Nq(t)Δq�dt =

�

n
N(t)H−1K,nΔT

q

∫ b

a

NT
q (t)s(q)� (t)dt.

Moreover,

−�
n
N(t)H−1K,nΔT

q

∫ b

a

Nq(t)
T s(q)� (t)dt

= −�
n
N(t)H−1ΔT

q

∫ b

a

Nq(t)
T s(q)� (t)dt− �

n
N(t)(H−1K,n −H

−1)ΔT
q

∫ b

a

Nq(t)
T s(q)� (t)dt

= b�(t,Σ)− �

n
N(t)(H−1K,n −H

−1)ΔT
q

∫ b

a

Nq(t)
T s(q)� (t)dt.

Now, we only need to prove that both −�
n
N(t)(H−1K,n−H−1)ΔT

q

∫ b
a
Nq(t)

T s
(q)
� (t)dt and

−�
n
N(t)H−1K,nDqG

−1
K,n

1
n
NTΣ−1(�−s�) are asymptotically ignorable. Note 0 ≤ Nj,q(⋅) ≤

1, it is easy to show that max{
∫ b
a
Nq(t)dt} = O(�). By the characteristic of the func-

tion space, supt∈[a,b] ∣s
(q)
� (t)∣ = O(1). For the second part of Theorem 4.1, when

� ∈ W q[a, b], we can obtain similar result of max{
∫ b
a
Nq(t)

T s
(q)
� (t)dt} = O(�). By

definition, ∥ Δq ∥∞= O(�−q) (see also Lemma 6.1 of Cardot 2000). Combing the

above results, we have

− �

n
N(t)(H−1K,n −H

−1)ΔT
q

∫ b

a

Nq(t)
T s(q)� (t)dt = o(�n−1�−q),

−�
n
N(t)H−1K,nDqG

−1
K,n

1

n
NTΣ−1(�− s�) = o(�n−1�p−2q).

Therefore, E�̂(t)− �(t) = ba(t, p+ 1) + b�(t,Σ) + o(�p+1) + o(�n−1�−q) = O(�p+1) +

O(�n−1�−q).
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Next consider the variance, that is,

V ar(�̂(t)) =
1

n
N(t)H−1K,nGK,nH

−1
K,nN

T (t)

=
N(t)

n
{H−1GH−1 +H−1K,n(GK,n −G)H−1K,n +H−1G(H−1K,n −H

−1)

+ (H−1K,n −H
−1)GH−1K,n}N

T (t).

Analogous to the bias, we have 1
n
N(t)H−1K,n(GK,n − G)H−1K,nN

T (t), 1
n
N(t)(H−1K,n −

H−1)GH−1K,nN
T (t) and 1

n
N(t)H−1G(H−1K,n−H−1)NT (t) are of the same order o(n−1�−1).

Finally, note that when Kq = O(1), o(�n−1�−q) = o((�/n)1/2) and o(n−1�−1) =

o(n−1(�/n)−1/2q). This proves the theorem 1. □

Proof of Theorem 2.

First note from Theorem 1, we have

E�̂(t)− �(t)− ba(t)− b�(t,Σ)√
V ar(�̂(t))

=
o(�p+1) + o(�n−1�−q)

(n�)−
1
2

= o(
√
n�p+3/2)+o(�n−

1
2 �

1
2
−q) = o(1).

Therefore, it is sufficient to show that

�̂(t)− E�̂(t)√
V ar(�̂(t))

d−→ N(0, 1).

We can represent

�̂(t)− E�̂(t) = N(t)(NTΣ−1N + �Dq)
−1

n∑
i=1

STi V
−1�i =

n∑
i=1

CT
ni�i,

where Cni = N(t)(NTΣ−1N + �Dq)
−1STi V

−1 with Si = (NT (ti1), ⋅ ⋅ ⋅ , NT (tim))T . To

check the Lindeberg condition, it suffices to show that

lim
n→∞

max1≤i≤n ∥ Cn,i ∥2∑n
i=1 ∥ Cn,i ∥2

= 0.

Rewrite

∥ Cni ∥2 = N∗(t)TSTi V
−2SiN

∗(t),
n∑
i=1

∥ Cni ∥2 = N∗(t)T
n∑
i=1

STi V
−2SiN

∗(t) = N∗(t)TNTΣ−2NN∗(t),
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where N∗(t) = (NTΣ−1N + �Dq)
−1N(t)T . Since

�min(NTΣ−2N) ≥ cn�, �max(SiS
T
i ) ≤

m∑
j=1

N(tij)N(tij)
T ≤

m∑
j=1

K∑
l=−p

Nl(tij) = m

�max(S
T
i V
−2Si) ≤ �max(V

−2)�max(SiS
T
i ), max

1≤i≤n
�max(S

T
i V
−2Si) = O(1),

where �min(A) and �max(A) denote respectively the smallest and largest eigenvalues

for A,

max1≤i≤n ∥ Cn,i ∥2∑n
i=1 ∥ Cn,i ∥2

≤ max1≤i≤n �max(S
T
i V
−2Si)

cn�
= O(

1

n�
).

This proves the theorem. □

Asymptotic properties for P-spline estimator with

truncated polynomial basis

Assumption 1. Let �j = �j+1 − �j and � = max0≤j≤K �j. There exists a constant

M > 0, such that �/(min0≤j≤K �j) ≤M and � ∼ K−1.

Assumption 2. For any j, l = 1, ⋅ ⋅ ⋅ ,m,

sup
x,y∈[a,b]

∣Qn,jl(x, y)−Qjl(x, y)∣ = o(K−2), sup
x∈[a,b]

∣Qn,j(x)−Qj(x)∣ = o(K−2), (A-14)

sup
x,y∈[a,b]

∣Qn,jl(x, y)−Qjl(x, y)∣ = o(K−4), sup
x∈[a,b]

∣Qn,j(x)−Qj(x)∣ = o(K−3), (A-15)

where Qn,jl(x, y) = 1
n

∑n
i=1 I(ti,j ≤ x, ti,l ≤ y), Qn,j(x) = 1

n

∑n
i=1 I(tij ≤ x), and

Qjl(x, y) and Qj(x) are certain distribution functions with positive continuous density

functions �jl(x, y) and �j(x) on [a, b]× [a, b] and [a, b], respectively.

Assumption 3. The number of knots K = o(n).

We now extend the asymptotic properties in section 4.2 to the truncated polyno-

mial basis. With a slight abuse of notation, let B(t) be the pth order truncated poly-

nomial basis with K knots, let B = (B(t11)
T , ⋅ ⋅ ⋅ , B(tnm)T )T , let P = diag(0p+1, 1K)
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and let �∗ denote the penalty for the truncated polynomial spline estimator. The

fitted estimator is

�̂∗ = B(BTΣ−1B + �∗P )−1BTY.

Since there exists a square and invertible transition matrix L, such that N = BL (de

Boor 2001, Claeskens et al. 2009), we can rewrite the estimator as

�̂∗ = N(NTΣ−1N + �∗L
TPL)−1NTY.

Therefore, replacing the penalty term �Dq in a B-spline estimator by �∗L
TPL yields

an equivalent estimator, �̂∗. Denote �̂∗(t) = B(t)(BTΣ−1B + �∗P )−1BTΣ−1Y and

Kp+1 = �K2p+2/n. Applying the asymptotic results obtained in the previous section

to the �̂∗(t), we have the following theorems.

Theorem A. 1. Under the assumptions A1-A3 and �(⋅) ∈ Cp+1[a, b], the following

results hold:

1. If Kp+1 = o(1), then

E(�̂∗(t))− �(t) = ba(t, p+ 1) + b∗�(t,Σ) + o(�p+1) + o(�n−1�−p),

V ar(�̂∗(t)) =
1

n
N(t)(G+

�

n
Dq)

−1G(G+
�

n
Dq)

−1NT (t) + o((n�)−1),

and for K ∼ n1/(2p+3) and � = O(n2/(2p+3)), the optimal rate for MSE n−(2p+2)/(2p+3)

is attained by the penalized spline estimator.

2. If Kp+1 = O(1), then

E(�̂∗(t))− �(t) = ba(t, p+ 1) + b∗�(t,Σ) + o(�p+1) + o((�/n)(p+1)/(2p+1)),

V ar(�̂∗(t)) =
1

n
N(t)(G+

�

n
Dq)

−1G(G+
�

n
Dq)

−1NT (t) + o(n−1(�/n)−1/(2p+1)),

and for � ∼ n2/(2p+3) and K ∼ n1/(2p+3), the optimal rate for MSE n−(2p+2)/(2p+3) is

attained by the penalized spline estimator.
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Remark 1. In contrast to the B-spline basis, the optimal rate of convergence for �(t)

estimated by truncated polynomial basis is the same for the small and large number

of knots case. This result also holds for univariate data (Claeskens et al. 2009).

Remark 2. Lin et al. (2004) showed that the asymptotic rate of the MSE of the

qth order smoothing spline is O((�/n)2) + O(n−1+1/2q�−1/(2q)). Thus when � =

O(n−2q/(4q+1)) the optimal rate is achieved at O(n−4q/(4q+1)), which corresponds to

the second scenario of the Theorem A.1 with p = 2q − 1.

Theorem A. 2. Assume K2p+3 ∼ n, � = O(K2) and ℎ > 0, C > 0, such that

supi,j E∣�ij∣2+ℎ ≤ C. Then

�̂∗(t)− �(t)− ba(t, p+ 1)− b∗�(t,Σ)√
V ar(�̂∗(t))

−→ N(0, 1)

in distribution, as n −→∞.

Proofs of Theorems A.1 and A.2.

Note that {N(t)�}(p) =
∑K

j=0Nj,1(t)�
(p)
j =

∑K
j=1 I(�j ≤ t)(�

(p)
j − �

(p)
j−1) + �

(p)
0 ,

where �(p) is the pth difference of � defined in Claeskens et al. (2009). Since the

derivative of an indicator function is a Dirac delta function which integrates to one,

we have ∫ b

a

[{N(t)�}(p+1)]2dt =
K∑
j=1

(�
(p)
j − �

(p)
j−1)

2.

The transition matrix L can be obtained from the equation

�∗�
TLTPL� = ��TDq� = �

K∑
j=1

(�
(p)
j − �

(p)
j−1)

2.

Rewrite
∑K

j=1(�
(p)
j − �

(p)
j−1)

2 = �(p)TQTQ�(p), with Q as a (K + 1) × (K + p + 1)

transition matrix. For equidistant knots, �(p) = �p∇p� where ∇p is a difference

operator matrix defined in Claeskens et al. (2009). It follows that

�∗�
TLTPL� = ��(p)TQTQ�(p) = ��−2p�T∇T

pQ
TQ∇p�.
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Table A1: Average computing time for the first scenario in Simulation II with 100
replications

(n,m)∗ (100, 10) (100, 15) (100, 20) (100, 30) (150, 10) (200, 10) (300, 10)
Time† 1.42 3.16 7.78 15.72 3.29 7.80 16.31
∗: n is the number of subjects and m is the number of observations per subject.

†: The unit of computing time is minute.

Therefore, �̂∗ corresponds to a B-spline estimator with equidistant knots which satis-

fies �∗L
TPL = �Dq = ��−2p∇T

pQ
TQ∇p. The asymptotic bias, variance and normality

can be obtained, following the arguments in the proof of Theorems 1 and 2 via re-

placing �Dq by �∗�
−2p∇T

pQ
TQ∇p. □

Numerical performance and implementation

The computing time to fit the model by the proposed algorithm depends on the num-

ber of subjects and number of observations per subject. We used scenario 1 in the Sim-

ulation II to assess computational burden. We present the computing time on a Dell

desktop with a 2.67 GHz CPU and 4GB RAM with different configurations of sample

size in Table A1 of this appendix. An example of the R source code of the core func-

tions to fit the model can be found at http://www.columbia.edu/ yw2016/SemiCovcode.R.
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